1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
|
/*****************************************************************************
* *
* PrimeSense PSCommon Library *
* Copyright (C) 2012 PrimeSense Ltd. *
* *
* This file is part of PSCommon. *
* *
* Licensed under the Apache License, Version 2.0 (the "License"); *
* you may not use this file except in compliance with the License. *
* You may obtain a copy of the License at *
* *
* http://www.apache.org/licenses/LICENSE-2.0 *
* *
* Unless required by applicable law or agreed to in writing, software *
* distributed under the License is distributed on an "AS IS" BASIS, *
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. *
* See the License for the specific language governing permissions and *
* limitations under the License. *
* *
*****************************************************************************/
#ifndef __SSE_NONE_H__
#define __SSE_NONE_H__
#include <XnPlatform.h>
#ifndef INLINE
#define INLINE inline
#endif
#include <limits.h>
#define SSE_M128_NUM_OF_BYTES 8
typedef union
{
XnInt16 m_data[SSE_M128_NUM_OF_BYTES];
XnUInt16 m_udata[SSE_M128_NUM_OF_BYTES];
XnInt8 m_i8[16];
} XN_INT128;
/* Adds the 8 signed or unsigned 16-bit integers in a to the
* 8 signed or unsigned 16-bit integers in b.
* r0 := a0 + b0
* r1 := a1 + b1
* ...
* r7 := a7 + b7 */
INLINE XN_INT128 XnAdd16(XN_INT128 a, XN_INT128 b)
{
XN_INT128 result;
for (int i = 0; i < SSE_M128_NUM_OF_BYTES; ++i)
result.m_data[i] = a.m_data[i] + b.m_data[i];
return result;
}
/* Adds the pares of the 16 bit numbers in a,b
* r0 := a0 + a1
* r1 := a2 + a3
* ...
* r7 := b6+ b7 */
INLINE XN_INT128 XnHAdd16(XN_INT128 a, XN_INT128 b)
{
XN_INT128 result;
result.m_data[0] = a.m_data[0] + a.m_data[1];
result.m_data[1] = a.m_data[2] + a.m_data[3];
result.m_data[2] = a.m_data[4] + a.m_data[5];
result.m_data[3] = a.m_data[6] + a.m_data[7];
result.m_data[4] = b.m_data[0] + b.m_data[1];
result.m_data[5] = b.m_data[2] + b.m_data[3];
result.m_data[6] = b.m_data[4] + b.m_data[5];
result.m_data[7] = b.m_data[6] + b.m_data[7];
return result;
}
/*
* Adds the 8 unsigned 16-bit integers in a to the 8 unsigned 16-bit integers in b and saturates.
* r0 := UnsignedSaturate(a0 + b0)
* r1 := UnsignedSaturate(a1 + b1)
* ...
* r15 := UnsignedSaturate(a7 + b7)
*/
INLINE XN_INT128 XnAddUnsigned16AndSaturates(XN_INT128 a, XN_INT128 b)
{
XN_INT128 result;
for (int i = 0; i < SSE_M128_NUM_OF_BYTES; ++i)
{
XnUInt32 res = (XnUInt32)a.m_data[i] + (XnUInt32)b.m_data[i];
if (res > 0xFFFF)
result.m_udata[i] = 0xFFFF;
else
result.m_udata[i] = (XnUInt16)res;
}
return result;
}
/* Subtracts the 8 signed or unsigned 16-bit integers of b
* from the 8 signed or unsigned 16-bit integers of a.
* r0 := a0 - b0
* r1 := a1 - b1
* ...
* r7 := a7 - b7 */
INLINE XN_INT128 XnSub16(XN_INT128 a, XN_INT128 b)
{
XN_INT128 result;
for (int i = 0; i < SSE_M128_NUM_OF_BYTES; ++i)
result.m_data[i] = a.m_data[i] - b.m_data[i];
return result;
}
/* Sets the 128-bit value to zero.
* r := 0x0 */
INLINE XN_INT128 XnSetZero128 ()
{
XN_INT128 result;
for (int i = 0; i < SSE_M128_NUM_OF_BYTES; ++i)
result.m_data[i] = 0;
return result;
}
/* Shifts the 128-bit value in a right by imm bytes while shifting
* in zeros. imm must be an immediate.
* r := srl(a, imm*8)
*
* NOTE: in SSE, elements are ordered 7,6,5,4,3,2,1,0. So, right shift is actually
* left shift... */
INLINE XN_INT128 XnShiftRight128 (XN_INT128 a, XnInt32 imm)
{
XN_INT128 result = XnSetZero128();
XnUChar* pA = (XnUChar*)&a.m_data;
XnUChar* pResult = (XnUChar*)&result.m_data;
for (int i = 0; (i+imm) < SSE_M128_NUM_OF_BYTES*sizeof(XnInt16); ++i)
pResult[i] = pA[i+imm];
return result;
}
/*Shifts the 8 signed 16-bit integers in a right by count bits while shifting in the sign bit.
r0 := a0 >> count
r1 := a1 >> count
...
r7 := a7 >> count
*/
INLINE XN_INT128 XnShiftRight16Sign (XN_INT128 ar, XnInt32 count)
{
XN_INT128 ret;
XnInt16* r = (XnInt16*)&ret.m_data;
XnInt16* a = (XnInt16*)&ar.m_data;
r[0] = a[0] >> count; r[1] = a[1] >> count;
r[2] = a[2] >> count; r[3] = a[3] >> count;
r[4] = a[4] >> count; r[5] = a[5] >> count;
r[6] = a[6] >> count; r[7] = a[7] >> count;
return ret;
}
/* Shifts the 128-bit value in a left by imm bytes
* while shifting in zeros. imm must be an immediate.
* r := a << (imm * 8)
*
* NOTE: in SSE, elements are ordered 7,6,5,4,3,2,1,0. So, left shift is actually
* right shift... */
INLINE XN_INT128 XnShiftLeft128 (XN_INT128 a, XnInt32 imm)
{
XN_INT128 result = XnSetZero128();
XnUChar* pA = (XnUChar*)&a.m_data;
XnUChar* pResult = (XnUChar*)&result.m_data;
for (int i = imm; i < SSE_M128_NUM_OF_BYTES*sizeof(XnInt16); ++i)
pResult[i] = pA[i-imm];
return result;
}
/* Computes the pairwise maxima of the 8 signed 16-bit integers
* from a and the 8 signed 16-bit integers from b.
* r0 := max(a0, b0)
* r1 := max(a1, b1)
* ...
* r7 := max(a7, b7) */
INLINE XN_INT128 XnMax16 (XN_INT128 a, XN_INT128 b)
{
XN_INT128 result;
for (int i=0; i<SSE_M128_NUM_OF_BYTES; i++)
result.m_data[i] = XN_MAX(a.m_data[i], b.m_data[i]);
return result;
}
/* Computes the bitwise AND of the 128-bit value in a and
* the 128-bit value in b.
* r := a & b */
INLINE XN_INT128 XnAnd128 (XN_INT128 a, XN_INT128 b)
{
XN_INT128 result;
for (int i=0; i<SSE_M128_NUM_OF_BYTES; i++)
result.m_data[i] = (a.m_data[i] & b.m_data[i]);
return result;
}
/* Computes the bitwise AND of the 128-bit value in b
* and the bitwise NOT of the 128-bit value in a.
* r := (~a) & b */
INLINE XN_INT128 XnAndNot128 (XN_INT128 a, XN_INT128 b)
{
XN_INT128 result;
for (int i=0; i<SSE_M128_NUM_OF_BYTES; i++)
result.m_data[i] = ((~a.m_data[i]) & b.m_data[i]);
return result;
}
/* Sets the 8 signed 16-bit integer values to w
* r0 := w
* r1 := w
* ...
* r7 := w */
INLINE XN_INT128 XnSetOne16 (XnInt16 w)
{
XN_INT128 result;
for (int i=0; i<SSE_M128_NUM_OF_BYTES; i++)
result.m_data[i] = w;
return result;
}
/* Sets the 8 signed 16-bit integer values
* r0 := w0
* r1 := w1
* ...
* r7 := w7*/
INLINE XN_INT128 XnSet16 (XnInt16 w7, XnInt16 w6, XnInt16 w5, XnInt16 w4, XnInt16 w3, XnInt16 w2, XnInt16 w1, XnInt16 w0)
{
XN_INT128 result;
result.m_data[0] = w0;
result.m_data[1] = w1;
result.m_data[2] = w2;
result.m_data[3] = w3;
result.m_data[4] = w4;
result.m_data[5] = w5;
result.m_data[6] = w6;
result.m_data[7] = w7;
return result;
}
/* Computes the bitwise OR of the 128-bit value in a and
* the 128-bit value in b.
* r := a | b */
INLINE XN_INT128 XnOr128 (XN_INT128 a, XN_INT128 b)
{
XN_INT128 result;
for (int i=0; i<SSE_M128_NUM_OF_BYTES; i++)
result.m_data[i] = (a.m_data[i] | b.m_data[i]);;
return result;
}
/* Computes the pairwise minima of the 8 signed 16-bit integers
* from a and the 8 signed 16-bit integers from b.
* r0 := min(a0, b0)
* r1 := min(a1, b1)
* ...
* r7 := min(a7, b7) */
INLINE XN_INT128 XnMin16 (XN_INT128 a, XN_INT128 b)
{
XN_INT128 result;
for (int i=0; i<SSE_M128_NUM_OF_BYTES; i++)
result.m_data[i] = XN_MIN(a.m_data[i],b.m_data[i]);
return result;
}
/* Adds the 8 signed 16-bit integers in a to the 8 signed 16-bit
* integers in b and saturates.
* 0 := SignedSaturate(a0 + b0)
* r1 := SignedSaturate(a1 + b1)
* ...
* r7 := SignedSaturate(a7 + b7) */
INLINE XN_INT128 XnAdd16AndSaturates (XN_INT128 a, XN_INT128 b)
{
XN_INT128 result;
for (int i=0; i<SSE_M128_NUM_OF_BYTES; i++)
{
int res = (int)a.m_data[i] + (int)b.m_data[i];
if (res > 0x7FFF)
result.m_data[i] = 0x7FFF;
else if (res < (XnInt16)0x8000)
result.m_data[i] = (XnInt16)0x8000;
else
result.m_data[i] = res;
}
return result;
}
/* Compares the 8 signed 16-bit integers in a and the 8 signed 16-bit integers in b for greater than
* r0 := (a0 > b0) ? 0xffff : 0x0
* r1 := (a1 > b1) ? 0xffff : 0x0
* ...
* r7 := (a7 > b7) ? 0xffff : 0x0 */
INLINE XN_INT128 XnCompareGreaterThan(XN_INT128 a, XN_INT128 b)
{
XN_INT128 result;
for (int i=0; i<SSE_M128_NUM_OF_BYTES; i++)
{
if( a.m_data[i] > b.m_data[i] )
result.m_data[i] = (XnInt16)0xFFFF;
else
result.m_data[i] = 0;
}
return result;
}
/* Compares the 8 signed 16-bit integers in a and the 8 signed 16-bit integers in b for less than.
* r0 := (a0 < b0) ? 0xffff : 0x0
* r1 := (a1 < b1) ? 0xffff : 0x0
* ...
* r7 := (a7 < b7) ? 0xffff : 0x0 */
INLINE XN_INT128 XnCompareLessThan(XN_INT128 a, XN_INT128 b)
{
XN_INT128 result;
for (int i=0; i<SSE_M128_NUM_OF_BYTES; i++)
{
if( a.m_data[i] < b.m_data[i] )
result.m_data[i] = (XnInt16)0xFFFF;
else
result.m_data[i] = 0;
}
return result;
}
/* Compares the 8 signed or unsigned 16-bit integers in a and the 8 signed or unsigned 16-bit integers in b for equality.
* r0 := (a0 == b0) ? 0xffff : 0x0
* r1 := (a1 == b1) ? 0xffff : 0x0
* ...
* r7 := (a7 == b7) ? 0xffff : 0x0 */
INLINE XN_INT128 XnCompareEqual(XN_INT128 a, XN_INT128 b)
{
XN_INT128 result;
for (int i=0; i<SSE_M128_NUM_OF_BYTES; i++)
{
if( a.m_data[i] == b.m_data[i] )
result.m_data[i] = (XnInt16)0xFFFF;
else
result.m_data[i] = 0;
}
return result;
}
/* Computes the average of the 8 unsigned 16-bit integers in a and the 8 unsigned 16-bit integers in b and rounds.
* r0 := (a0 + b0) / 2
* r1 := (a1 + b1) / 2
* ...
* r7 := (a7 + b7) / 2 */
INLINE XN_INT128 XnAverageUnsigned16(XN_INT128 a, XN_INT128 b)
{
XN_INT128 result;
for (int i = 0; i < SSE_M128_NUM_OF_BYTES; ++i)
result.m_data[i] = ((XnUInt16)a.m_data[i] + (XnUInt16)b.m_data[i] + 1)/2;
return result;
}
/* Subtracts the 8 unsigned 16-bit integers of b from the 8 unsigned 16-bit integers of a and saturates.
* r0 := UnsignedSaturate(a0 - b0)
* r1 := UnsignedSaturate(a1 - b1)
* ...
* r7 := UnsignedSaturate(a7 - b7) */
INLINE XN_INT128 XnSubSigned16(XN_INT128 a, XN_INT128 b)
{
XN_INT128 result;
for (int i = 0; i < SSE_M128_NUM_OF_BYTES; ++i)
result.m_data[i] = (XnUInt16)a.m_data[i] - (XnUInt16)b.m_data[i];
return result;
}
/* Shifts the 8 unsigned 16-bit integers in a right by count bits while shifting in zeroes.
* r0 := srl(a0, count)
* r1 := srl(a1, count)
* ...
* r7 := srl(a7, count) */
INLINE XN_INT128 XnShiftRight16(XN_INT128 a, XnInt32 count)
{
XN_INT128 result;
for (int i = 0; i < SSE_M128_NUM_OF_BYTES; ++i )
result.m_udata[i] = a.m_udata[i] >> count;
return result;
}
/* Multiplies the 8 signed or unsigned 16-bit integers from a by the 8 signed or unsigned 16-bit integers from b.
* r0 := (a0 * b0)[15:0]
* r1 := (a1 * b1)[15:0]
* ...
* r7 := (a7 * b7)[15:0] */
INLINE XN_INT128 XnMult16(XN_INT128 a, XN_INT128 b)
{
XN_INT128 result;
for (int i = 0; i < SSE_M128_NUM_OF_BYTES; ++i )
result.m_data[i] = (XnInt16)((a.m_data[i] * b.m_data[i]) & 0xFFFF);
return result;
}
/* Packs the 16 signed 16-bit integers from a and b into 8-bit integers and saturates.
* r0 := SignedSaturate(a0)
* r1 := SignedSaturate(a1)
* ...
* r7 := SignedSaturate(a7)
* r8 := SignedSaturate(b0)
* r9 := SignedSaturate(b1)
* ...
* r15 := SignedSaturate(b7)
*/
INLINE XN_INT128 XnPacksSigned16(XN_INT128 a, XN_INT128 b) // _mm_packs_epi16
{
XN_INT128 result;
for (int i = 0; i < SSE_M128_NUM_OF_BYTES; ++i )
{
if (a.m_data[i] > 0x7F)
result.m_i8[i] = 0x7F;
else if (a.m_data[i] < (XnInt8)0x80)
result.m_i8[i] = (XnInt8)0x80;
else
result.m_i8[i] = (XnInt8)a.m_data[i];
}
for (int i = 0; i < SSE_M128_NUM_OF_BYTES; ++i )
{
if (b.m_data[i] > 0x7F)
result.m_i8[i + 8] = 0x7F;
else if (b.m_data[i] < (XnInt8)0x80)
result.m_i8[i + 8] = (XnInt8)0x80;
else
result.m_i8[i + 8] = (XnInt8)b.m_data[i];
}
return result;
}
#endif
|