File: YUV.cpp

package info (click to toggle)
openni2 2.2.0.33%2Bdfsg-15
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye
  • size: 22,232 kB
  • sloc: cpp: 111,183; ansic: 35,511; sh: 10,542; python: 1,313; java: 952; makefile: 575; xml: 12
file content (362 lines) | stat: -rw-r--r-- 11,756 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
/*****************************************************************************
*                                                                            *
*  OpenNI 2.x Alpha                                                          *
*  Copyright (C) 2012 PrimeSense Ltd.                                        *
*                                                                            *
*  This file is part of OpenNI.                                              *
*                                                                            *
*  Licensed under the Apache License, Version 2.0 (the "License");           *
*  you may not use this file except in compliance with the License.          *
*  You may obtain a copy of the License at                                   *
*                                                                            *
*      http://www.apache.org/licenses/LICENSE-2.0                            *
*                                                                            *
*  Unless required by applicable law or agreed to in writing, software       *
*  distributed under the License is distributed on an "AS IS" BASIS,         *
*  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  *
*  See the License for the specific language governing permissions and       *
*  limitations under the License.                                            *
*                                                                            *
*****************************************************************************/
//---------------------------------------------------------------------------
// Includes
//---------------------------------------------------------------------------
#include "YUV.h"
#include <math.h>

#if (XN_PLATFORM == XN_PLATFORM_WIN32)
	#ifdef __INTEL_COMPILER
		#include <ia32intrin.h>
	#else
		#include <emmintrin.h>
	#endif
#endif

//---------------------------------------------------------------------------
// Global Variables
//---------------------------------------------------------------------------

//---------------------------------------------------------------------------
// Code
//---------------------------------------------------------------------------
void YUV444ToRGB888(XnUInt8 cY, XnUInt8 cU, XnUInt8 cV,
					XnUInt8& cR, XnUInt8& cG, XnUInt8& cB)
{
	XnInt32 nC = cY - 16;
	XnInt16 nD = cU - 128;
	XnInt16 nE = cV - 128;

	nC = nC * 298 + 128;

	cR = (XnUInt8)XN_MIN(XN_MAX((nC            + 409 * nE) >> 8, 0), 255);
	cG = (XnUInt8)XN_MIN(XN_MAX((nC - 100 * nD - 208 * nE) >> 8, 0), 255);
	cB = (XnUInt8)XN_MIN(XN_MAX((nC + 516 * nD           ) >> 8, 0), 255);
}

#if (XN_PLATFORM == XN_PLATFORM_WIN32)

void YUV422ToRGB888(const XnUInt8* pYUVImage, XnUInt8* pRGBImage, XnUInt32 nYUVSize, XnUInt32* pnActualRead, XnUInt32* pnRGBSize)
{
	const XnUInt8* pYUVLast = pYUVImage + nYUVSize - 8;
	const XnUInt8* pYUVOrig = pYUVImage;
	const XnUInt8* pRGBOrig = pRGBImage;
	const XnUInt8* pRGBLast = pRGBImage + *pnRGBSize - 12;

	const __m128 minus128 = _mm_set_ps1(-128);
	const __m128 plus113983 = _mm_set_ps1(1.13983F);
	const __m128 minus039466 = _mm_set_ps1(-0.39466F);
	const __m128 minus058060 = _mm_set_ps1(-0.58060F);
	const __m128 plus203211 = _mm_set_ps1(2.03211F);
	const __m128 zero = _mm_set_ps1(0);
	const __m128 plus255 = _mm_set_ps1(255);

	// define YUV floats
	__m128 y;
	__m128 u;
	__m128 v;

	__m128 temp;

	// define RGB floats
	__m128 r;
	__m128 g;
	__m128 b;

	// define RGB integers
	__m128i iR;
	__m128i iG;
	__m128i iB;

	XnUInt32* piR = (XnUInt32*)&iR;
	XnUInt32* piG = (XnUInt32*)&iG;
	XnUInt32* piB = (XnUInt32*)&iB;

	while (pYUVImage <= pYUVLast && pRGBImage <= pRGBLast)
	{
		// process 4 pixels at once (values should be ordered backwards)
		y = _mm_set_ps(pYUVImage[YUV422_Y2 + YUV422_BPP], pYUVImage[YUV422_Y1 + YUV422_BPP], pYUVImage[YUV422_Y2], pYUVImage[YUV422_Y1]);
		u = _mm_set_ps(pYUVImage[YUV422_U + YUV422_BPP],  pYUVImage[YUV422_U + YUV422_BPP],  pYUVImage[YUV422_U],  pYUVImage[YUV422_U]);
		v = _mm_set_ps(pYUVImage[YUV422_V + YUV422_BPP],  pYUVImage[YUV422_V + YUV422_BPP],  pYUVImage[YUV422_V],  pYUVImage[YUV422_V]);

		u = _mm_add_ps(u, minus128); // u -= 128
		v = _mm_add_ps(v, minus128); // v -= 128

		/*

		http://en.wikipedia.org/wiki/YUV

		From YUV to RGB:
		R =     Y + 1.13983 V
		G =     Y - 0.39466 U - 0.58060 V
		B =     Y + 2.03211 U

		*/ 

		temp = _mm_mul_ps(plus113983, v);
		r = _mm_add_ps(y, temp);

		temp = _mm_mul_ps(minus039466, u);
		g = _mm_add_ps(y, temp);
		temp = _mm_mul_ps(minus058060, v);
		g = _mm_add_ps(g, temp);

		temp = _mm_mul_ps(plus203211, u);
		b = _mm_add_ps(y, temp);

		// make sure no value is smaller than 0
		r = _mm_max_ps(r, zero);
		g = _mm_max_ps(g, zero);
		b = _mm_max_ps(b, zero);

		// make sure no value is bigger than 255
		r = _mm_min_ps(r, plus255);
		g = _mm_min_ps(g, plus255);
		b = _mm_min_ps(b, plus255);

		// convert floats to int16 (there is no conversion to uint8, just to int8).
		iR = _mm_cvtps_epi32(r);
		iG = _mm_cvtps_epi32(g);
		iB = _mm_cvtps_epi32(b);

		// extract the 4 pixels RGB values.
		// because we made sure values are between 0 and 255, we can just take the lower byte
		// of each INT16
		pRGBImage[0] = (XnUInt8)piR[0];
		pRGBImage[1] = (XnUInt8)piG[0];
		pRGBImage[2] = (XnUInt8)piB[0];

		pRGBImage[3] = (XnUInt8)piR[1];
		pRGBImage[4] = (XnUInt8)piG[1];
		pRGBImage[5] = (XnUInt8)piB[1];

		pRGBImage[6] = (XnUInt8)piR[2];
		pRGBImage[7] = (XnUInt8)piG[2];
		pRGBImage[8] = (XnUInt8)piB[2];

		pRGBImage[9] = (XnUInt8)piR[3];
		pRGBImage[10] = (XnUInt8)piG[3];
		pRGBImage[11] = (XnUInt8)piB[3];

		// advance the streams
		pYUVImage += 8;
		pRGBImage += 12;
	}

	*pnActualRead = (XnUInt32)(pYUVImage - pYUVOrig);
	*pnRGBSize = (XnUInt32)(pRGBImage - pRGBOrig);
}

#else // not Win32

void YUV422ToRGB888(const XnUInt8* pYUVImage, XnUInt8* pRGBImage, XnUInt32 nYUVSize, XnUInt32* pnActualRead, XnUInt32* pnRGBSize)
{
	const XnUInt8* pOrigYUV = pYUVImage;
	const XnUInt8* pCurrYUV = pYUVImage;
	const XnUInt8* pOrigRGB = pRGBImage;
	XnUInt8* pCurrRGB = pRGBImage;
	const XnUInt8* pLastYUV = pYUVImage + nYUVSize - YUV422_BPP;
	const XnUInt8* pLastRGB = pRGBImage + *pnRGBSize - YUV_RGB_BPP;

	while (pCurrYUV <= pLastYUV && pCurrRGB <= pLastRGB)
	{
		YUV444ToRGB888(pCurrYUV[YUV422_Y1], pCurrYUV[YUV422_U], pCurrYUV[YUV422_V],
						pCurrRGB[YUV_RED], pCurrRGB[YUV_GREEN], pCurrRGB[YUV_BLUE]);
		pCurrRGB += YUV_RGB_BPP;
		YUV444ToRGB888(pCurrYUV[YUV422_Y2], pCurrYUV[YUV422_U], pCurrYUV[YUV422_V],
						pCurrRGB[YUV_RED], pCurrRGB[YUV_GREEN], pCurrRGB[YUV_BLUE]);
		pCurrRGB += YUV_RGB_BPP;
		pCurrYUV += YUV422_BPP;
	}

	*pnActualRead = pCurrYUV - pOrigYUV;
	*pnRGBSize = pCurrRGB - pOrigRGB;
}

#endif

#if (XN_PLATFORM == XN_PLATFORM_WIN32)

void YUYVToRGB888(const XnUInt8* pYUVImage, XnUInt8* pRGBImage, XnUInt32 nYUVSize, XnUInt32* pnActualRead, XnUInt32* pnRGBSize)
{
	const XnUInt8* pYUVLast = pYUVImage + nYUVSize - 8;
	const XnUInt8* pYUVOrig = pYUVImage;
	const XnUInt8* pRGBOrig = pRGBImage;
	const XnUInt8* pRGBLast = pRGBImage + *pnRGBSize - 12;

	const __m128 minus128 = _mm_set_ps1(-128);
	const __m128 plus113983 = _mm_set_ps1(1.13983F);
	const __m128 minus039466 = _mm_set_ps1(-0.39466F);
	const __m128 minus058060 = _mm_set_ps1(-0.58060F);
	const __m128 plus203211 = _mm_set_ps1(2.03211F);
	const __m128 zero = _mm_set_ps1(0);
	const __m128 plus255 = _mm_set_ps1(255);

	// define YUV floats
	__m128 y;
	__m128 u;
	__m128 v;

	__m128 temp;

	// define RGB floats
	__m128 r;
	__m128 g;
	__m128 b;

	// define RGB integers
	__m128i iR;
	__m128i iG;
	__m128i iB;

	XnUInt32* piR = (XnUInt32*)&iR;
	XnUInt32* piG = (XnUInt32*)&iG;
	XnUInt32* piB = (XnUInt32*)&iB;

	while (pYUVImage <= pYUVLast && pRGBImage <= pRGBLast)
	{
		// process 4 pixels at once (values should be ordered backwards)
		y = _mm_set_ps(pYUVImage[YUYV_Y2 + YUYV_BPP], pYUVImage[YUYV_Y1 + YUYV_BPP], pYUVImage[YUYV_Y2], pYUVImage[YUYV_Y1]);
		u = _mm_set_ps(pYUVImage[YUYV_U + YUYV_BPP],  pYUVImage[YUYV_U + YUYV_BPP],  pYUVImage[YUYV_U],  pYUVImage[YUYV_U]);
		v = _mm_set_ps(pYUVImage[YUYV_V + YUYV_BPP],  pYUVImage[YUYV_V + YUYV_BPP],  pYUVImage[YUYV_V],  pYUVImage[YUYV_V]);

		u = _mm_add_ps(u, minus128); // u -= 128
		v = _mm_add_ps(v, minus128); // v -= 128

		/*

		http://en.wikipedia.org/wiki/YUV

		From YUV to RGB:
		R =     Y + 1.13983 V
		G =     Y - 0.39466 U - 0.58060 V
		B =     Y + 2.03211 U

		*/ 

		temp = _mm_mul_ps(plus113983, v);
		r = _mm_add_ps(y, temp);

		temp = _mm_mul_ps(minus039466, u);
		g = _mm_add_ps(y, temp);
		temp = _mm_mul_ps(minus058060, v);
		g = _mm_add_ps(g, temp);

		temp = _mm_mul_ps(plus203211, u);
		b = _mm_add_ps(y, temp);

		// make sure no value is smaller than 0
		r = _mm_max_ps(r, zero);
		g = _mm_max_ps(g, zero);
		b = _mm_max_ps(b, zero);

		// make sure no value is bigger than 255
		r = _mm_min_ps(r, plus255);
		g = _mm_min_ps(g, plus255);
		b = _mm_min_ps(b, plus255);

		// convert floats to int16 (there is no conversion to uint8, just to int8).
		iR = _mm_cvtps_epi32(r);
		iG = _mm_cvtps_epi32(g);
		iB = _mm_cvtps_epi32(b);

		// extract the 4 pixels RGB values.
		// because we made sure values are between 0 and 255, we can just take the lower byte
		// of each INT16
		pRGBImage[0] = (XnUInt8)piR[0];
		pRGBImage[1] = (XnUInt8)piG[0];
		pRGBImage[2] = (XnUInt8)piB[0];

		pRGBImage[3] = (XnUInt8)piR[1];
		pRGBImage[4] = (XnUInt8)piG[1];
		pRGBImage[5] = (XnUInt8)piB[1];

		pRGBImage[6] = (XnUInt8)piR[2];
		pRGBImage[7] = (XnUInt8)piG[2];
		pRGBImage[8] = (XnUInt8)piB[2];

		pRGBImage[9] = (XnUInt8)piR[3];
		pRGBImage[10] = (XnUInt8)piG[3];
		pRGBImage[11] = (XnUInt8)piB[3];

		// advance the streams
		pYUVImage += 8;
		pRGBImage += 12;
	}

	*pnActualRead = (XnUInt32)(pYUVImage - pYUVOrig);
	*pnRGBSize = (XnUInt32)(pRGBImage - pRGBOrig);
}

#else // not Win32

void YUYVToRGB888(const XnUInt8* pYUVImage, XnUInt8* pRGBImage, XnUInt32 nYUVSize, XnUInt32* pnActualRead, XnUInt32* pnRGBSize)
{
	const XnUInt8* pOrigYUV = pYUVImage;
	const XnUInt8* pCurrYUV = pYUVImage;
	const XnUInt8* pOrigRGB = pRGBImage;
	XnUInt8* pCurrRGB = pRGBImage;
	const XnUInt8* pLastYUV = pYUVImage + nYUVSize - YUYV_BPP;
	const XnUInt8* pLastRGB = pRGBImage + *pnRGBSize - YUV_RGB_BPP;

	while (pCurrYUV <= pLastYUV && pCurrRGB <= pLastRGB)
	{
		YUV444ToRGB888(pCurrYUV[YUYV_Y1], pCurrYUV[YUYV_U], pCurrYUV[YUYV_V],
						pCurrRGB[YUV_RED], pCurrRGB[YUV_GREEN], pCurrRGB[YUV_BLUE]);
		pCurrRGB += YUV_RGB_BPP;
		YUV444ToRGB888(pCurrYUV[YUYV_Y2], pCurrYUV[YUYV_U], pCurrYUV[YUYV_V],
						pCurrRGB[YUV_RED], pCurrRGB[YUV_GREEN], pCurrRGB[YUV_BLUE]);
		pCurrRGB += YUV_RGB_BPP;
		pCurrYUV += YUYV_BPP;
	}

	*pnActualRead = pCurrYUV - pOrigYUV;
	*pnRGBSize = pCurrRGB - pOrigRGB;
}

#endif

void YUV420ToRGB888(const XnUInt8* pYUVImage, XnUInt8* pRGBImage, XnUInt32 nYUVSize, XnUInt32 /*nRGBSize*/)
{
	const XnUInt8* pLastYUV = pYUVImage + nYUVSize - YUV420_BPP;

	while (pYUVImage < pLastYUV && pRGBImage < pYUVImage)
	{
		YUV444ToRGB888(pYUVImage[YUV420_Y1], pYUVImage[YUV420_U], pYUVImage[YUV420_V],
			pRGBImage[YUV_RED], pRGBImage[YUV_GREEN], pRGBImage[YUV_BLUE]);
		pRGBImage += YUV_RGB_BPP;

		YUV444ToRGB888(pYUVImage[YUV420_Y2], pYUVImage[YUV420_U], pYUVImage[YUV420_V],
			pRGBImage[YUV_RED], pRGBImage[YUV_GREEN], pRGBImage[YUV_BLUE]);
		pRGBImage += YUV_RGB_BPP;

		YUV444ToRGB888(pYUVImage[YUV420_Y3], pYUVImage[YUV420_U], pYUVImage[YUV420_V],
			pRGBImage[YUV_RED], pRGBImage[YUV_GREEN], pRGBImage[YUV_BLUE]);
		pRGBImage += YUV_RGB_BPP;

		YUV444ToRGB888(pYUVImage[YUV420_Y4], pYUVImage[YUV420_U], pYUVImage[YUV420_V],
			pRGBImage[YUV_RED], pRGBImage[YUV_GREEN], pRGBImage[YUV_BLUE]);
		pRGBImage += YUV_RGB_BPP;

		pYUVImage += YUV420_BPP;
	}
}