1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
|
/**********************************************************************
Dr_AtomicPCCF.c:
Dr_AtomicPCCF.c is a subroutine to calculate the derivative, with
respect to R, of partial core charge density of one atom specified
"Gensi".
Log of Dr_AtomicPCCF.c:
22/Nov/2001 Released by T.Ozaki
***********************************************************************/
#include <stdio.h>
#include <math.h>
#include "openmx_common.h"
double Dr_AtomicPCCF(int Gensi, double R)
{
int mp_min,mp_max,m;
double h1,h2,h3,f1,f2,f3,f4;
double g1,g2,x1,x2,y1,y2;
double rm,a,b,y12,y22,f,df;
double result;
if (Spe_WhatAtom[Gensi]==0) return 0.0;
mp_min = 0;
mp_max = Spe_Num_Mesh_VPS[Gensi] - 1;
if (Spe_VPS_RV[Gensi][Spe_Num_Mesh_VPS[Gensi]-1]<R){
result = 0.0;
}
else if (R<Spe_VPS_RV[Gensi][0]){
m = 4;
rm = Spe_VPS_RV[Gensi][m];
h1 = Spe_VPS_RV[Gensi][m-1] - Spe_VPS_RV[Gensi][m-2];
h2 = Spe_VPS_RV[Gensi][m] - Spe_VPS_RV[Gensi][m-1];
h3 = Spe_VPS_RV[Gensi][m+1] - Spe_VPS_RV[Gensi][m];
f1 = Spe_Atomic_PCC[Gensi][m-2];
f2 = Spe_Atomic_PCC[Gensi][m-1];
f3 = Spe_Atomic_PCC[Gensi][m];
f4 = Spe_Atomic_PCC[Gensi][m+1];
g1 = ((f3-f2)*h1/h2 + (f2-f1)*h2/h1)/(h1+h2);
g2 = ((f4-f3)*h2/h3 + (f3-f2)*h3/h2)/(h2+h3);
x1 = rm - Spe_VPS_RV[Gensi][m-1];
x2 = rm - Spe_VPS_RV[Gensi][m];
y1 = x1/h2;
y2 = x2/h2;
y12 = y1*y1;
y22 = y2*y2;
f = y22*(3.0*f2 + h2*g1 + (2.0*f2 + h2*g1)*y2)
+ y12*(3.0*f3 - h2*g2 - (2.0*f3 - h2*g2)*y1);
df = 2.0*y2/h2*(3.0*f2 + h2*g1 + (2.0*f2 + h2*g1)*y2)
+ y22*(2.0*f2 + h2*g1)/h2
+ 2.0*y1/h2*(3.0*f3 - h2*g2 - (2.0*f3 - h2*g2)*y1)
- y12*(2.0*f3 - h2*g2)/h2;
a = 0.5*df/rm;
b = f - a*rm*rm;
result = 2.0*a*R;
}
else{
do{
m = (mp_min + mp_max)/2;
if (Spe_VPS_RV[Gensi][m]<R)
mp_min = m;
else
mp_max = m;
}
while((mp_max-mp_min)!=1);
m = mp_max;
if (m<2)
m = 2;
else if (Spe_Num_Mesh_VPS[Gensi]<=m)
m = Spe_Num_Mesh_VPS[Gensi] - 2;
/****************************************************
Spline like interpolation
****************************************************/
h1 = Spe_VPS_RV[Gensi][m-1] - Spe_VPS_RV[Gensi][m-2];
h2 = Spe_VPS_RV[Gensi][m] - Spe_VPS_RV[Gensi][m-1];
h3 = Spe_VPS_RV[Gensi][m+1] - Spe_VPS_RV[Gensi][m];
f1 = Spe_Atomic_PCC[Gensi][m-2];
f2 = Spe_Atomic_PCC[Gensi][m-1];
f3 = Spe_Atomic_PCC[Gensi][m];
f4 = Spe_Atomic_PCC[Gensi][m+1];
/****************************************************
Treatment of edge points
****************************************************/
if (m==1){
h1 = -(h2+h3);
f1 = f4;
}
if (m==(Spe_Num_Mesh_VPS[Gensi]-1)){
h3 = -(h1+h2);
f4 = f1;
}
/****************************************************
Calculate the value at R
****************************************************/
g1 = ((f3-f2)*h1/h2 + (f2-f1)*h2/h1)/(h1+h2);
g2 = ((f4-f3)*h2/h3 + (f3-f2)*h3/h2)/(h2+h3);
x1 = R - Spe_VPS_RV[Gensi][m-1];
x2 = R - Spe_VPS_RV[Gensi][m];
y1 = x1/h2;
y2 = x2/h2;
result = 2.0*y2/h2*(3.0*f2 + h2*g1 + (2.0*f2 + h2*g1)*y2)
+ y2*y2*(2.0*f2 + h2*g1)/h2
+ 2.0*y1/h2*(3.0*f3 - h2*g2 - (2.0*f3 - h2*g2)*y1)
- y1*y1*(2.0*f3 - h2*g2)/h2;
}
return result;
}
|