1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
|
#include "XnLink12BitS2DParser.h"
#include "XnShiftToDepth.h"
#include "XnLinkProtoUtils.h"
#include <XnLog.h>
#ifdef XN_NEON
#include <arm_neon.h>
#endif
//---------------------------------------------------------------------------
// Macros
//---------------------------------------------------------------------------
/* Returns a set of <count> bits. For example XN_ON_BITS(4) returns 0xF */
#define XN_ON_BITS(count) ((1 << count)-1)
/* Creates a mask of <count> bits in offset <offset> */
#define XN_CREATE_MASK(count, offset) (XN_ON_BITS(count) << offset)
/* Takes the <count> bits in offset <offset> from <source>.
* For example:
* If we want 3 bits located in offset 2 from 0xF4:
* 11110100
* ---
* we get 101, which is 0x5.
* and so, XN_TAKE_BITS(0xF4,3,2) == 0x5.
*/
#define XN_TAKE_BITS(source, count, offset) ((source & XN_CREATE_MASK(count, offset)) >> offset)
namespace xn
{
Link12BitS2DParser::Link12BitS2DParser(const XnShiftToDepthTables& shiftToDepthTables) :
m_pShiftToDepth(shiftToDepthTables.pShiftToDepthTable)
{
}
Link12BitS2DParser::~Link12BitS2DParser()
{
}
XnStatus Link12BitS2DParser::ParsePacketImpl(XnLinkFragmentation fragmentation,
const XnUInt8* pSrc,
const XnUInt8* pSrcEnd,
XnUInt8*& pDst,
const XnUInt8* pDstEnd)
{
XN_ASSERT(m_pShiftToDepth != NULL);
OniDepthPixel*& pDstPixel = reinterpret_cast<OniDepthPixel*&>(pDst);
const OniDepthPixel* pDstPixelEnd = reinterpret_cast<const OniDepthPixel*>(pDstEnd);
if ((fragmentation & XN_LINK_FRAG_BEGIN) != 0)
{
//Reset state for new frame
m_ContinuousBufferSize=0;
}
XnUInt32 bytesWritten = ProcessFramePacketChunk(pSrc,pDst,(XnUInt32)(pSrcEnd - pSrc));
pDstPixel += (OniDepthPixel)(bytesWritten/2); //progress pDst by the number of pixels (bytes divided by two)
if (pDstPixel > pDstPixelEnd) //Do we have enough room for this packet?
{
XN_ASSERT(FALSE);
return XN_STATUS_OUTPUT_BUFFER_OVERFLOW;
}
return XN_STATUS_OK;
}
XnUInt32 Link12BitS2DParser::ProcessFramePacketChunk(const XnUInt8* pData,XnUInt8* pDest, XnUInt32 nDataSize)
{
XnStatus nRetVal = XN_STATUS_OK;
XnUInt32 totalRead = 0;
XnUInt32 totalWrite = 0;
// check if we have data from previous packet
if (m_ContinuousBufferSize!= 0)
{
// fill in to a whole element
XnUInt32 nReadBytes = XN_MIN(nDataSize, XN_INPUT_ELEMENT_SIZE - m_ContinuousBufferSize);
xnOSMemCopy(m_ContinuousBuffer + m_ContinuousBufferSize, pData, nReadBytes);
m_ContinuousBufferSize += nReadBytes;
pData += nReadBytes;
nDataSize -= nReadBytes;
if (m_ContinuousBufferSize == XN_INPUT_ELEMENT_SIZE)
{
// process it
XnUInt32 nActualRead = 0;
XnUInt32 nActualWritten = 0;
Unpack12to16(m_ContinuousBuffer,pDest, XN_INPUT_ELEMENT_SIZE, &nActualRead, &nActualWritten);
pDest += nActualWritten;
totalRead += nActualRead;
totalWrite += nActualWritten;
m_ContinuousBufferSize = 0;
}
}
// find out the number of input elements we have
XnUInt32 nActualRead = 0;
XnUInt32 nActualWritten = 0;
nRetVal = Unpack12to16(pData, pDest, nDataSize, &nActualRead, &nActualWritten);
totalRead += nActualRead;
totalWrite += nActualWritten;
if (nRetVal == XN_STATUS_OK)
{
pData += nActualRead;
nDataSize -= nActualRead;
// if we have any bytes left, store them for next packet.
if (nDataSize > 0)
{
// no need to check for overflow. there can not be a case in which more than XN_INPUT_ELEMENT_SIZE
// are left.
xnOSMemCopy(m_ContinuousBuffer + m_ContinuousBufferSize, pData, nDataSize);
m_ContinuousBufferSize += nDataSize;
}
}
return totalWrite; //return total written bytes
}
XnStatus Link12BitS2DParser::Unpack12to16(const XnUInt8* pcInput,XnUInt8* pDest, const XnUInt32 nInputSize, XnUInt32* pnActualRead, XnUInt32* pnActualWritten)
{
const XnUInt8* pOrigInput = (XnUInt8*)pcInput;
XnUInt32 nElements = nInputSize / XN_INPUT_ELEMENT_SIZE; // floored
//XnUInt32 nNeededOutput = nElements * XN_OUTPUT_ELEMENT_SIZE;
*pnActualRead = 0;
XnUInt16 *pnOutput = (XnUInt16*)pDest;
XnUInt16 shift[16];
#ifdef XN_NEON
XnUInt16 depth[16];
uint8x8x3_t inD3;
uint8x8_t rshft4D, lshft4D;
uint16x8_t rshft4Q, lshft4Q;
uint16x8_t depthQ;
uint16x8x2_t shiftQ2;
#endif
// Convert the 11bit packed data into 16bit shorts
for (XnUInt32 nElem = 0; nElem < nElements; ++nElem)
{
#ifndef XN_NEON
// input: 0, 1,2,3, 4,5,6, 7,8,9, 10,11,12, 13,14,15, 16,17,18, 19,20,21, 22,23
// -,---,-,-,---,-,-,---,-,-,---,--,--,---,--,--,---,--,--,---,--,--,---,--
// bits: 8,4,4,8,8,4,4,8,8,4,4,8,8,4,4, 8, 8,4,4, 8, 8,4,4, 8, 8,4,4, 8, 8,4,4, 8
// ---,---,---,---,---,---,---,----,----,----,----,----,----,----,----,----
// output: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
shift[0] = (XN_TAKE_BITS(pcInput[0],8,0) << 4) | XN_TAKE_BITS(pcInput[1],4,4);
shift[1] = (XN_TAKE_BITS(pcInput[1],4,0) << 8) | XN_TAKE_BITS(pcInput[2],8,0);
shift[2] = (XN_TAKE_BITS(pcInput[3],8,0) << 4) | XN_TAKE_BITS(pcInput[4],4,4);
shift[3] = (XN_TAKE_BITS(pcInput[4],4,0) << 8) | XN_TAKE_BITS(pcInput[5],8,0);
shift[4] = (XN_TAKE_BITS(pcInput[6],8,0) << 4) | XN_TAKE_BITS(pcInput[7],4,4);
shift[5] = (XN_TAKE_BITS(pcInput[7],4,0) << 8) | XN_TAKE_BITS(pcInput[8],8,0);
shift[6] = (XN_TAKE_BITS(pcInput[9],8,0) << 4) | XN_TAKE_BITS(pcInput[10],4,4);
shift[7] = (XN_TAKE_BITS(pcInput[10],4,0) << 8) | XN_TAKE_BITS(pcInput[11],8,0);
shift[8] = (XN_TAKE_BITS(pcInput[12],8,0) << 4) | XN_TAKE_BITS(pcInput[13],4,4);
shift[9] = (XN_TAKE_BITS(pcInput[13],4,0) << 8) | XN_TAKE_BITS(pcInput[14],8,0);
shift[10] = (XN_TAKE_BITS(pcInput[15],8,0) << 4) | XN_TAKE_BITS(pcInput[16],4,4);
shift[11] = (XN_TAKE_BITS(pcInput[16],4,0) << 8) | XN_TAKE_BITS(pcInput[17],8,0);
shift[12] = (XN_TAKE_BITS(pcInput[18],8,0) << 4) | XN_TAKE_BITS(pcInput[19],4,4);
shift[13] = (XN_TAKE_BITS(pcInput[19],4,0) << 8) | XN_TAKE_BITS(pcInput[20],8,0);
shift[14] = (XN_TAKE_BITS(pcInput[21],8,0) << 4) | XN_TAKE_BITS(pcInput[22],4,4);
shift[15] = (XN_TAKE_BITS(pcInput[22],4,0) << 8) | XN_TAKE_BITS(pcInput[23],8,0);
pnOutput[0] = m_pShiftToDepth[(shift[0])];
pnOutput[1] = m_pShiftToDepth[(shift[1])];
pnOutput[2] = m_pShiftToDepth[(shift[2])];
pnOutput[3] = m_pShiftToDepth[(shift[3])];
pnOutput[4] = m_pShiftToDepth[(shift[4])];
pnOutput[5] = m_pShiftToDepth[(shift[5])];
pnOutput[6] = m_pShiftToDepth[(shift[6])];
pnOutput[7] = m_pShiftToDepth[(shift[7])];
pnOutput[8] = m_pShiftToDepth[(shift[8])];
pnOutput[9] = m_pShiftToDepth[(shift[9])];
pnOutput[10] = m_pShiftToDepth[(shift[10])];
pnOutput[11] = m_pShiftToDepth[(shift[11])];
pnOutput[12] = m_pShiftToDepth[(shift[12])];
pnOutput[13] = m_pShiftToDepth[(shift[13])];
pnOutput[14] = m_pShiftToDepth[(shift[14])];
pnOutput[15] = m_pShiftToDepth[(shift[15])];
#else
// input: 0, 1,2 (X8)
// -,---,-
// bits: 8,4,4,8 (X8)
// ---,---
// output: 0, 1 (X8)
// Split 24 bytes into 3 vectors (64 bit each)
inD3 = vld3_u8(pcInput);
// rshft4D0 contains 4 MSB of second vector (placed at offset 0)
rshft4D = vshr_n_u8(inD3.val[1], 4);
// lshft4D0 contains 4 LSB of second vector (placed at offset 4)
lshft4D = vshl_n_u8(inD3.val[1], 4);
// Expand 64 bit vectors to 128 bit (8 values of 16 bits)
shiftQ2.val[0] = vmovl_u8(inD3.val[0]);
shiftQ2.val[1] = vmovl_u8(inD3.val[2]);
rshft4Q = vmovl_u8(rshft4D);
lshft4Q = vmovl_u8(lshft4D);
// Even indexed shift = 8 bits from first vector + 4 MSB bits of second vector
shiftQ2.val[0] = vshlq_n_u16(shiftQ2.val[0], 4);
shiftQ2.val[0] = vorrq_u16(shiftQ2.val[0], rshft4Q);
// Odd indexed shift = 4 LSB bits of second vector + 8 bits from third vector
lshft4Q = vshlq_n_u16(lshft4Q, 4);
shiftQ2.val[1] = vorrq_u16(shiftQ2.val[1], lshft4Q);
// Interleave shift values to a single vector
vst2q_u16(shift, shiftQ2);
depth[0] = m_pShiftToDepth[(shift[0])];
depth[1] = m_pShiftToDepth[(shift[1])];
depth[2] = m_pShiftToDepth[(shift[2])];
depth[3] = m_pShiftToDepth[(shift[3])];
depth[4] = m_pShiftToDepth[(shift[4])];
depth[5] = m_pShiftToDepth[(shift[5])];
depth[6] = m_pShiftToDepth[(shift[6])];
depth[7] = m_pShiftToDepth[(shift[7])];
// Load
depthQ = vld1q_u16(depth);
//Store
vst1q_u16(pnOutput, depthQ);
depth[8] = m_pShiftToDepth[(shift[8])];
depth[9] = m_pShiftToDepth[(shift[9])];
depth[10] = m_pShiftToDepth[(shift[10])];
depth[11] = m_pShiftToDepth[(shift[11])];
depth[12] = m_pShiftToDepth[(shift[12])];
depth[13] = m_pShiftToDepth[(shift[13])];
depth[14] = m_pShiftToDepth[(shift[14])];
depth[15] = m_pShiftToDepth[(shift[15])];
// Load
depthQ = vld1q_u16(depth + 8);
// Store
vst1q_u16(pnOutput + 8, depthQ);
#endif
pcInput += XN_INPUT_ELEMENT_SIZE;
pnOutput += 16;
}
*pnActualRead = (XnUInt32)(pcInput - pOrigInput); // total bytes
*pnActualWritten = (XnUInt32)((XnUInt8*)pnOutput - pDest);
return XN_STATUS_OK;
}
}
|