File: XnLink24zYuv422Parser.cpp

package info (click to toggle)
openni2 2.2.0.33%2Bdfsg-11
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 22,216 kB
  • sloc: cpp: 111,197; ansic: 35,511; sh: 10,542; python: 1,313; java: 952; makefile: 575; xml: 12
file content (232 lines) | stat: -rw-r--r-- 5,676 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
#include <XnOS.h>

#include "XnLink24zYuv422Parser.h"
#include "XnLinkYuvToRgb.h"

namespace xn
{

Link24zYuv422Parser::Link24zYuv422Parser(XnUInt32 xRes, XnUInt32 yRes, XnBool transformToRGB) : 
	m_dataFromPrevPacket(NULL),
	m_dataFromPrevPacketBytes(0),
	m_lineWidthBytes(xRes * LinkYuvToRgb::YUV_422_BYTES_PER_PIXEL), // 4 bytes for every 2 pixels
	m_rgbFrameSize(xRes * yRes * LinkYuvToRgb::RGB_888_BYTES_PER_PIXEL),
	m_expectedFrameSize(xRes * yRes * LinkYuvToRgb::YUV_422_BYTES_PER_PIXEL),
	m_transformToRGB(transformToRGB),
	m_tempYuvImage(NULL),
	m_tempYuvImageBytes(0)
{
}

Link24zYuv422Parser::~Link24zYuv422Parser()
{
	xnOSFree(m_dataFromPrevPacket);
	xnOSFree(m_tempYuvImage);
}

XnStatus Link24zYuv422Parser::Init()
{
	m_dataFromPrevPacket = (XnUInt8*)xnOSMallocAligned(m_lineWidthBytes, XN_DEFAULT_MEM_ALIGN);
	XN_VALIDATE_ALLOC_PTR(m_dataFromPrevPacket);

	if (m_transformToRGB)
	{
		m_tempYuvImage = (XnUInt8*)xnOSMallocAligned(m_rgbFrameSize, XN_DEFAULT_MEM_ALIGN);
		XN_VALIDATE_ALLOC_PTR(m_tempYuvImage);
	}

	return XN_STATUS_OK;
}

XnStatus Link24zYuv422Parser::ParsePacketImpl(XnLinkFragmentation fragmentation, const XnUInt8* pSrc, const XnUInt8* pSrcEnd, XnUInt8*& pDst, const XnUInt8* pDstEnd)
{
	XnStatus nRetVal = XN_STATUS_OK;
	
	if ((fragmentation | XN_LINK_FRAG_BEGIN) != 0)
	{
		m_dataFromPrevPacketBytes = 0;
		m_tempYuvImageBytes = 0;
	}

	const XnUInt8* pInput = pSrc;
	XnSizeT inputSize = pSrcEnd - pSrc;

	// if there's data left from previous packet, append new data to it
	if (m_dataFromPrevPacketBytes > 0)
	{
		if (m_dataFromPrevPacketBytes + inputSize > m_expectedFrameSize)
		{
			XN_ASSERT(FALSE);
			m_dataFromPrevPacketBytes = 0;
			return XN_STATUS_OUTPUT_BUFFER_OVERFLOW;
		}

		xnOSMemCopy(m_dataFromPrevPacket, pSrc, inputSize);
		pInput = m_dataFromPrevPacket;
		inputSize = m_dataFromPrevPacketBytes + inputSize;
	}

	XnUInt8* pOutput = pDst;
	XnSizeT outputSize = pDstEnd - pDst;

	if (m_transformToRGB)
	{
		pOutput = m_tempYuvImage + m_tempYuvImageBytes;
		outputSize = m_rgbFrameSize - m_tempYuvImageBytes;
	}
	
	XnSizeT actualRead;
	nRetVal = Uncompress24z(pInput, inputSize, pOutput, &outputSize, m_lineWidthBytes, &actualRead, (fragmentation | XN_LINK_FRAG_END) == XN_LINK_FRAG_END);
	XN_IS_STATUS_OK(nRetVal);

	pDst += outputSize;

	// if we have bytes left, keep them for next packet
	if (actualRead < inputSize)
	{
		m_dataFromPrevPacketBytes = inputSize - actualRead;
		xnOSMemMove(m_dataFromPrevPacket, pInput + actualRead, m_dataFromPrevPacketBytes);
	}

	if ((fragmentation | XN_LINK_FRAG_END) != 0)
	{
		outputSize = pDstEnd - pDst;
		LinkYuvToRgb::Yuv422ToRgb888(m_tempYuvImage, m_tempYuvImageBytes, pDst, outputSize);
		pDst += outputSize;
	}
	
	return (XN_STATUS_OK);
}

XnStatus Link24zYuv422Parser::Uncompress24z(const XnUInt8* pInput, XnSizeT nInputSize,
	XnUInt8* pOutput, XnSizeT* pnOutputSize, XnUInt32 nLineSize,
	XnSizeT* pnActualRead, XnBool bLastPart)
{
	// Input is made of 4-bit elements.
	const XnUInt8* pInputOrig = pInput;
	const XnUInt8* pInputEnd = pInput + nInputSize;
	XnUInt8* pOrigOutput = pOutput;
	XnUInt8* pOutputEnd = pOutput + (*pnOutputSize);
	XnUInt8 nLastFullValue[4] = {0};	

	// NOTE: we use variables of type uint32 instead of uint8 as an optimization (better CPU usage)
	XnUInt32 nTempValue = 0;	
	XnUInt32 cInput = 0;
	XnBool bReadByte = TRUE;

	const XnUInt8* pInputLastPossibleStop = pInputOrig;
	XnUInt8* pOutputLastPossibleStop = pOrigOutput;

	*pnActualRead = 0;
	*pnOutputSize = 0;

	XnUInt32 nChannel = 0;
	XnUInt32 nCurLineSize = 0;

	while (pInput < pInputEnd)
	{
		cInput = *pInput;

		if (bReadByte)
		{
			bReadByte = FALSE;

			if (cInput < 0xd0) // 0x0 to 0xc are diffs
			{
				// take high_element only
				// diffs are between -6 and 6 (0x0 to 0xc)
				nLastFullValue[nChannel] += XnInt8((cInput >> 4) - 6);
			}
			else if (cInput < 0xe0) // 0xd is dummy
			{
				// Do nothing
				continue;
			}
			else // 0xe is not used, so this must be 0xf - full
			{
				// take two more elements
				nTempValue = (cInput & 0x0f) << 4;

				if (++pInput == pInputEnd)
					break;

				nTempValue += (*pInput >> 4);
				nLastFullValue[nChannel] = (XnUInt8)nTempValue;
			}
		}
		else
		{
			// take low-element
			cInput &= 0x0f;
			bReadByte = TRUE;
			pInput++;

			if (cInput < 0xd) // 0x0 to 0xc are diffs
			{
				// diffs are between -6 and 6 (0x0 to 0xc)
				nLastFullValue[nChannel] += (XnInt8)(cInput - 6);
			}
			else if (cInput < 0xe) // 0xd is dummy
			{
				// Do nothing
				continue;
			}
			else // 0xe is not in use, so this must be 0xf - full
			{
				if (pInput == pInputEnd)
					break;

				// take two more elements
				nLastFullValue[nChannel] = *pInput;
				pInput++;
			}
		}

		// write output
		if (pOutput > pOutputEnd)
		{
			return (XN_STATUS_OUTPUT_BUFFER_OVERFLOW);
		}

		*pOutput = nLastFullValue[nChannel];
		pOutput++;

		nChannel++;
		switch (nChannel)
		{
		case 2:
			nLastFullValue[3] = nLastFullValue[1];
			break;
		case 4:
			nLastFullValue[1] = nLastFullValue[3];
			nChannel = 0;
			break;
		}

		nCurLineSize++;
		if (nCurLineSize == nLineSize)
		{
			pInputLastPossibleStop = pInput;
			pOutputLastPossibleStop = pOutput;

			nLastFullValue[0] = nLastFullValue[1] = nLastFullValue[2] = nLastFullValue[3] = 0;
			nCurLineSize = 0;
		}
	}

	if (bLastPart == TRUE)
	{
		*pnOutputSize = (pOutput - pOrigOutput);
		*pnActualRead += (pInput - pInputOrig);
	}
	else if ((pOutputLastPossibleStop != pOrigOutput) && (pInputLastPossibleStop != pInputOrig))
	{
		*pnOutputSize = (pOutputLastPossibleStop - pOrigOutput);
		*pnActualRead +=(pInputLastPossibleStop - pInputOrig);
	}

	// All is good...
	return (XN_STATUS_OK);
}

}