1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
|
/****************************************************************************
* *
* PrimeSense Sensor 5.x Alpha *
* Copyright (C) 2011 PrimeSense Ltd. *
* *
* This file is part of PrimeSense Sensor. *
* *
* PrimeSense Sensor is free software: you can redistribute it and/or modify*
* it under the terms of the GNU Lesser General Public License as published *
* by the Free Software Foundation, either version 3 of the License, or *
* (at your option) any later version. *
* *
* PrimeSense Sensor is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU Lesser General Public License for more details. *
* *
* You should have received a copy of the GNU Lesser General Public License *
* along with PrimeSense Sensor. If not, see <http://www.gnu.org/licenses/>.*
* *
****************************************************************************/
//---------------------------------------------------------------------------
// Includes
//---------------------------------------------------------------------------
#include "YUV.h"
#include <math.h>
#if (XN_PLATFORM == XN_PLATFORM_WIN32)
#ifdef __INTEL_COMPILER
#include <ia32intrin.h>
#else
#include <emmintrin.h>
#endif
#endif
//---------------------------------------------------------------------------
// Global Variables
//---------------------------------------------------------------------------
//---------------------------------------------------------------------------
// Code
//---------------------------------------------------------------------------
void YUV444ToRGB888(XnUInt8 cY, XnUInt8 cU, XnUInt8 cV,
XnUInt8& cR, XnUInt8& cG, XnUInt8& cB)
{
XnInt32 nC = cY - 16;
XnInt16 nD = cU - 128;
XnInt16 nE = cV - 128;
nC = nC * 298 + 128;
cR = (XnUInt8)XN_MIN(XN_MAX((nC + 409 * nE) >> 8, 0), 255);
cG = (XnUInt8)XN_MIN(XN_MAX((nC - 100 * nD - 208 * nE) >> 8, 0), 255);
cB = (XnUInt8)XN_MIN(XN_MAX((nC + 516 * nD ) >> 8, 0), 255);
}
#if (XN_PLATFORM == XN_PLATFORM_WIN32)
void YUV422ToRGB888(const XnUInt8* pYUVImage, XnUInt8* pRGBImage, XnUInt32 nYUVSize, XnUInt32* pnActualRead, XnUInt32* pnRGBSize)
{
const XnUInt8* pYUVLast = pYUVImage + nYUVSize - 8;
const XnUInt8* pYUVOrig = pYUVImage;
const XnUInt8* pRGBOrig = pRGBImage;
const XnUInt8* pRGBLast = pRGBImage + *pnRGBSize - 12;
const __m128 minus128 = _mm_set_ps1(-128);
const __m128 plus113983 = _mm_set_ps1(1.13983F);
const __m128 minus039466 = _mm_set_ps1(-0.39466F);
const __m128 minus058060 = _mm_set_ps1(-0.58060F);
const __m128 plus203211 = _mm_set_ps1(2.03211F);
const __m128 zero = _mm_set_ps1(0);
const __m128 plus255 = _mm_set_ps1(255);
// define YUV floats
__m128 y;
__m128 u;
__m128 v;
__m128 temp;
// define RGB floats
__m128 r;
__m128 g;
__m128 b;
// define RGB integers
__m128i iR;
__m128i iG;
__m128i iB;
XnUInt32* piR = (XnUInt32*)&iR;
XnUInt32* piG = (XnUInt32*)&iG;
XnUInt32* piB = (XnUInt32*)&iB;
while (pYUVImage <= pYUVLast && pRGBImage <= pRGBLast)
{
// process 4 pixels at once (values should be ordered backwards)
y = _mm_set_ps(pYUVImage[YUV422_Y2 + YUV422_BPP], pYUVImage[YUV422_Y1 + YUV422_BPP], pYUVImage[YUV422_Y2], pYUVImage[YUV422_Y1]);
u = _mm_set_ps(pYUVImage[YUV422_U + YUV422_BPP], pYUVImage[YUV422_U + YUV422_BPP], pYUVImage[YUV422_U], pYUVImage[YUV422_U]);
v = _mm_set_ps(pYUVImage[YUV422_V + YUV422_BPP], pYUVImage[YUV422_V + YUV422_BPP], pYUVImage[YUV422_V], pYUVImage[YUV422_V]);
u = _mm_add_ps(u, minus128); // u -= 128
v = _mm_add_ps(v, minus128); // v -= 128
/*
http://en.wikipedia.org/wiki/YUV
From YUV to RGB:
R = Y + 1.13983 V
G = Y - 0.39466 U - 0.58060 V
B = Y + 2.03211 U
*/
temp = _mm_mul_ps(plus113983, v);
r = _mm_add_ps(y, temp);
temp = _mm_mul_ps(minus039466, u);
g = _mm_add_ps(y, temp);
temp = _mm_mul_ps(minus058060, v);
g = _mm_add_ps(g, temp);
temp = _mm_mul_ps(plus203211, u);
b = _mm_add_ps(y, temp);
// make sure no value is smaller than 0
r = _mm_max_ps(r, zero);
g = _mm_max_ps(g, zero);
b = _mm_max_ps(b, zero);
// make sure no value is bigger than 255
r = _mm_min_ps(r, plus255);
g = _mm_min_ps(g, plus255);
b = _mm_min_ps(b, plus255);
// convert floats to int16 (there is no conversion to uint8, just to int8).
iR = _mm_cvtps_epi32(r);
iG = _mm_cvtps_epi32(g);
iB = _mm_cvtps_epi32(b);
// extract the 4 pixels RGB values.
// because we made sure values are between 0 and 255, we can just take the lower byte
// of each INT16
pRGBImage[0] = (XnUInt8)piR[0];
pRGBImage[1] = (XnUInt8)piG[0];
pRGBImage[2] = (XnUInt8)piB[0];
pRGBImage[3] = (XnUInt8)piR[1];
pRGBImage[4] = (XnUInt8)piG[1];
pRGBImage[5] = (XnUInt8)piB[1];
pRGBImage[6] = (XnUInt8)piR[2];
pRGBImage[7] = (XnUInt8)piG[2];
pRGBImage[8] = (XnUInt8)piB[2];
pRGBImage[9] = (XnUInt8)piR[3];
pRGBImage[10] = (XnUInt8)piG[3];
pRGBImage[11] = (XnUInt8)piB[3];
// advance the streams
pYUVImage += 8;
pRGBImage += 12;
}
*pnActualRead = (XnUInt32)(pYUVImage - pYUVOrig);
*pnRGBSize = (XnUInt32)(pRGBImage - pRGBOrig);
}
#else // not Win32
void YUV422ToRGB888(const XnUInt8* pYUVImage, XnUInt8* pRGBImage, XnUInt32 nYUVSize, XnUInt32* pnActualRead, XnUInt32* pnRGBSize)
{
const XnUInt8* pOrigYUV = pYUVImage;
const XnUInt8* pCurrYUV = pYUVImage;
const XnUInt8* pOrigRGB = pRGBImage;
XnUInt8* pCurrRGB = pRGBImage;
const XnUInt8* pLastYUV = pYUVImage + nYUVSize - YUV422_BPP;
const XnUInt8* pLastRGB = pRGBImage + *pnRGBSize - YUV_RGB_BPP;
while (pCurrYUV <= pLastYUV && pCurrRGB <= pLastRGB)
{
YUV444ToRGB888(pCurrYUV[YUV422_Y1], pCurrYUV[YUV422_U], pCurrYUV[YUV422_V],
pCurrRGB[YUV_RED], pCurrRGB[YUV_GREEN], pCurrRGB[YUV_BLUE]);
pCurrRGB += YUV_RGB_BPP;
YUV444ToRGB888(pCurrYUV[YUV422_Y2], pCurrYUV[YUV422_U], pCurrYUV[YUV422_V],
pCurrRGB[YUV_RED], pCurrRGB[YUV_GREEN], pCurrRGB[YUV_BLUE]);
pCurrRGB += YUV_RGB_BPP;
pCurrYUV += YUV422_BPP;
}
*pnActualRead = pCurrYUV - pOrigYUV;
*pnRGBSize = pCurrRGB - pOrigRGB;
}
#endif
void YUV420ToRGB888(const XnUInt8* pYUVImage, XnUInt8* pRGBImage, XnUInt32 nYUVSize, XnUInt32 /*nRGBSize*/)
{
const XnUInt8* pLastYUV = pYUVImage + nYUVSize - YUV420_BPP;
while (pYUVImage < pLastYUV && pRGBImage < pYUVImage)
{
YUV444ToRGB888(pYUVImage[YUV420_Y1], pYUVImage[YUV420_U], pYUVImage[YUV420_V],
pRGBImage[YUV_RED], pRGBImage[YUV_GREEN], pRGBImage[YUV_BLUE]);
pRGBImage += YUV_RGB_BPP;
YUV444ToRGB888(pYUVImage[YUV420_Y2], pYUVImage[YUV420_U], pYUVImage[YUV420_V],
pRGBImage[YUV_RED], pRGBImage[YUV_GREEN], pRGBImage[YUV_BLUE]);
pRGBImage += YUV_RGB_BPP;
YUV444ToRGB888(pYUVImage[YUV420_Y3], pYUVImage[YUV420_U], pYUVImage[YUV420_V],
pRGBImage[YUV_RED], pRGBImage[YUV_GREEN], pRGBImage[YUV_BLUE]);
pRGBImage += YUV_RGB_BPP;
YUV444ToRGB888(pYUVImage[YUV420_Y4], pYUVImage[YUV420_U], pYUVImage[YUV420_V],
pRGBImage[YUV_RED], pRGBImage[YUV_GREEN], pRGBImage[YUV_BLUE]);
pRGBImage += YUV_RGB_BPP;
pYUVImage += YUV420_BPP;
}
}
|