File: TRAN_Input_std.c

package info (click to toggle)
openmx 3.7.6-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd, stretch
  • size: 325,856 kB
  • ctags: 3,575
  • sloc: ansic: 152,655; f90: 2,080; python: 876; makefile: 675; sh: 25; perl: 18
file content (298 lines) | stat: -rw-r--r-- 8,235 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
/**********************************************************************
  TRAN_Input_std.c:

  TRAN_Input_std.c is a subroutine to read the input data.

  Log of TRAN_Input_std.c:

     24/July/2008  Released by H.Kino and T.Ozaki

***********************************************************************/

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>
#include "Inputtools.h"
#include <mpi.h>
#include "tran_prototypes.h"
#include "tran_variables.h"

#define MAXBUF  256




void TRAN_Input_std(
  MPI_Comm comm1, 
  int Solver,          /* input */
  int SpinP_switch,  
  char *filepath,
  double kBvalue,
  double TRAN_eV2Hartree,
  double Electronic_Temperature,
                      /* output */
  int *output_hks
)
{
  FILE *fp;
  int i,po;
  int i_vec[20],i_vec2[20];
  double r_vec[20];
  char *s_vec[20];
  char buf[MAXBUF];
  int myid;

  MPI_Comm_rank(comm1,&myid);

  /****************************************************
               parameters for TRANSPORT
  ****************************************************/

  input_logical("NEGF.Output_HKS",&TRAN_output_hks,0);
  *output_hks = TRAN_output_hks;

  /* printf("NEGF.OutputHKS=%d\n",TRAN_output_hks); */
  input_string("NEGF.filename.HKS",TRAN_hksoutfilename,"NEGF.hks");
  /* printf("TRAN_hksoutfilename=%s\n",TRAN_hksoutfilename); */

  input_logical("NEGF.Output.for.TranMain",&TRAN_output_TranMain,0);

  if ( Solver!=4 ) { return; }

  /**** show transport credit ****/
  TRAN_Credit(comm1);

  input_string("NEGF.filename.hks.l",TRAN_hksfilename[0],"NEGF.hks.l");
  input_string("NEGF.filename.hks.r",TRAN_hksfilename[1],"NEGF.hks.r");

  /* read data of leads */

  TRAN_RestartFile(comm1, "read","left", filepath,TRAN_hksfilename[0]);
  TRAN_RestartFile(comm1, "read","right",filepath,TRAN_hksfilename[1]);

  /* check b-, and c-axes of the unit cell of leads. */

  po = 0;
  for (i=2; i<=3; i++){
    if (1.0e-10<fabs(tv_e[0][i][1]-tv_e[1][i][1])) po = 1;
    if (1.0e-10<fabs(tv_e[0][i][2]-tv_e[1][i][2])) po = 1;
    if (1.0e-10<fabs(tv_e[0][i][3]-tv_e[1][i][3])) po = 1;
  }

  if (po==1){

    if (myid==Host_ID){
      printf("Warning: The b- or c-axis of the unit cell for the left lead is not same as that for the right lead.\n");
    }

    MPI_Finalize();
    exit(1);
  }

  /* show chemical potentials */

  if (myid==Host_ID){
    printf("\n");
    printf("Intrinsic chemical potential (eV) of the leads\n");
    printf("  Left lead:  %15.12f\n",ChemP_e[0]*TRAN_eV2Hartree);
    printf("  Right lead: %15.12f\n",ChemP_e[1]*TRAN_eV2Hartree);
  }

  /* check the conflict of SpinP_switch */

  if ( (SpinP_switch!=SpinP_switch_e[0]) || (SpinP_switch!=SpinP_switch_e[1]) ){

    if (myid==Host_ID){
      printf ("scf.SpinPolarization conflicts between leads or lead and center.\n");
    }

    MPI_Finalize();
    exit(0);
  }

  input_int(   "NEGF.Surfgreen.iterationmax", &tran_surfgreen_iteration_max, 600);
  input_double("NEGF.Surfgreen.convergeeps", &tran_surfgreen_eps, 1.0e-12); 

  /****  k-points parallel to the layer, which are used for the SCF calc. ****/
  
  i_vec2[0]=1;
  i_vec2[1]=1;
  input_intv("NEGF.scf.Kgrid",2,i_vec,i_vec2);
  TRAN_Kspace_grid2 = i_vec[0];
  TRAN_Kspace_grid3 = i_vec[1];

  if (TRAN_Kspace_grid2<=0){

    if (myid==Host_ID){
      printf("NEGF.scf.Kgrid should be over 1\n");
    }

    MPI_Finalize();
    exit(1);
  } 
  if (TRAN_Kspace_grid3<=0){

    if (myid==Host_ID){
      printf("NEGF.scf.Kgrid should be over 1\n");
    }

    MPI_Finalize();
    exit(1);
  } 

  /* Poisson solver */

  TRAN_Poisson_flag = 1;

  s_vec[0]="FD";  s_vec[1]="FFT"; 
  i_vec[0]=1   ;  i_vec[1]=2    ; 

  input_string2int("NEGF.Poisson.Solver", &TRAN_Poisson_flag, 2, s_vec,i_vec);

  /* parameter to scale terms with Gpara=0 */

  input_double("NEGF.Poisson_Gparazero.scaling", &TRAN_Poisson_Gpara_Scaling, 1.0); 

  /* the number of buffer cells in FFTE */

  input_int("NEGF.FFTE.Num.Buffer.Cells", &TRAN_FFTE_CpyNum, 1); 

  /* the number of iterations by the Band calculation in the initial SCF iterations */

  input_int("NEGF.SCF.Iter.Band", &TRAN_SCF_Iter_Band, 3); 

  /* integration method */

  TRAN_integration = 0;

  s_vec[0]="CF"; s_vec[1]="OLD"; 
  i_vec[0]=0    ; i_vec[1]=1    ;
  input_string2int("NEGF.Integration", &TRAN_integration, 2, s_vec,i_vec);

  /****  k-points parallel to the layer, which are used for the transmission calc. ****/
  
  i_vec2[0]=1;
  i_vec2[1]=1;
  input_intv("NEGF.tran.Kgrid",2,i_vec,i_vec2);
  TRAN_TKspace_grid2 = i_vec[0];
  TRAN_TKspace_grid3 = i_vec[1];

  if (TRAN_TKspace_grid2<=0){

    if (myid==Host_ID){
      printf("NEGF.tran.Kgrid should be over 1\n");
    }

    MPI_Finalize();
    exit(1);
  } 
  if (TRAN_TKspace_grid3<=0){

    if (myid==Host_ID){
      printf("NEGF.tran.Kgrid should be over 1\n");
    }

    MPI_Finalize();
    exit(1);
  } 

  /**** source and drain bias voltage ****/

  input_logical("NEGF.bias.apply",&tran_bias_apply,1); /* default=on */

  if ( tran_bias_apply ) {

    double tmp;

    tran_biasvoltage_e[0] = 0.0;
    input_double("NEGF.bias.voltage", &tmp, 0.0);  /* in eV */
    tran_biasvoltage_e[1] = tmp/TRAN_eV2Hartree; 

  }
  else {
    tran_biasvoltage_e[0]=0.0;
    tran_biasvoltage_e[1]=0.0;
  }

  if (tran_bias_apply) {

    int side;
    side=0;
    TRAN_Apply_Bias2e(comm1,  side, tran_biasvoltage_e[side], TRAN_eV2Hartree,
		      SpinP_switch_e[side], atomnum_e[side],
		      WhatSpecies_e[side], Spe_Total_CNO_e[side], FNAN_e[side], natn_e[side],
		      Ngrid1_e[side], Ngrid2_e[side], Ngrid3_e[side], OLP_e[side][0],
		      &ChemP_e[side],H_e[side], dVHart_Grid_e[side] ); /* output */
    side=1;
    TRAN_Apply_Bias2e(comm1,  side, tran_biasvoltage_e[side], TRAN_eV2Hartree,
		      SpinP_switch_e[side], atomnum_e[side],
		      WhatSpecies_e[side], Spe_Total_CNO_e[side], FNAN_e[side], natn_e[side],
		      Ngrid1_e[side], Ngrid2_e[side], Ngrid3_e[side], OLP_e[side][0],
		      &ChemP_e[side], H_e[side], dVHart_Grid_e[side] ); /* output */
  }

  /**** gate voltage ****/

  input_double("NEGF.gate.voltage", &tran_gate_voltage, 0.0); 
  tran_gate_voltage /= TRAN_eV2Hartree; 

  /******************************************************
            parameters for the DOS calculation         
  ******************************************************/
  
  i=0;
  r_vec[i++] = -10.0;
  r_vec[i++] =  10.0;
  r_vec[i++] = 5.0e-3;
  input_doublev("NEGF.Dos.energyrange",i, tran_dos_energyrange, r_vec); /* in eV */
  /* change the unit from eV to Hartree */
  tran_dos_energyrange[0] /= TRAN_eV2Hartree;
  tran_dos_energyrange[1] /= TRAN_eV2Hartree;
  tran_dos_energyrange[2] /= TRAN_eV2Hartree;

  input_int("NEGF.Dos.energy.div",&tran_dos_energydiv,200);
  
  i_vec2[0]=1;
  i_vec2[1]=1;
  input_intv("NEGF.Dos.Kgrid",2,i_vec,i_vec2);
  TRAN_dos_Kspace_grid2 = i_vec[0];
  TRAN_dos_Kspace_grid3 = i_vec[1];

  /********************************************************
    integration on real axis with a small imaginary part
    for the "non-equilibrium" region
  ********************************************************/

  input_double("NEGF.bias.neq.im.energy", &Tran_bias_neq_im_energy, 1.0e-2);  /* in eV */
  if (Tran_bias_neq_im_energy<0.0) {
    if (myid==Host_ID)  printf("NEGF.bias.neq.im.energy should be positive.\n");
    MPI_Finalize();
    exit(1);
  }
  /* change the unit from eV to Hartree */
  Tran_bias_neq_im_energy /= TRAN_eV2Hartree; 

  input_double("NEGF.bias.neq.energy.step", &Tran_bias_neq_energy_step, 0.02);  /* in eV */
  if (Tran_bias_neq_energy_step<0.0) {
    if (myid==Host_ID)  printf("NEGF.bias.neq.energy.step should be positive.\n");
    MPI_Finalize();
    exit(1);
  }
  /* change the unit from eV to Hartree */
  Tran_bias_neq_energy_step /= TRAN_eV2Hartree; 

  input_double("NEGF.bias.neq.cutoff", &Tran_bias_neq_cutoff, 1.0e-8);  /* dimensionless */

  /********************************************************
     contour integration based on a continued 
     fraction representation of the Fermi function 
  ********************************************************/

  input_int("NEGF.Num.Poles", &tran_num_poles,150);

  TRAN_Set_IntegPath( comm1, TRAN_eV2Hartree, kBvalue, Electronic_Temperature );
}