File: XnSIMD-None.h

package info (click to toggle)
openni2 2.2.0.33%2Bdfsg-18
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 22,240 kB
  • sloc: cpp: 111,183; ansic: 35,511; sh: 10,556; python: 1,313; java: 952; makefile: 575; xml: 12
file content (482 lines) | stat: -rw-r--r-- 12,405 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
/*****************************************************************************
*                                                                            *
*  PrimeSense PSCommon Library                                               *
*  Copyright (C) 2012 PrimeSense Ltd.                                        *
*                                                                            *
*  This file is part of PSCommon.                                            *
*                                                                            *
*  Licensed under the Apache License, Version 2.0 (the "License");           *
*  you may not use this file except in compliance with the License.          *
*  You may obtain a copy of the License at                                   *
*                                                                            *
*      http://www.apache.org/licenses/LICENSE-2.0                            *
*                                                                            *
*  Unless required by applicable law or agreed to in writing, software       *
*  distributed under the License is distributed on an "AS IS" BASIS,         *
*  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  *
*  See the License for the specific language governing permissions and       *
*  limitations under the License.                                            *
*                                                                            *
*****************************************************************************/
#ifndef __SSE_NONE_H__
#define __SSE_NONE_H__

#include <XnPlatform.h>

#ifndef INLINE
#define INLINE inline
#endif

#include <limits.h>

#define SSE_M128_NUM_OF_BYTES 8

typedef union
{
	XnInt16 m_data[SSE_M128_NUM_OF_BYTES];
	XnUInt16 m_udata[SSE_M128_NUM_OF_BYTES];
	XnInt8 m_i8[16];
} XN_INT128;


/* Adds the 8 signed or unsigned 16-bit integers in a to the
 * 8 signed or unsigned 16-bit integers in b.
 * r0 := a0 + b0
 * r1 := a1 + b1
 * ...
 * r7 := a7 + b7 */
INLINE XN_INT128 XnAdd16(XN_INT128 a, XN_INT128 b)
{
	XN_INT128 result;

	for (int i = 0; i < SSE_M128_NUM_OF_BYTES; ++i)
		result.m_data[i] = a.m_data[i] + b.m_data[i];

	return result;
}

/* Adds the pares of the 16 bit numbers in a,b
 * r0 := a0 + a1
 * r1 := a2 + a3
 * ...
 * r7 := b6+ b7 */
INLINE XN_INT128 XnHAdd16(XN_INT128 a, XN_INT128 b)
{
	XN_INT128 result;

	result.m_data[0] = a.m_data[0] + a.m_data[1];
	result.m_data[1] = a.m_data[2] + a.m_data[3];
	result.m_data[2] = a.m_data[4] + a.m_data[5];
	result.m_data[3] = a.m_data[6] + a.m_data[7];
	result.m_data[4] = b.m_data[0] + b.m_data[1];
	result.m_data[5] = b.m_data[2] + b.m_data[3];
	result.m_data[6] = b.m_data[4] + b.m_data[5];
	result.m_data[7] = b.m_data[6] + b.m_data[7];

	return result;
}

/*
 * Adds the 8 unsigned 16-bit integers in a to the 8 unsigned 16-bit integers in b and saturates.
 * r0 := UnsignedSaturate(a0 + b0)
 * r1 := UnsignedSaturate(a1 + b1)
 * ...
 * r15 := UnsignedSaturate(a7 + b7)
 */
INLINE XN_INT128 XnAddUnsigned16AndSaturates(XN_INT128 a, XN_INT128 b)
{
	XN_INT128 result;

	for (int i = 0; i < SSE_M128_NUM_OF_BYTES; ++i)
	{
		XnUInt32 res = (XnUInt32)a.m_data[i] + (XnUInt32)b.m_data[i];

		if (res > 0xFFFF)
			result.m_udata[i] = 0xFFFF;
		else
			result.m_udata[i] = (XnUInt16)res;

	}

	return result;
}

/* Subtracts the 8 signed or unsigned 16-bit integers of b
 * from the 8 signed or unsigned 16-bit integers of a.
 * r0 := a0 - b0
 * r1 := a1 - b1
 * ...
 * r7 := a7 - b7 */
INLINE XN_INT128 XnSub16(XN_INT128 a, XN_INT128 b)
{
	XN_INT128 result;

	for (int i = 0; i < SSE_M128_NUM_OF_BYTES; ++i)
		result.m_data[i] = a.m_data[i] - b.m_data[i];

	return result;
}

/* Sets the 128-bit value to zero.
 * r := 0x0 */
INLINE XN_INT128 XnSetZero128 ()
{
	XN_INT128 result;

	for (int i = 0; i < SSE_M128_NUM_OF_BYTES; ++i)
		result.m_data[i] = 0;

	return result;

}

/* Shifts the 128-bit value in a right by imm bytes while shifting
 * in zeros. imm must be an immediate.
 * r := srl(a, imm*8)
 *
 * NOTE: in SSE, elements are ordered 7,6,5,4,3,2,1,0. So, right shift is actually
 * left shift... */
INLINE XN_INT128 XnShiftRight128 (XN_INT128 a, XnInt32 imm)
{
	XN_INT128 result = XnSetZero128();

	XnUChar* pA = (XnUChar*)&a.m_data;
	XnUChar* pResult = (XnUChar*)&result.m_data;

	for (int i = 0; (i+imm) < SSE_M128_NUM_OF_BYTES*sizeof(XnInt16); ++i)
		pResult[i] = pA[i+imm];

	return result;
}

/*Shifts the 8 signed 16-bit integers in a right by count bits while shifting in the sign bit.
r0 := a0 >> count
r1 := a1 >> count
...
r7 := a7 >> count
*/
INLINE XN_INT128 XnShiftRight16Sign (XN_INT128 ar, XnInt32 count)
{
	XN_INT128 ret;
	
	XnInt16* r = (XnInt16*)&ret.m_data;
	XnInt16* a = (XnInt16*)&ar.m_data;

	r[0] = a[0] >> count; 	r[1] = a[1] >> count;
	r[2] = a[2] >> count; 	r[3] = a[3] >> count;
	r[4] = a[4] >> count; 	r[5] = a[5] >> count;
	r[6] = a[6] >> count; 	r[7] = a[7] >> count;
	
	return ret;
}

/* Shifts the 128-bit value in a left by imm bytes
 * while shifting in zeros. imm must be an immediate.
 * r := a << (imm * 8)
 *
 * NOTE: in SSE, elements are ordered 7,6,5,4,3,2,1,0. So, left shift is actually
 * right shift... */
INLINE XN_INT128 XnShiftLeft128 (XN_INT128 a, XnInt32 imm)
{
	XN_INT128 result = XnSetZero128();

	XnUChar* pA = (XnUChar*)&a.m_data;
	XnUChar* pResult = (XnUChar*)&result.m_data;

	for (int i = imm; i < SSE_M128_NUM_OF_BYTES*sizeof(XnInt16); ++i)
		pResult[i] = pA[i-imm];

	return result;
}

/* Computes the pairwise maxima of the 8 signed 16-bit integers
 * from a and the 8 signed 16-bit integers from b.
 * r0 := max(a0, b0)
 * r1 := max(a1, b1)
 * ...
 * r7 := max(a7, b7) */
INLINE XN_INT128 XnMax16 (XN_INT128 a, XN_INT128 b)
{
	XN_INT128 result;

	for (int i=0; i<SSE_M128_NUM_OF_BYTES; i++)
		result.m_data[i] = XN_MAX(a.m_data[i], b.m_data[i]);

	return result;
}

/* Computes the bitwise AND of the 128-bit value in a and
 * the 128-bit value in b.
 * r := a & b */
INLINE XN_INT128 XnAnd128 (XN_INT128 a, XN_INT128 b)
{
	XN_INT128 result;

	for (int i=0; i<SSE_M128_NUM_OF_BYTES; i++)
		result.m_data[i] = (a.m_data[i] & b.m_data[i]);

	return result;
}

/* Computes the bitwise AND of the 128-bit value in b
 * and the bitwise NOT of the 128-bit value in a.
 * r := (~a) & b */
INLINE XN_INT128 XnAndNot128 (XN_INT128 a, XN_INT128 b)
{
	XN_INT128 result;

	for (int i=0; i<SSE_M128_NUM_OF_BYTES; i++)
		result.m_data[i] = ((~a.m_data[i]) & b.m_data[i]);

	return result;
}

/* Sets the 8 signed 16-bit integer values to w
 * r0 := w
 * r1 := w
 * ...
 * r7 := w */
INLINE XN_INT128 XnSetOne16 (XnInt16 w)
{
	XN_INT128 result;

	for (int i=0; i<SSE_M128_NUM_OF_BYTES; i++)
		result.m_data[i] = w;

	return result;
}

/* Sets the 8 signed 16-bit integer values
 * r0 := w0
 * r1 := w1
 * ...
 * r7 := w7*/
INLINE XN_INT128 XnSet16 (XnInt16 w7, XnInt16 w6, XnInt16 w5, XnInt16 w4, XnInt16 w3, XnInt16 w2, XnInt16 w1, XnInt16 w0)
{
	XN_INT128 result;

	result.m_data[0] = w0;
	result.m_data[1] = w1;
	result.m_data[2] = w2;
	result.m_data[3] = w3;
	result.m_data[4] = w4;
	result.m_data[5] = w5;
	result.m_data[6] = w6;
	result.m_data[7] = w7;

	return result;
}

/* Computes the bitwise OR of the 128-bit value in a and
 * the 128-bit value in b.
 * r := a | b */
INLINE XN_INT128 XnOr128 (XN_INT128 a, XN_INT128 b)
{
	XN_INT128 result;

	for (int i=0; i<SSE_M128_NUM_OF_BYTES; i++)
		result.m_data[i] = (a.m_data[i] | b.m_data[i]);;

	return result;
}

/* Computes the pairwise minima of the 8 signed 16-bit integers
 *  from a and the 8 signed 16-bit integers from b.
 * r0 := min(a0, b0)
 * r1 := min(a1, b1)
 * ...
 * r7 := min(a7, b7) */
INLINE XN_INT128 XnMin16 (XN_INT128 a, XN_INT128 b)
{
	XN_INT128 result;

	for (int i=0; i<SSE_M128_NUM_OF_BYTES; i++)
		result.m_data[i] = XN_MIN(a.m_data[i],b.m_data[i]);

	return result;
}

/* Adds the 8 signed 16-bit integers in a to the 8 signed 16-bit
 * integers in b and saturates.
 * 0 := SignedSaturate(a0 + b0)
 * r1 := SignedSaturate(a1 + b1)
 * ...
 * r7 := SignedSaturate(a7 + b7) */
INLINE XN_INT128 XnAdd16AndSaturates (XN_INT128 a, XN_INT128 b)
{
	XN_INT128 result;

	for (int i=0; i<SSE_M128_NUM_OF_BYTES; i++)
	{
		int res = (int)a.m_data[i] + (int)b.m_data[i];

		if (res > 0x7FFF)
			result.m_data[i] = 0x7FFF;
		else if (res < (XnInt16)0x8000)
			result.m_data[i] = (XnInt16)0x8000;
		else
			result.m_data[i] = res;
	}

	return result;
}

/* Compares the 8 signed 16-bit integers in a and the 8 signed 16-bit integers in b for greater than
 * r0 := (a0 > b0) ? 0xffff : 0x0
 * r1 := (a1 > b1) ? 0xffff : 0x0
 * ...
 * r7 := (a7 > b7) ? 0xffff : 0x0 */
INLINE XN_INT128  XnCompareGreaterThan(XN_INT128 a, XN_INT128 b)
{
	XN_INT128 result;

	for (int i=0; i<SSE_M128_NUM_OF_BYTES; i++)
	{
		if( a.m_data[i] > b.m_data[i] )
			result.m_data[i] = (XnInt16)0xFFFF;
		else
			result.m_data[i] = 0;
	}

	return result;
}

/* Compares the 8 signed 16-bit integers in a and the 8 signed 16-bit integers in b for less than.
 * r0 := (a0 < b0) ? 0xffff : 0x0
 * r1 := (a1 < b1) ? 0xffff : 0x0
 * ...
 * r7 := (a7 < b7) ? 0xffff : 0x0 */
INLINE XN_INT128  XnCompareLessThan(XN_INT128 a, XN_INT128 b)
{
	XN_INT128 result;

	for (int i=0; i<SSE_M128_NUM_OF_BYTES; i++)
	{
		if( a.m_data[i] < b.m_data[i] )
			result.m_data[i] = (XnInt16)0xFFFF;
		else
			result.m_data[i] = 0;
	}

	return result;
}

/* Compares the 8 signed or unsigned 16-bit integers in a and the 8 signed or unsigned 16-bit integers in b for equality.
 * r0 := (a0 == b0) ? 0xffff : 0x0
 * r1 := (a1 == b1) ? 0xffff : 0x0
 * ...
 * r7 := (a7 == b7) ? 0xffff : 0x0 */
INLINE XN_INT128  XnCompareEqual(XN_INT128 a, XN_INT128 b)
{
	XN_INT128 result;

	for (int i=0; i<SSE_M128_NUM_OF_BYTES; i++)
	{
		if( a.m_data[i] == b.m_data[i] )
			result.m_data[i] = (XnInt16)0xFFFF;
		else
			result.m_data[i] = 0;
	}

	return result;
}

/* Computes the average of the 8 unsigned 16-bit integers in a and the 8 unsigned 16-bit integers in b and rounds.
 * r0 := (a0 + b0) / 2
 * r1 := (a1 + b1) / 2
 *  ...
 * r7 := (a7 + b7) / 2 */
INLINE XN_INT128  XnAverageUnsigned16(XN_INT128 a, XN_INT128 b)
{
	XN_INT128 result;

	for (int i = 0; i < SSE_M128_NUM_OF_BYTES; ++i)
		result.m_data[i] = ((XnUInt16)a.m_data[i] + (XnUInt16)b.m_data[i] + 1)/2;

	return result;
}

/* Subtracts the 8 unsigned 16-bit integers of b from the 8 unsigned 16-bit integers of a and saturates.
 * r0 := UnsignedSaturate(a0 - b0)
 * r1 := UnsignedSaturate(a1 - b1)
 * ...
 * r7 := UnsignedSaturate(a7 - b7) */
INLINE XN_INT128 XnSubSigned16(XN_INT128 a, XN_INT128 b)
{
	XN_INT128 result;

	for (int i = 0; i < SSE_M128_NUM_OF_BYTES; ++i)
		result.m_data[i] = (XnUInt16)a.m_data[i] - (XnUInt16)b.m_data[i];

	return result;
}

/* Shifts the 8 unsigned 16-bit integers in a right by count bits while shifting in zeroes. 
 * r0 := srl(a0, count) 
 * r1 := srl(a1, count) 
 * ... 
 * r7 := srl(a7, count) */ 
INLINE XN_INT128  XnShiftRight16(XN_INT128 a, XnInt32 count) 
{ 
	XN_INT128 result; 

	for (int i = 0; i < SSE_M128_NUM_OF_BYTES; ++i ) 
		result.m_udata[i] = a.m_udata[i] >> count; 

	return result; 
} 


/* Multiplies the 8 signed or unsigned 16-bit integers from a by the 8 signed or unsigned 16-bit integers from b.
 * r0 := (a0 * b0)[15:0]
 * r1 := (a1 * b1)[15:0]
 * ...
 * r7 := (a7 * b7)[15:0] */
INLINE XN_INT128  XnMult16(XN_INT128 a, XN_INT128 b)
{
	XN_INT128 result;

	for (int i = 0; i < SSE_M128_NUM_OF_BYTES; ++i )
		result.m_data[i] = (XnInt16)((a.m_data[i] * b.m_data[i]) & 0xFFFF);

	return result;
}

/* Packs the 16 signed 16-bit integers from a and b into 8-bit integers and saturates.
 * r0 := SignedSaturate(a0)
 * r1 := SignedSaturate(a1)
 * ...
 * r7 := SignedSaturate(a7)
 * r8 := SignedSaturate(b0)
 * r9 := SignedSaturate(b1)
 * ...
 * r15 := SignedSaturate(b7)
 */
INLINE XN_INT128 XnPacksSigned16(XN_INT128 a, XN_INT128 b) // _mm_packs_epi16
{
	XN_INT128 result;

	for (int i = 0; i < SSE_M128_NUM_OF_BYTES; ++i )
	{
		if (a.m_data[i] > 0x7F)
			result.m_i8[i] = 0x7F;
		else if (a.m_data[i] < (XnInt8)0x80)
			result.m_i8[i] = (XnInt8)0x80;
		else
			result.m_i8[i] = (XnInt8)a.m_data[i];
	}

	for (int i = 0; i < SSE_M128_NUM_OF_BYTES; ++i )
	{
		if (b.m_data[i] > 0x7F)
			result.m_i8[i + 8] = 0x7F;
		else if (b.m_data[i] < (XnInt8)0x80)
			result.m_i8[i + 8] = (XnInt8)0x80;
		else
			result.m_i8[i + 8] = (XnInt8)b.m_data[i];
	}

	return result;
}

#endif