1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
|
#include <XnOS.h>
#include "XnLink24zYuv422Parser.h"
#include "XnLinkYuvToRgb.h"
namespace xn
{
Link24zYuv422Parser::Link24zYuv422Parser(XnUInt32 xRes, XnUInt32 yRes, XnBool transformToRGB) :
m_dataFromPrevPacket(NULL),
m_dataFromPrevPacketBytes(0),
m_lineWidthBytes(xRes * LinkYuvToRgb::YUV_422_BYTES_PER_PIXEL), // 4 bytes for every 2 pixels
m_rgbFrameSize(xRes * yRes * LinkYuvToRgb::RGB_888_BYTES_PER_PIXEL),
m_expectedFrameSize(xRes * yRes * LinkYuvToRgb::YUV_422_BYTES_PER_PIXEL),
m_transformToRGB(transformToRGB),
m_tempYuvImage(NULL),
m_tempYuvImageBytes(0)
{
}
Link24zYuv422Parser::~Link24zYuv422Parser()
{
xnOSFree(m_dataFromPrevPacket);
xnOSFree(m_tempYuvImage);
}
XnStatus Link24zYuv422Parser::Init()
{
m_dataFromPrevPacket = (XnUInt8*)xnOSMallocAligned(m_lineWidthBytes, XN_DEFAULT_MEM_ALIGN);
XN_VALIDATE_ALLOC_PTR(m_dataFromPrevPacket);
if (m_transformToRGB)
{
m_tempYuvImage = (XnUInt8*)xnOSMallocAligned(m_rgbFrameSize, XN_DEFAULT_MEM_ALIGN);
XN_VALIDATE_ALLOC_PTR(m_tempYuvImage);
}
return XN_STATUS_OK;
}
XnStatus Link24zYuv422Parser::ParsePacketImpl(XnLinkFragmentation fragmentation, const XnUInt8* pSrc, const XnUInt8* pSrcEnd, XnUInt8*& pDst, const XnUInt8* pDstEnd)
{
XnStatus nRetVal = XN_STATUS_OK;
if ((fragmentation | XN_LINK_FRAG_BEGIN) != 0)
{
m_dataFromPrevPacketBytes = 0;
m_tempYuvImageBytes = 0;
}
const XnUInt8* pInput = pSrc;
XnSizeT inputSize = pSrcEnd - pSrc;
// if there's data left from previous packet, append new data to it
if (m_dataFromPrevPacketBytes > 0)
{
if (m_dataFromPrevPacketBytes + inputSize > m_expectedFrameSize)
{
XN_ASSERT(FALSE);
m_dataFromPrevPacketBytes = 0;
return XN_STATUS_OUTPUT_BUFFER_OVERFLOW;
}
xnOSMemCopy(m_dataFromPrevPacket, pSrc, inputSize);
pInput = m_dataFromPrevPacket;
inputSize = m_dataFromPrevPacketBytes + inputSize;
}
XnUInt8* pOutput = pDst;
XnSizeT outputSize = pDstEnd - pDst;
if (m_transformToRGB)
{
pOutput = m_tempYuvImage + m_tempYuvImageBytes;
outputSize = m_rgbFrameSize - m_tempYuvImageBytes;
}
XnSizeT actualRead;
nRetVal = Uncompress24z(pInput, inputSize, pOutput, &outputSize, m_lineWidthBytes, &actualRead, (fragmentation | XN_LINK_FRAG_END) == XN_LINK_FRAG_END);
XN_IS_STATUS_OK(nRetVal);
pDst += outputSize;
// if we have bytes left, keep them for next packet
if (actualRead < inputSize)
{
m_dataFromPrevPacketBytes = inputSize - actualRead;
xnOSMemMove(m_dataFromPrevPacket, pInput + actualRead, m_dataFromPrevPacketBytes);
}
if ((fragmentation | XN_LINK_FRAG_END) != 0)
{
outputSize = pDstEnd - pDst;
LinkYuvToRgb::Yuv422ToRgb888(m_tempYuvImage, m_tempYuvImageBytes, pDst, outputSize);
pDst += outputSize;
}
return (XN_STATUS_OK);
}
XnStatus Link24zYuv422Parser::Uncompress24z(const XnUInt8* pInput, XnSizeT nInputSize,
XnUInt8* pOutput, XnSizeT* pnOutputSize, XnUInt32 nLineSize,
XnSizeT* pnActualRead, XnBool bLastPart)
{
// Input is made of 4-bit elements.
const XnUInt8* pInputOrig = pInput;
const XnUInt8* pInputEnd = pInput + nInputSize;
XnUInt8* pOrigOutput = pOutput;
XnUInt8* pOutputEnd = pOutput + (*pnOutputSize);
XnUInt8 nLastFullValue[4] = {0};
// NOTE: we use variables of type uint32 instead of uint8 as an optimization (better CPU usage)
XnUInt32 nTempValue = 0;
XnUInt32 cInput = 0;
XnBool bReadByte = TRUE;
const XnUInt8* pInputLastPossibleStop = pInputOrig;
XnUInt8* pOutputLastPossibleStop = pOrigOutput;
*pnActualRead = 0;
*pnOutputSize = 0;
XnUInt32 nChannel = 0;
XnUInt32 nCurLineSize = 0;
while (pInput < pInputEnd)
{
cInput = *pInput;
if (bReadByte)
{
bReadByte = FALSE;
if (cInput < 0xd0) // 0x0 to 0xc are diffs
{
// take high_element only
// diffs are between -6 and 6 (0x0 to 0xc)
nLastFullValue[nChannel] += XnInt8((cInput >> 4) - 6);
}
else if (cInput < 0xe0) // 0xd is dummy
{
// Do nothing
continue;
}
else // 0xe is not used, so this must be 0xf - full
{
// take two more elements
nTempValue = (cInput & 0x0f) << 4;
if (++pInput == pInputEnd)
break;
nTempValue += (*pInput >> 4);
nLastFullValue[nChannel] = (XnUInt8)nTempValue;
}
}
else
{
// take low-element
cInput &= 0x0f;
bReadByte = TRUE;
pInput++;
if (cInput < 0xd) // 0x0 to 0xc are diffs
{
// diffs are between -6 and 6 (0x0 to 0xc)
nLastFullValue[nChannel] += (XnInt8)(cInput - 6);
}
else if (cInput < 0xe) // 0xd is dummy
{
// Do nothing
continue;
}
else // 0xe is not in use, so this must be 0xf - full
{
if (pInput == pInputEnd)
break;
// take two more elements
nLastFullValue[nChannel] = *pInput;
pInput++;
}
}
// write output
if (pOutput > pOutputEnd)
{
return (XN_STATUS_OUTPUT_BUFFER_OVERFLOW);
}
*pOutput = nLastFullValue[nChannel];
pOutput++;
nChannel++;
switch (nChannel)
{
case 2:
nLastFullValue[3] = nLastFullValue[1];
break;
case 4:
nLastFullValue[1] = nLastFullValue[3];
nChannel = 0;
break;
}
nCurLineSize++;
if (nCurLineSize == nLineSize)
{
pInputLastPossibleStop = pInput;
pOutputLastPossibleStop = pOutput;
nLastFullValue[0] = nLastFullValue[1] = nLastFullValue[2] = nLastFullValue[3] = 0;
nCurLineSize = 0;
}
}
if (bLastPart == TRUE)
{
*pnOutputSize = (pOutput - pOrigOutput);
*pnActualRead += (pInput - pInputOrig);
}
else if ((pOutputLastPossibleStop != pOrigOutput) && (pInputLastPossibleStop != pInputOrig))
{
*pnOutputSize = (pOutputLastPossibleStop - pOrigOutput);
*pnActualRead +=(pInputLastPossibleStop - pInputOrig);
}
// All is good...
return (XN_STATUS_OK);
}
}
|