1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
|
/*****************************************************************************
* *
* OpenNI 2.x Alpha *
* Copyright (C) 2012 PrimeSense Ltd. *
* *
* This file is part of OpenNI. *
* *
* Licensed under the Apache License, Version 2.0 (the "License"); *
* you may not use this file except in compliance with the License. *
* You may obtain a copy of the License at *
* *
* http://www.apache.org/licenses/LICENSE-2.0 *
* *
* Unless required by applicable law or agreed to in writing, software *
* distributed under the License is distributed on an "AS IS" BASIS, *
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. *
* See the License for the specific language governing permissions and *
* limitations under the License. *
* *
*****************************************************************************/
//---------------------------------------------------------------------------
// Includes
//---------------------------------------------------------------------------
#include "XnDataProcessor.h"
#include <XnProfiling.h>
#include "XnSensor.h"
//---------------------------------------------------------------------------
// Code
//---------------------------------------------------------------------------
XnDataProcessor::XnDataProcessor(XnDevicePrivateData* pDevicePrivateData, const XnChar* csName) :
m_pDevicePrivateData(pDevicePrivateData),
m_nBytesReceived(0),
m_nLastPacketID(0),
m_csName(csName),
m_bUseHostTimestamps(FALSE)
{
m_TimeStampData.csStreamName = csName;
m_TimeStampData.bFirst = TRUE;
m_bUseHostTimestamps = pDevicePrivateData->pSensor->ShouldUseHostTimestamps();
}
XnDataProcessor::~XnDataProcessor()
{}
XnStatus XnDataProcessor::Init()
{
return (XN_STATUS_OK);
}
void XnDataProcessor::ProcessData(const XnSensorProtocolResponseHeader* pHeader, const XnUChar* pData, XnUInt32 nDataOffset, XnUInt32 nDataSize)
{
XN_PROFILING_START_SECTION("XnDataProcessor::ProcessData")
// count these bytes
m_nBytesReceived += nDataSize;
// check if we start a new packet
if (nDataOffset == 0)
{
// make sure no packet was lost
if (pHeader->nPacketID != m_nLastPacketID+1 && pHeader->nPacketID != 0)
{
xnLogWarning(XN_MASK_SENSOR_PROTOCOL, "%s: Expected %x, got %x", m_csName, m_nLastPacketID+1, pHeader->nPacketID);
OnPacketLost();
}
m_nLastPacketID = pHeader->nPacketID;
// log packet arrival
XnUInt64 nNow;
xnOSGetHighResTimeStamp(&nNow);
xnDumpFileWriteString(m_pDevicePrivateData->MiniPacketsDump, "%llu,0x%hx,0x%hx,0x%hx,%u\n", nNow, pHeader->nType, pHeader->nPacketID, pHeader->nBufSize, pHeader->nTimeStamp);
}
ProcessPacketChunk(pHeader, pData, nDataOffset, nDataSize);
XN_PROFILING_END_SECTION
}
void XnDataProcessor::OnPacketLost()
{}
XnUInt64 XnDataProcessor::CreateTimestampFromDevice(XnUInt32 nDeviceTimeStamp)
{
XnUInt64 nNow;
xnOSGetHighResTimeStamp(&nNow);
// we register the first TS calculated as time-zero. Every stream's TS data will be
// synchronized with it
if (m_pDevicePrivateData->nGlobalReferenceTS == 0)
{
xnOSEnterCriticalSection(&m_pDevicePrivateData->hEndPointsCS);
if (m_pDevicePrivateData->nGlobalReferenceTS == 0)
{
m_pDevicePrivateData->nGlobalReferenceTS = nDeviceTimeStamp;
m_pDevicePrivateData->nGlobalReferenceOSTime = nNow;
}
xnOSLeaveCriticalSection(&m_pDevicePrivateData->hEndPointsCS);
}
const XnUInt64 nWrapPoint = ((XnUInt64)XN_MAX_UINT32) + 1;
XnUInt64 nResultInTicks;
const XnUInt32 nDumpCommentMaxLength = 200;
XnChar csDumpComment[nDumpCommentMaxLength] = "";
XnBool bCheckSanity = TRUE;
if (m_TimeStampData.bFirst)
{
/*
This is a bit tricky, as we need to synchronize the first timestamp of different streams.
We somehow need to translate 32-bit tick counts to 64-bit timestamps. The device timestamps
wrap-around every ~71.5 seconds (for PS1080 @ 60 MHz).
Lets assume the first packet of the first stream got timestamp X. Now we get the first packet of another
stream with a timestamp Y.
We need to figure out what is the relation between X and Y.
We do that by analyzing the following scenarios:
1. Y is after X, in the same period (no wraparound yet).
2. Y is after X, in a different period (one or more wraparounds occurred).
3. Y is before X, in the same period (might happen due to race condition).
4. Y is before X, in a different period (this can happen if X is really small, and Y is almost at wraparound).
The following code tried to handle all those cases. It uses an OS timer to try and figure out how
many wraparounds occurred.
*/
// estimate the number of wraparound that occurred using OS time
XnUInt64 nOSTime = nNow - m_pDevicePrivateData->nGlobalReferenceOSTime;
// calculate wraparound length
XnDouble fWrapAroundInMicroseconds = nWrapPoint / (XnDouble)m_pDevicePrivateData->fDeviceFrequency;
// perform a rough estimation
XnInt32 nWraps = (XnInt32)(nOSTime / fWrapAroundInMicroseconds);
// now fix the estimation by clipping TS to the correct wraparounds
XnInt64 nEstimatedTicks =
nWraps * nWrapPoint + // wraps time
nDeviceTimeStamp - m_pDevicePrivateData->nGlobalReferenceTS;
XnInt64 nEstimatedTime = (XnInt64)(nEstimatedTicks / (XnDouble)m_pDevicePrivateData->fDeviceFrequency);
if (nEstimatedTime < nOSTime - 0.5 * fWrapAroundInMicroseconds)
nWraps++;
else if (nEstimatedTime > nOSTime + 0.5 * fWrapAroundInMicroseconds)
nWraps--;
// handle the two special cases - 3 & 4 in which we get a timestamp which is
// *before* global TS (meaning before time 0)
if (nWraps < 0 || // case 4
(nWraps == 0 && nDeviceTimeStamp < m_pDevicePrivateData->nGlobalReferenceTS)) // case 3
{
nDeviceTimeStamp = m_pDevicePrivateData->nGlobalReferenceTS;
nWraps = 0;
}
m_TimeStampData.nReferenceTS = m_pDevicePrivateData->nGlobalReferenceTS;
m_TimeStampData.nTotalTicksAtReferenceTS = nWrapPoint * nWraps;
m_TimeStampData.nLastDeviceTS = 0;
m_TimeStampData.bFirst = FALSE;
nResultInTicks = 0;
bCheckSanity = FALSE; // no need.
sprintf(csDumpComment, "Init. Total Ticks in Ref TS: %llu", m_TimeStampData.nTotalTicksAtReferenceTS);
}
if (nDeviceTimeStamp > m_TimeStampData.nLastDeviceTS) // this is the normal case
{
nResultInTicks = m_TimeStampData.nTotalTicksAtReferenceTS + nDeviceTimeStamp - m_TimeStampData.nReferenceTS;
}
else // wrap around occurred
{
// add the passed time to the reference time
m_TimeStampData.nTotalTicksAtReferenceTS += (nWrapPoint + nDeviceTimeStamp - m_TimeStampData.nReferenceTS);
// mark reference timestamp
m_TimeStampData.nReferenceTS = nDeviceTimeStamp;
sprintf(csDumpComment, "Wrap around. Refernce TS: %u / TotalTicksAtReference: %llu", m_TimeStampData.nReferenceTS, m_TimeStampData.nTotalTicksAtReferenceTS);
nResultInTicks = m_TimeStampData.nTotalTicksAtReferenceTS;
}
m_TimeStampData.nLastDeviceTS = nDeviceTimeStamp;
// calculate result in microseconds
// NOTE: Intel compiler does too much optimization, and we loose up to 5 milliseconds. We perform
// the entire calculation in XnDouble as a workaround
XnDouble dResultTimeMicroSeconds = (XnDouble)nResultInTicks / (XnDouble)m_pDevicePrivateData->fDeviceFrequency;
XnUInt64 nResultTimeMilliSeconds = (XnUInt64)(dResultTimeMicroSeconds / 1000.0);
XnBool bIsSane = TRUE;
// perform sanity check
if (bCheckSanity && (nResultTimeMilliSeconds > (m_TimeStampData.nLastResultTime + XN_SENSOR_TIMESTAMP_SANITY_DIFF*1000)))
{
bIsSane = FALSE;
xnOSStrAppend(csDumpComment, ",Didn't pass sanity. Will try to re-sync.", nDumpCommentMaxLength);
}
XnUInt64 nResult = (XnUInt64)dResultTimeMicroSeconds;
// dump it
xnDumpFileWriteString(m_pDevicePrivateData->TimestampsDump, "%llu,%s,%u,%llu,%s\n", nNow, m_TimeStampData.csStreamName, nDeviceTimeStamp, nResult, csDumpComment);
if (bIsSane)
{
m_TimeStampData.nLastResultTime = nResultTimeMilliSeconds;
return (nResult);
}
else
{
// sanity failed. We lost sync. restart
m_TimeStampData.bFirst = TRUE;
return CreateTimestampFromDevice(nDeviceTimeStamp);
}
}
XnUInt64 XnDataProcessor::GetHostTimestamp()
{
XnUInt64 nNow;
xnOSGetHighResTimeStamp(&nNow);
// we register the first TS calculated as time-zero. Every stream's TS data will be
// synchronized with it
if (m_pDevicePrivateData->nGlobalReferenceTS == 0)
{
xnOSEnterCriticalSection(&m_pDevicePrivateData->hEndPointsCS);
if (m_pDevicePrivateData->nGlobalReferenceTS == 0)
{
m_pDevicePrivateData->nGlobalReferenceTS = (XnUInt32)nNow;
m_pDevicePrivateData->nGlobalReferenceOSTime = nNow;
}
xnOSLeaveCriticalSection(&m_pDevicePrivateData->hEndPointsCS);
}
XnUInt64 nResultTimeMicroseconds = nNow - m_pDevicePrivateData->nGlobalReferenceOSTime;
return nResultTimeMicroseconds;
}
|