1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
|
/**********************************************************************
TRAN_Input_std.c:
TRAN_Input_std.c is a subroutine to read the input data.
Log of TRAN_Input_std.c:
24/July/2008 Released by H.Kino and T.Ozaki
***********************************************************************/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>
#include "Inputtools.h"
#ifdef nompi
#include "mimic_mpi.h"
#else
#include <mpi.h>
#endif
#include "tran_prototypes.h"
#include "tran_variables.h"
#define MAXBUF 256
void TRAN_Input_std(
MPI_Comm comm1,
int Solver, /* input */
int SpinP_switch,
char *filepath,
double kBvalue,
double TRAN_eV2Hartree,
double Electronic_Temperature,
/* output */
int *output_hks
)
{
FILE *fp;
int i,po;
int i_vec[20],i_vec2[20];
double r_vec[20];
char *s_vec[20];
char buf[MAXBUF];
int myid;
MPI_Comm_rank(comm1,&myid);
/****************************************************
parameters for TRANSPORT
****************************************************/
input_logical("NEGF.Output_HKS",&TRAN_output_hks,0);
*output_hks = TRAN_output_hks;
/* printf("NEGF.OutputHKS=%d\n",TRAN_output_hks); */
input_string("NEGF.filename.HKS",TRAN_hksoutfilename,"NEGF.hks");
/* printf("TRAN_hksoutfilename=%s\n",TRAN_hksoutfilename); */
input_logical("NEGF.Output.for.TranMain",&TRAN_output_TranMain,0);
if ( Solver!=4 ) { return; }
/**** show transport credit ****/
TRAN_Credit(comm1);
input_string("NEGF.filename.hks.l",TRAN_hksfilename[0],"NEGF.hks.l");
input_string("NEGF.filename.hks.r",TRAN_hksfilename[1],"NEGF.hks.r");
/* read data of leads */
TRAN_RestartFile(comm1, "read","left", filepath,TRAN_hksfilename[0]);
TRAN_RestartFile(comm1, "read","right",filepath,TRAN_hksfilename[1]);
/* check b-, and c-axes of the unit cell of leads. */
po = 0;
for (i=2; i<=3; i++){
if (1.0e-10<fabs(tv_e[0][i][1]-tv_e[1][i][1])) po = 1;
if (1.0e-10<fabs(tv_e[0][i][2]-tv_e[1][i][2])) po = 1;
if (1.0e-10<fabs(tv_e[0][i][3]-tv_e[1][i][3])) po = 1;
}
if (po==1){
if (myid==Host_ID){
printf("Warning: The b- or c-axis of the unit cell for the left lead is not same as that for the right lead.\n");
}
MPI_Finalize();
exit(1);
}
/* show chemical potentials */
if (myid==Host_ID){
printf("\n");
printf("Intrinsic chemical potential (eV) of the leads\n");
printf(" Left lead: %15.12f\n",ChemP_e[0]*TRAN_eV2Hartree);
printf(" Right lead: %15.12f\n",ChemP_e[1]*TRAN_eV2Hartree);
}
/* check the conflict of SpinP_switch */
if ( (SpinP_switch!=SpinP_switch_e[0]) || (SpinP_switch!=SpinP_switch_e[1]) ){
if (myid==Host_ID){
printf ("scf.SpinPolarization conflicts between leads or lead and center.\n");
}
MPI_Finalize();
exit(0);
}
input_int( "NEGF.Surfgreen.iterationmax", &tran_surfgreen_iteration_max, 600);
input_double("NEGF.Surfgreen.convergeeps", &tran_surfgreen_eps, 1.0e-12);
/**** k-points parallel to the layer, which are used for the SCF calc. ****/
i_vec2[0]=1;
i_vec2[1]=1;
input_intv("NEGF.scf.Kgrid",2,i_vec,i_vec2);
TRAN_Kspace_grid2 = i_vec[0];
TRAN_Kspace_grid3 = i_vec[1];
if (TRAN_Kspace_grid2<=0){
if (myid==Host_ID){
printf("NEGF.scf.Kgrid should be over 1\n");
}
MPI_Finalize();
exit(1);
}
if (TRAN_Kspace_grid3<=0){
if (myid==Host_ID){
printf("NEGF.scf.Kgrid should be over 1\n");
}
MPI_Finalize();
exit(1);
}
/* Poisson solver */
TRAN_Poisson_flag = 5;
s_vec[0]="FD"; s_vec[1]="FD_TCN"; s_vec[2]="FD_LCN"; s_vec[3]="FFT"; s_vec[4]="FFTE";
i_vec[0]=1 ; i_vec[1]=2 ; i_vec[2]=3 ; i_vec[3]=4 ; i_vec[4]=5;
input_string2int("NEGF.Poisson.Solver", &TRAN_Poisson_flag, 5, s_vec,i_vec);
/* parameter to scale terms with Gpara=0 */
input_double("NEGF.Poisson_Gparazero.scaling", &TRAN_Poisson_Gpara_Scaling, 1.0);
/* the number of buffer cells in FFTE */
input_int("NEGF.FFTE.Num.Buffer.Cells", &TRAN_FFTE_CpyNum, 1);
/* integration method */
TRAN_integration = 0;
s_vec[0]="CF"; s_vec[1]="OLD";
i_vec[0]=0 ; i_vec[1]=1 ;
input_string2int("NEGF.Integration", &TRAN_integration, 2, s_vec,i_vec);
/**** k-points parallel to the layer, which are used for the transmission calc. ****/
i_vec2[0]=1;
i_vec2[1]=1;
input_intv("NEGF.tran.Kgrid",2,i_vec,i_vec2);
TRAN_TKspace_grid2 = i_vec[0];
TRAN_TKspace_grid3 = i_vec[1];
if (TRAN_TKspace_grid2<=0){
if (myid==Host_ID){
printf("NEGF.tran.Kgrid should be over 1\n");
}
MPI_Finalize();
exit(1);
}
if (TRAN_TKspace_grid3<=0){
if (myid==Host_ID){
printf("NEGF.tran.Kgrid should be over 1\n");
}
MPI_Finalize();
exit(1);
}
/**** source and drain bias voltage ****/
input_logical("NEGF.bias.apply",&tran_bias_apply,1); /* default=on */
if ( tran_bias_apply ) {
double tmp;
tran_biasvoltage_e[0] = 0.0;
input_double("NEGF.bias.voltage", &tmp, 0.0); /* in eV */
tran_biasvoltage_e[1] = tmp/TRAN_eV2Hartree;
}
else {
tran_biasvoltage_e[0]=0.0;
tran_biasvoltage_e[1]=0.0;
}
if (tran_bias_apply) {
int side;
side=0;
TRAN_Apply_Bias2e(comm1, side, tran_biasvoltage_e[side], TRAN_eV2Hartree,
SpinP_switch_e[side], atomnum_e[side],
WhatSpecies_e[side], Spe_Total_CNO_e[side], FNAN_e[side], natn_e[side],
Ngrid1_e[side], Ngrid2_e[side], Ngrid3_e[side], OLP_e[side][0],
&ChemP_e[side],H_e[side], dVHart_Grid_e[side] ); /* output */
side=1;
TRAN_Apply_Bias2e(comm1, side, tran_biasvoltage_e[side], TRAN_eV2Hartree,
SpinP_switch_e[side], atomnum_e[side],
WhatSpecies_e[side], Spe_Total_CNO_e[side], FNAN_e[side], natn_e[side],
Ngrid1_e[side], Ngrid2_e[side], Ngrid3_e[side], OLP_e[side][0],
&ChemP_e[side], H_e[side], dVHart_Grid_e[side] ); /* output */
}
/**** gate voltage ****/
input_double("NEGF.gate.voltage", &tran_gate_voltage, 0.0);
tran_gate_voltage /= TRAN_eV2Hartree;
/******************************************************
parameters for the DOS calculation
******************************************************/
i=0;
r_vec[i++] = -10.0;
r_vec[i++] = 10.0;
r_vec[i++] = 5.0e-3;
input_doublev("NEGF.Dos.energyrange",i, tran_dos_energyrange, r_vec); /* in eV */
/* change the unit from eV to Hartree */
tran_dos_energyrange[0] /= TRAN_eV2Hartree;
tran_dos_energyrange[1] /= TRAN_eV2Hartree;
tran_dos_energyrange[2] /= TRAN_eV2Hartree;
input_int("NEGF.Dos.energy.div",&tran_dos_energydiv,200);
i_vec2[0]=1;
i_vec2[1]=1;
input_intv("NEGF.Dos.Kgrid",2,i_vec,i_vec2);
TRAN_dos_Kspace_grid2 = i_vec[0];
TRAN_dos_Kspace_grid3 = i_vec[1];
/********************************************************
integration on real axis with a small imaginary part
for the "non-equilibrium" region
********************************************************/
input_double("NEGF.bias.neq.im.energy", &Tran_bias_neq_im_energy, 1.0e-2); /* in eV */
if (Tran_bias_neq_im_energy<0.0) {
if (myid==Host_ID) printf("NEGF.bias.neq.im.energy should be positive.\n");
MPI_Finalize();
exit(1);
}
/* change the unit from eV to Hartree */
Tran_bias_neq_im_energy /= TRAN_eV2Hartree;
input_double("NEGF.bias.neq.energy.step", &Tran_bias_neq_energy_step, 0.02); /* in eV */
if (Tran_bias_neq_energy_step<0.0) {
if (myid==Host_ID) printf("NEGF.bias.neq.energy.step should be positive.\n");
MPI_Finalize();
exit(1);
}
/* change the unit from eV to Hartree */
Tran_bias_neq_energy_step /= TRAN_eV2Hartree;
input_double("NEGF.bias.neq.cutoff", &Tran_bias_neq_cutoff, 1.0e-8); /* dimensionless */
/********************************************************
contour integration based on a continued
fraction representation of the Fermi function
********************************************************/
input_int("NEGF.Num.Poles", &tran_num_poles,150);
TRAN_Set_IntegPath( comm1, TRAN_eV2Hartree, kBvalue, Electronic_Temperature );
}
|