File: AtomicPCCF.c

package info (click to toggle)
openmx 3.5-1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 134,876 kB
  • sloc: ansic: 152,771; python: 876; makefile: 576; xml: 63; perl: 18; sh: 4
file content (130 lines) | stat: -rw-r--r-- 3,286 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
/**********************************************************************
  AtomicPCCF.c:

     AtomicPCCF.c is a subroutine to calculate the atomic partial
     core charge density of one atom specified "Gensi" at R.

  Log of AtomicPCCF.c:

     22/Nov/2001  Released by T.Ozaki

***********************************************************************/

#include <stdio.h>
#include <math.h>
#include "openmx_common.h"

double AtomicPCCF(int spe, double R)
{
  int mp_min,mp_max,m;
  double h1,h2,h3,f1,f2,f3,f4;
  double g1,g2,x1,x2,y1,y2,f,df;
  double rm,y12,y22,a,b;
  double result;

  if (Spe_WhatAtom[spe]==0) return 0.0;

  mp_min = 0;
  mp_max = Spe_Num_Mesh_VPS[spe] - 1;

  if (Spe_VPS_RV[spe][Spe_Num_Mesh_VPS[spe]-1]<R){
    result = 0.0;
  }

  else if (R<Spe_VPS_RV[spe][0]){
    m = 4;
    rm = Spe_VPS_RV[spe][m];

    h1 = Spe_VPS_RV[spe][m-1] - Spe_VPS_RV[spe][m-2];
    h2 = Spe_VPS_RV[spe][m]   - Spe_VPS_RV[spe][m-1];
    h3 = Spe_VPS_RV[spe][m+1] - Spe_VPS_RV[spe][m];

    f1 = Spe_Atomic_PCC[spe][m-2];
    f2 = Spe_Atomic_PCC[spe][m-1];
    f3 = Spe_Atomic_PCC[spe][m];
    f4 = Spe_Atomic_PCC[spe][m+1];

    g1 = ((f3-f2)*h1/h2 + (f2-f1)*h2/h1)/(h1+h2);
    g2 = ((f4-f3)*h2/h3 + (f3-f2)*h3/h2)/(h2+h3);

    x1 = rm - Spe_VPS_RV[spe][m-1];
    x2 = rm - Spe_VPS_RV[spe][m];
    y1 = x1/h2;
    y2 = x2/h2;
    y12 = y1*y1;
    y22 = y2*y2;

    f =  y22*(3.0*f2 + h2*g1 + (2.0*f2 + h2*g1)*y2)
       + y12*(3.0*f3 - h2*g2 - (2.0*f3 - h2*g2)*y1);

    df = 2.0*y2/h2*(3.0*f2 + h2*g1 + (2.0*f2 + h2*g1)*y2)
       + y22*(2.0*f2 + h2*g1)/h2
       + 2.0*y1/h2*(3.0*f3 - h2*g2 - (2.0*f3 - h2*g2)*y1)
       - y12*(2.0*f3 - h2*g2)/h2;

    a = 0.5*df/rm;
    b = f - a*rm*rm;      
    result = a*R*R + b;
  }

  else{
    do{
      m = (mp_min + mp_max)/2;
      if (Spe_VPS_RV[spe][m]<R)
        mp_min = m;
      else 
        mp_max = m;
    }
    while((mp_max-mp_min)!=1);
    m = mp_max;

    if (m<2)
      m = 2;
    else if (Spe_Num_Mesh_VPS[spe]<=m)
      m = Spe_Num_Mesh_VPS[spe] - 2;

    /****************************************************
                   Spline like interpolation
    ****************************************************/

    h1 = Spe_VPS_RV[spe][m-1] - Spe_VPS_RV[spe][m-2];
    h2 = Spe_VPS_RV[spe][m]   - Spe_VPS_RV[spe][m-1];
    h3 = Spe_VPS_RV[spe][m+1] - Spe_VPS_RV[spe][m];

    f1 = Spe_Atomic_PCC[spe][m-2];
    f2 = Spe_Atomic_PCC[spe][m-1];
    f3 = Spe_Atomic_PCC[spe][m];
    f4 = Spe_Atomic_PCC[spe][m+1];

    /****************************************************
                   Treatment of edge points
    ****************************************************/

    if (m==1){
      h1 = -(h2+h3);
      f1 = f4;
    }
    if (m==(Spe_Num_Mesh_VPS[spe]-1)){
      h3 = -(h1+h2);
      f4 = f1;
    }

    /****************************************************
                Calculate the value at R
    ****************************************************/

    g1 = ((f3-f2)*h1/h2 + (f2-f1)*h2/h1)/(h1+h2);
    g2 = ((f4-f3)*h2/h3 + (f3-f2)*h3/h2)/(h2+h3);

    x1 = R - Spe_VPS_RV[spe][m-1];
    x2 = R - Spe_VPS_RV[spe][m];
    y1 = x1/h2;
    y2 = x2/h2;

    result = y2*y2*(3.0*f2 + h2*g1 + (2.0*f2 + h2*g1)*y2)
           + y1*y1*(3.0*f3 - h2*g2 - (2.0*f3 - h2*g2)*y1);
  }

  return result;
}