1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
|
/*****************************************************************************
* *
* PrimeSense PSCommon Library *
* Copyright (C) 2012 PrimeSense Ltd. *
* *
* This file is part of PSCommon. *
* *
* Licensed under the Apache License, Version 2.0 (the "License"); *
* you may not use this file except in compliance with the License. *
* You may obtain a copy of the License at *
* *
* http://www.apache.org/licenses/LICENSE-2.0 *
* *
* Unless required by applicable law or agreed to in writing, software *
* distributed under the License is distributed on an "AS IS" BASIS, *
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. *
* See the License for the specific language governing permissions and *
* limitations under the License. *
* *
*****************************************************************************/
#include "XnSymmetricMatrix3x3.h"
#include "XnMatrix3x3.h"
//#define USE_STABLE_EIGENVALUES
//#define ALWAYS_USE_SCALING_FOR_EIGENVALUES
namespace xnl
{
static XnFloat GetScaleFactorForEigenValues(const SymmetricMatrix3x3& mat)
{
static const XnFloat target = 1e3f;
XnFloat maxAbs = mat.MaxAbs();
return maxAbs>0 ? target/maxAbs : 1.0f;
}
Vector3D SymmetricMatrix3x3::GetEigenValuesNoScaling() const
{
#ifdef USE_STABLE_EIGENVALUES
Vector3D eigenvalues;
Matrix3X3 eigenvectors;
EigenDecomposition(*this, eigenvectors, eigenvalues);
return eigenvalues;
#else
XnFloat m = (XnFloat)Math::ONE_THIRD*Trace();
XnFloat a00 = m_x00-m, a11 = m_x11-m, a22 = m_x22-m;
XnFloat a01_sqr = Math::Sqr(m_x01);
XnFloat a02_sqr = Math::Sqr(m_x02);
XnFloat a12_sqr = Math::Sqr(m_x12);
XnFloat p = (XnFloat)Math::ONE_SIXTH * (a00*a00+a11*a11+a22*a22 + 2*(a01_sqr+a02_sqr+a12_sqr));
XnFloat q = (XnFloat).5*(a00*(a11*a22-a12_sqr)-a11*a02_sqr-a22*a01_sqr) + m_x01*m_x02*m_x12;
XnFloat sqrt_p = Math::Sqrt(p), disc = p*p*p-q*q;
XnFloat phi = (XnFloat)Math::ONE_THIRD*atan2(Math::Sqrt(Math::Max((XnFloat)0,disc)),q);
XnFloat c=cos(phi) , s=sin(phi);
XnFloat sqrt_p_cos = sqrt_p*c, root_three_sqrt_p_sin = (XnFloat)Math::ROOT_THREE*sqrt_p*s;
Vector3D lambda(m+2*sqrt_p_cos, m-sqrt_p_cos-root_three_sqrt_p_sin, m-sqrt_p_cos+root_three_sqrt_p_sin);
Math::ExchangeSort(lambda.z, lambda.y, lambda.x);
return lambda;
#endif
}
Vector3D SymmetricMatrix3x3::GetEigenValuesWithScaling() const
{
XnFloat factor = GetScaleFactorForEigenValues(*this);
SymmetricMatrix3x3 normalizedMatrix = *this;
normalizedMatrix *= factor;
return (1/factor)*normalizedMatrix.GetEigenValuesNoScaling();
}
Vector3D SymmetricMatrix3x3::GetEigenValues() const
{
#ifdef ALWAYS_USE_SCALING_FOR_EIGENVALUES
return GetEigenValuesWithScaling();
#else
return GetEigenValuesNoScaling();
#endif
}
void SymmetricMatrix3x3::GetEigenVectors(const Vector3D &lambda,Matrix3x3 &eigenvectors,XnFloat tolerance) const
{
XnFloat tiny = tolerance * Math::MaxAbs(lambda.x,lambda.z);
if(lambda.x-lambda.y<=tiny)
{
if(lambda.y-lambda.z<=tiny)
eigenvectors = Matrix3x3::Identity();
else {
Vector3D v2;
GetEigenVector(lambda.z,v2);
Vector3D v1=v2.UnitOrthogonalVector();
Vector3D v0;
CrossProduct(v1,v2,v0);
eigenvectors.Set(v0,v1,v2);
}
}
else if(lambda.y-lambda.z<=tiny) {
Vector3D v0;
GetEigenVector(lambda.x,v0);
Vector3D v1=v0.UnitOrthogonalVector();
Vector3D v2;
CrossProduct(v0,v1,v2);
eigenvectors.Set(v0,v1,v2);
}
else {
Vector3D v0;
GetEigenVector(lambda.x,v0);
Vector3D v2;
GetEigenVector(lambda.z,v2);
Vector3D v1;
CrossProduct(v2,v0,v1);
eigenvectors.Set(v0,v1,v2);
}
}
void SymmetricMatrix3x3::GetEigenVector(XnFloat lambda,Vector3D &v) const
{
SymmetricMatrix3x3 COMat((m_x11-lambda)*(m_x22-lambda) - m_x12*m_x12, m_x12*m_x02 - m_x01*(m_x22-lambda), m_x01*m_x12 - (m_x11-lambda)*m_x02,
(m_x00-lambda)*(m_x22-lambda) - m_x02*m_x02, m_x01*m_x02 - (m_x00-lambda)*m_x12,
(m_x00-lambda)*(m_x11-lambda) - m_x01*m_x01);
XnFloat scales[3] = {Math::Sqr(COMat.m_x00) + Math::Sqr(COMat.m_x01) + Math::Sqr(COMat.m_x02),
Math::Sqr(COMat.m_x01) + Math::Sqr(COMat.m_x11) + Math::Sqr(COMat.m_x12),
Math::Sqr(COMat.m_x02) + Math::Sqr(COMat.m_x12) + Math::Sqr(COMat.m_x22)};
//XnInt32 i = ArgMax(scales[0], scales[1], scales[2]);
if (scales[0] > scales[1])
{
if (scales[0] > scales[2])
{
//assert(i==0);
const XnFloat s=Math::OneOverSqrtHelper<XnFloat>::OneOverSqrt(scales[0]);
v.Set(COMat.m_x00*s,COMat.m_x01*s,COMat.m_x02*s);
return;
}
else
{
//assert(i==2);
const XnFloat s=Math::OneOverSqrtHelper<XnFloat>::OneOverSqrt(scales[2]);
v.Set(COMat.m_x02*s,COMat.m_x12*s,COMat.m_x22*s);
return;
}
}
else if (scales[1] > scales[2])
{
//assert(i==1);
const XnFloat s=Math::OneOverSqrtHelper<XnFloat>::OneOverSqrt(scales[1]);
v.Set(COMat.m_x01*s,COMat.m_x11*s,COMat.m_x12*s);
return;
}
else
{
//assert(i==2);
const XnFloat s=Math::OneOverSqrtHelper<XnFloat>::OneOverSqrt(scales[2]);
v.Set(COMat.m_x02*s,COMat.m_x12*s,COMat.m_x22*s);
return;
}
}
// No scaling
void SymmetricMatrix3x3::SolveEigenProblemNoScaling(Vector3D &eigenvalues,Matrix3x3 &eigenvectors,XnFloat tolerance) const
{
#ifdef USE_STABLE_EIGENVALUES
EigenDecomposition(*this, eigenvectors, eigenvalues);
#else
eigenvalues = GetEigenValuesNoScaling(); // This function takes care of the scaling for us
GetEigenVectors(eigenvalues,eigenvectors,tolerance);
#endif
}
// With scaling
void SymmetricMatrix3x3::SolveEigenProblemWithScaling(Vector3D &eigenvalues,Matrix3x3 &eigenvectors,XnFloat tolerance) const
{
#ifdef USE_STABLE_EIGENVALUES
XnFloat factor = GetScaleFactorForEigenValues(*this);
SymmetricMatrix3x3 normalizedMatrix(factor*x00,factor*x01,factor*x02,factor*x11,factor*x12,factor*x22);
EigenDecomposition(normalizedMatrix, eigenvectors, eigenvalues);
eigenvalues *= (1/factor);
#else
eigenvalues = GetEigenValuesWithScaling();
GetEigenVectors(eigenvalues,eigenvectors,tolerance);
#endif
}
// Uses scaling if ALWAYS_USE_SCALING_FOR_EIGENVALUES is defined
void SymmetricMatrix3x3::SolveEigenProblem(Vector3D& eigenvalues,Matrix3x3& eigenvectors,XnFloat tolerance) const
{
#ifdef ALWAYS_USE_SCALING_FOR_EIGENVALUES
SolveEigenProblemWithScaling(eigenvalues, eigenvectors, tolerance);
#else
SolveEigenProblemNoScaling(eigenvalues, eigenvectors, tolerance);
#endif
}
// Uses scaling if ALWAYS_USE_SCALING_FOR_EIGENVALUES is defined
void SymmetricMatrix3x3::SolveSingleEigenProblem(XnInt32 i,Vector3D& eigenvalues,Vector3D& eigenvector,XnFloat /*tolerance*/) const
{
#ifdef USE_STABLE_EIGENVALUES
Matrix3x3 eigenvectors;
SolveEigenProblem(eigenvalues, eigenvectors, tolerance); // This function takes care of the scaling for us
eigenvector = eigenvectors.GetColumn(i);
#else
eigenvalues = GetEigenValues(); // This function takes care of the scaling for us
GetEigenVector(eigenvalues[i], eigenvector);
#endif
}
XnFloat SymmetricMatrix3x3::MaxAbs() const {
return Math::Max(Math::MaxAbs(m_x00,m_x01,m_x02),Math::MaxAbs(m_x11,m_x12),(XnFloat)Math::Abs(m_x22));
}
} // XnLib
|