File: VNAF.c

package info (click to toggle)
openmx 3.7.6-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd, stretch
  • size: 325,856 kB
  • ctags: 3,575
  • sloc: ansic: 152,655; f90: 2,080; python: 876; makefile: 675; sh: 25; perl: 18
file content (134 lines) | stat: -rw-r--r-- 3,245 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
/**********************************************************************
  VNAF.c:

     VNAF.c is a subroutine to calculate the neutral atom potential
     of one atom specified by "Gensi".

  Log of VNAF.c:

     22/Nov/2001  Released by T.Ozaki

***********************************************************************/

#include <stdio.h>
#include <math.h>
#include "openmx_common.h"

double VNAF(int Gensi, double R)
{
  int mp_min,mp_max,m,po;
  double h1,h2,h3,f1,f2,f3,f4;
  double g1,g2,x1,x2,y1,y2,f,df;
  double a,b,rm,y12,y22,result;

  mp_min = 0;
  mp_max = Spe_Num_Mesh_VPS[Gensi] - 1;
  po = 0;

  if (Spe_Atom_Cut1[Gensi]<R){
    result = 0.0;
    po = 1;
  }
  else if (R<Spe_VPS_RV[Gensi][0]){
    po = 1;
    m = 4;
    rm = Spe_VPS_RV[Gensi][m];

    h1 = Spe_VPS_RV[Gensi][m-1] - Spe_VPS_RV[Gensi][m-2];
    h2 = Spe_VPS_RV[Gensi][m]   - Spe_VPS_RV[Gensi][m-1];
    h3 = Spe_VPS_RV[Gensi][m+1] - Spe_VPS_RV[Gensi][m];

    f1 = Spe_Vna[Gensi][m-2];
    f2 = Spe_Vna[Gensi][m-1];
    f3 = Spe_Vna[Gensi][m];
    f4 = Spe_Vna[Gensi][m+1];

    g1 = ((f3-f2)*h1/h2 + (f2-f1)*h2/h1)/(h1+h2);
    g2 = ((f4-f3)*h2/h3 + (f3-f2)*h3/h2)/(h2+h3);

    x1 = rm - Spe_VPS_RV[Gensi][m-1];
    x2 = rm - Spe_VPS_RV[Gensi][m];
    y1 = x1/h2;
    y2 = x2/h2;
    y12 = y1*y1;
    y22 = y2*y2;

    f =  y22*(3.0*f2 + h2*g1 + (2.0*f2 + h2*g1)*y2)
       + y12*(3.0*f3 - h2*g2 - (2.0*f3 - h2*g2)*y1);

    df = 2.0*y2/h2*(3.0*f2 + h2*g1 + (2.0*f2 + h2*g1)*y2)
       + y22*(2.0*f2 + h2*g1)/h2
       + 2.0*y1/h2*(3.0*f3 - h2*g2 - (2.0*f3 - h2*g2)*y1)
       - y12*(2.0*f3 - h2*g2)/h2;

    a = 0.5*df/rm;
    b = f - a*rm*rm;      
    result = a*R*R + b;
  }

  else{
    do{
      m = (mp_min + mp_max)/2;
      if (Spe_VPS_RV[Gensi][m]<R)
        mp_min = m;
      else 
        mp_max = m;
    }
    while((mp_max-mp_min)!=1);
    m = mp_max;

    if (m<2)
      m = 2;
    else if (Spe_Num_Mesh_VPS[Gensi]<=m)
      m = Spe_Num_Mesh_VPS[Gensi] - 2;
  }
  
  /****************************************************
                 Spline like interpolation
  ****************************************************/

  if (po==0){

    h1 = Spe_VPS_RV[Gensi][m-1] - Spe_VPS_RV[Gensi][m-2];
    h2 = Spe_VPS_RV[Gensi][m]   - Spe_VPS_RV[Gensi][m-1];
    h3 = Spe_VPS_RV[Gensi][m+1] - Spe_VPS_RV[Gensi][m];

    f1 = Spe_Vna[Gensi][m-2];
    f2 = Spe_Vna[Gensi][m-1];
    f3 = Spe_Vna[Gensi][m];
    f4 = Spe_Vna[Gensi][m+1];

    /****************************************************
                   Treatment of edge points
    ****************************************************/

    if (m==1){
      h1 = -(h2+h3);
      f1 = f4;
    }
    if (m==(Spe_Num_Mesh_VPS[Gensi]-1)){
      h3 = -(h1+h2);
      f4 = f1;
    }

    /****************************************************
                Calculate the value at R
    ****************************************************/

    g1 = ((f3-f2)*h1/h2 + (f2-f1)*h2/h1)/(h1+h2);
    g2 = ((f4-f3)*h2/h3 + (f3-f2)*h3/h2)/(h2+h3);

    x1 = R - Spe_VPS_RV[Gensi][m-1];
    x2 = R - Spe_VPS_RV[Gensi][m];
    y1 = x1/h2;
    y2 = x2/h2;

    f =  y2*y2*(3.0*f2 + h2*g1 + (2.0*f2 + h2*g1)*y2)
       + y1*y1*(3.0*f3 - h2*g2 - (2.0*f3 - h2*g2)*y1);

    result = f;
  }

  return result;
}