File: XnLinkYuvToRgb.cpp

package info (click to toggle)
openni2 2.2.0.33%2Bdfsg-11
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 22,216 kB
  • sloc: cpp: 111,197; ansic: 35,511; sh: 10,542; python: 1,313; java: 952; makefile: 575; xml: 12
file content (154 lines) | stat: -rw-r--r-- 4,372 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
#include <XnPlatform.h>
#include <XnStatusCodes.h>
#if (XN_PLATFORM == XN_PLATFORM_WIN32)
	#include <emmintrin.h>
#endif

#include "XnLinkYuvToRgb.h"

#define YUV422_U  0
#define YUV422_Y1 1
#define YUV422_V  2
#define YUV422_Y2 3

#define RGB888_RED   0
#define RGB888_GREEN 1
#define RGB888_BLUE  2

namespace xn
{

/*
http://en.wikipedia.org/wiki/YUV

From YUV to RGB:
R =     Y + 1.13983 V
G =     Y - 0.39466 U - 0.58060 V
B =     Y + 2.03211 U
*/ 
XnStatus LinkYuvToRgb::Yuv422ToRgb888(const XnUInt8* pSrc, XnSizeT srcSize, XnUInt8* pDst, XnSizeT& dstSize)
{
	if (dstSize < srcSize * RGB_888_BYTES_PER_PIXEL / YUV_422_BYTES_PER_PIXEL)
	{
		return XN_STATUS_OUTPUT_BUFFER_OVERFLOW;
	}

#if (XN_PLATFORM == XN_PLATFORM_WIN32)
	const XnUInt8* pYUVLast = pSrc + srcSize - 8;

	const __m128 minus128 = _mm_set_ps1(-128);
	const __m128 plus113983 = _mm_set_ps1(1.13983F);
	const __m128 minus039466 = _mm_set_ps1(-0.39466F);
	const __m128 minus058060 = _mm_set_ps1(-0.58060F);
	const __m128 plus203211 = _mm_set_ps1(2.03211F);
	const __m128 zero = _mm_set_ps1(0);
	const __m128 plus255 = _mm_set_ps1(255);

	// define YUV floats
	__m128 y;
	__m128 u;
	__m128 v;

	__m128 temp;

	// define RGB floats
	__m128 r;
	__m128 g;
	__m128 b;

	// define RGB integers
	__m128i iR;
	__m128i iG;
	__m128i iB;

	XnUInt32* piR = (XnUInt32*)&iR;
	XnUInt32* piG = (XnUInt32*)&iG;
	XnUInt32* piB = (XnUInt32*)&iB;

	while (pSrc <= pYUVLast)
	{
		// process 4 pixels at once (values should be ordered backwards)
		y = _mm_set_ps(pSrc[YUV422_Y2 + YUV_422_BYTES_PER_PIXEL], pSrc[YUV422_Y1 + YUV_422_BYTES_PER_PIXEL], pSrc[YUV422_Y2], pSrc[YUV422_Y1]);
		u = _mm_set_ps(pSrc[YUV422_U + YUV_422_BYTES_PER_PIXEL],  pSrc[YUV422_U + YUV_422_BYTES_PER_PIXEL],  pSrc[YUV422_U],  pSrc[YUV422_U]);
		v = _mm_set_ps(pSrc[YUV422_V + YUV_422_BYTES_PER_PIXEL],  pSrc[YUV422_V + YUV_422_BYTES_PER_PIXEL],  pSrc[YUV422_V],  pSrc[YUV422_V]);

		u = _mm_add_ps(u, minus128); // u -= 128
		v = _mm_add_ps(v, minus128); // v -= 128

		temp = _mm_mul_ps(plus113983, v);
		r = _mm_add_ps(y, temp);

		temp = _mm_mul_ps(minus039466, u);
		g = _mm_add_ps(y, temp);
		temp = _mm_mul_ps(minus058060, v);
		g = _mm_add_ps(g, temp);

		temp = _mm_mul_ps(plus203211, u);
		b = _mm_add_ps(y, temp);

		// make sure no value is smaller than 0
		r = _mm_max_ps(r, zero);
		g = _mm_max_ps(g, zero);
		b = _mm_max_ps(b, zero);

		// make sure no value is bigger than 255
		r = _mm_min_ps(r, plus255);
		g = _mm_min_ps(g, plus255);
		b = _mm_min_ps(b, plus255);

		// convert floats to int16 (there is no conversion to uint8, just to int8).
		iR = _mm_cvtps_epi32(r);
		iG = _mm_cvtps_epi32(g);
		iB = _mm_cvtps_epi32(b);

		// extract the 4 pixels RGB values.
		// because we made sure values are between 0 and 255, we can just take the lower byte
		// of each INT16
		pDst[0] = (XnUInt8)piR[0];
		pDst[1] = (XnUInt8)piG[0];
		pDst[2] = (XnUInt8)piB[0];

		pDst[3] = (XnUInt8)piR[1];
		pDst[4] = (XnUInt8)piG[1];
		pDst[5] = (XnUInt8)piB[1];

		pDst[6] = (XnUInt8)piR[2];
		pDst[7] = (XnUInt8)piG[2];
		pDst[8] = (XnUInt8)piB[2];

		pDst[9] = (XnUInt8)piR[3];
		pDst[10] = (XnUInt8)piG[3];
		pDst[11] = (XnUInt8)piB[3];

		// advance the streams
		pSrc += 8;
		pDst += 12;
	}
#else
	const XnUInt8* pCurrYUV = pSrc;
	XnUInt8* pCurrRGB = pDst;
	const XnUInt8* pLastYUV = pSrc + srcSize - YUV_422_BYTES_PER_PIXEL;

	while (pCurrYUV <= pLastYUV)
	{
		pCurrRGB[RGB888_RED]   = XnUInt8(pCurrYUV[YUV422_Y1]                                + 1.13983 * pCurrYUV[YUV422_V] + 0.5);
		pCurrRGB[RGB888_GREEN] = XnUInt8(pCurrYUV[YUV422_Y1] - 0.39466 * pCurrYUV[YUV422_U] - 0.58060 * pCurrYUV[YUV422_V] + 0.5);
		pCurrRGB[RGB888_BLUE]  = XnUInt8(pCurrYUV[YUV422_Y1] + 2.03211 * pCurrYUV[YUV422_U]                                + 0.5);

		pCurrRGB += RGB_888_BYTES_PER_PIXEL;

		pCurrRGB[RGB888_RED]   = XnUInt8(pCurrYUV[YUV422_Y2]                                + 1.13983 * pCurrYUV[YUV422_V] + 0.5);
		pCurrRGB[RGB888_GREEN] = XnUInt8(pCurrYUV[YUV422_Y2] - 0.39466 * pCurrYUV[YUV422_U] - 0.58060 * pCurrYUV[YUV422_V] + 0.5);
		pCurrRGB[RGB888_BLUE]  = XnUInt8(pCurrYUV[YUV422_Y2] + 2.03211 * pCurrYUV[YUV422_U]                                + 0.5);

		pCurrRGB += RGB_888_BYTES_PER_PIXEL;
		pCurrYUV += YUV_422_BYTES_PER_PIXEL;
	}
#endif

	dstSize = srcSize * RGB_888_BYTES_PER_PIXEL / YUV_422_BYTES_PER_PIXEL;

	return XN_STATUS_OK;
}

}