File: Pathfinding.cpp

package info (click to toggle)
openrct2 0.4.3%2Bds-1
  • links: PTS, VCS
  • area: contrib
  • in suites: bookworm
  • size: 67,880 kB
  • sloc: cpp: 549,527; ansic: 1,322; sh: 441; python: 269; xml: 180; php: 34; makefile: 19
file content (256 lines) | stat: -rw-r--r-- 10,304 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
#include "TestData.h"
#include "openrct2/core/StringReader.h"
#include "openrct2/entity/Guest.h"
#include "openrct2/peep/GuestPathfinding.h"
#include "openrct2/ride/Station.h"
#include "openrct2/scenario/Scenario.h"

#include <gtest/gtest.h>
#include <memory>
#include <openrct2/Context.h>
#include <openrct2/Game.h>
#include <openrct2/OpenRCT2.h>
#include <openrct2/ParkImporter.h>
#include <openrct2/platform/Platform.h>
#include <openrct2/world/Footpath.h>
#include <openrct2/world/Map.h>
#include <ostream>
#include <string>

using namespace OpenRCT2;

static std::ostream& operator<<(std::ostream& os, const TileCoordsXYZ& coords)
{
    return os << "(" << coords.x << ", " << coords.y << ", " << coords.z << ")";
}

class PathfindingTestBase : public testing::Test
{
public:
    static void SetUpTestCase()
    {
        Platform::CoreInit();

        gOpenRCT2Headless = true;
        gOpenRCT2NoGraphics = true;
        _context = CreateContext();
        const bool initialised = _context->Initialise();
        ASSERT_TRUE(initialised);

        std::string parkPath = TestData::GetParkPath("pathfinding-tests.sv6");
        GetContext()->LoadParkFromFile(parkPath);
        game_load_init();
    }

    void SetUp() override
    {
        // Use a consistent random seed in every test
        scenario_rand_seed(0x12345678, 0x87654321);
    }

    static void TearDownTestCase()
    {
        _context = nullptr;
    }

protected:
    static Ride* FindRideByName(const char* name)
    {
        for (auto& ride : GetRideManager())
        {
            auto thisName = ride.GetName();
            if (!_strnicmp(thisName.c_str(), name, sizeof(thisName)))
            {
                return &ride;
            }
        }
        return nullptr;
    }

    static bool FindPath(TileCoordsXYZ* pos, const TileCoordsXYZ& goal, int expectedSteps, RideId targetRideID)
    {
        // Our start position is in tile coordinates, but we need to give the peep spawn
        // position in actual world coords (32 units per tile X/Y, 8 per Z level).
        // Add 16 so the peep spawns in the centre of the tile.
        auto* peep = Guest::Generate(pos->ToCoordsXYZ().ToTileCentre());

        // Peeps that are outside of the park use specialized pathfinding which we don't want to
        // use here
        peep->OutsideOfPark = false;

        // An earlier iteration of this code just gave peeps a target position to walk to, but it turns out
        // that with no actual ride to head towards, when a peep reaches a junction they use the 'aimless'
        // pathfinder instead of pursuing their original pathfinding target. So, we always need to give them
        // an actual ride to walk to the entrance of.
        peep->GuestHeadingToRideId = targetRideID;

        // Pick the direction the peep should initially move in, given the goal position.
        // This will also store the goal position and initialize pathfinding data for the peep.
        gPeepPathFindGoalPosition = goal;
        const Direction moveDir = gGuestPathfinder->ChooseDirection(*pos, *peep);
        if (moveDir == INVALID_DIRECTION)
        {
            // Couldn't determine a direction to move off in
            return false;
        }

        // We have already set up the peep's overall pathfinding goal, but we also have to set their initial
        // 'destination' which is a close position that they will walk towards in a straight line - in this case, one
        // tile away. Stepping the peep will move them towards their destination, and once they reach it, a new
        // destination will be picked, to try and get the peep towards the overall pathfinding goal.
        peep->PeepDirection = moveDir;
        auto destination = CoordsDirectionDelta[moveDir] + peep->GetLocation();
        peep->SetDestination(destination, 2);

        // Repeatedly step the peep, until they reach the target position or until the expected number of steps have
        // elapsed. Each step, check that the tile they are standing on is not marked as forbidden in the test data
        // (red neon ground type).
        int step = 0;
        while (!(*pos == goal) && step < expectedSteps)
        {
            uint8_t pathingResult = 0;
            peep->PerformNextAction(pathingResult);
            ++step;

            *pos = TileCoordsXYZ(peep->GetLocation());

            EXPECT_PRED_FORMAT1(AssertIsNotForbiddenPosition, *pos);

            // Check that the peep is still on a footpath. Use next_z instead of pos->z here because pos->z will change
            // when the peep is halfway up a slope, but next_z will not change until they move to the next tile.
            EXPECT_NE(MapGetFootpathElement({ pos->ToCoordsXY(), peep->NextLoc.z }), nullptr);
        }

        // Clean up the peep, because we're reusing this loaded context for all tests.
        peep_sprite_remove(peep);

        // Require that the number of steps taken is exactly what we expected. The pathfinder is supposed to be
        // deterministic, and we reset the RNG seed for each test, everything should be entirely repeatable; as
        // such a change in the number of steps taken on one of these paths needs to be reviewed. For the negative
        // tests, we will not have reached the goal but we still expect the loop to have run for the total number
        // of steps requested before giving up.
        EXPECT_EQ(step, expectedSteps);

        return *pos == goal;
    }

    static ::testing::AssertionResult AssertIsStartPosition(const char*, const TileCoordsXYZ& location)
    {
        const uint32_t expectedSurfaceStyle = 11u;
        const uint32_t style = MapGetSurfaceElementAt(location.ToCoordsXYZ())->GetSurfaceStyle();

        if (style != expectedSurfaceStyle)
            return ::testing::AssertionFailure()
                << "Start location " << location << " should have surface style " << expectedSurfaceStyle
                << " but actually has style " << style
                << ". Either the test map is not set up correctly, or you got the coordinates wrong.";

        return ::testing::AssertionSuccess();
    }

    static ::testing::AssertionResult AssertIsNotForbiddenPosition(const char*, const TileCoordsXYZ& location)
    {
        const uint32_t forbiddenSurfaceStyle = 8u;

        const uint32_t style = MapGetSurfaceElementAt(location.ToCoordsXYZ())->GetSurfaceStyle();

        if (style == forbiddenSurfaceStyle)
            return ::testing::AssertionFailure()
                << "Path traversed location " << location << ", but it is marked as a forbidden location (surface style "
                << forbiddenSurfaceStyle << "). Either the map is set up incorrectly, or the pathfinder went the wrong way.";

        return ::testing::AssertionSuccess();
    }

private:
    static std::shared_ptr<IContext> _context;
};

std::shared_ptr<IContext> PathfindingTestBase::_context;

struct SimplePathfindingScenario
{
    const char* name;
    TileCoordsXYZ start;
    uint32_t steps;

    SimplePathfindingScenario(const char* _name, const TileCoordsXYZ& _start, int _steps)
        : name(_name)
        , start(_start)
        , steps(_steps)
    {
    }

    static std::string ToName(const ::testing::TestParamInfo<SimplePathfindingScenario>& param_info)
    {
        return param_info.param.name;
    }
};

class SimplePathfindingTest : public PathfindingTestBase, public ::testing::WithParamInterface<SimplePathfindingScenario>
{
};

TEST_P(SimplePathfindingTest, CanFindPathFromStartToGoal)
{
    const SimplePathfindingScenario& scenario = GetParam();

    ASSERT_PRED_FORMAT1(AssertIsStartPosition, scenario.start);
    TileCoordsXYZ pos = scenario.start;

    auto ride = FindRideByName(scenario.name);
    ASSERT_NE(ride, nullptr);

    auto entrancePos = ride->GetStation().Entrance;
    TileCoordsXYZ goal = TileCoordsXYZ(
        entrancePos.x - TileDirectionDelta[entrancePos.direction].x,
        entrancePos.y - TileDirectionDelta[entrancePos.direction].y, entrancePos.z);

    const auto succeeded = FindPath(&pos, goal, scenario.steps, ride->id) ? ::testing::AssertionSuccess()
                                                                          : ::testing::AssertionFailure()
            << "Failed to find path from " << scenario.start << " to " << goal << " in " << scenario.steps << " steps; reached "
            << pos << " before giving up.";

    EXPECT_TRUE(succeeded);
}

INSTANTIATE_TEST_SUITE_P(
    ForScenario, SimplePathfindingTest,
    ::testing::Values(
        SimplePathfindingScenario("StraightFlat", { 19, 15, 14 }, 24), SimplePathfindingScenario("SBend", { 15, 12, 14 }, 87),
        SimplePathfindingScenario("UBend", { 17, 9, 14 }, 87), SimplePathfindingScenario("CBend", { 14, 5, 14 }, 164),
        SimplePathfindingScenario("TwoEqualRoutes", { 9, 13, 14 }, 89),
        SimplePathfindingScenario("TwoUnequalRoutes", { 3, 13, 14 }, 89),
        SimplePathfindingScenario("StraightUpBridge", { 12, 15, 14 }, 24),
        SimplePathfindingScenario("StraightUpSlope", { 14, 15, 14 }, 24),
        SimplePathfindingScenario("SelfCrossingPath", { 6, 5, 14 }, 211)),
    SimplePathfindingScenario::ToName);

class ImpossiblePathfindingTest : public PathfindingTestBase, public ::testing::WithParamInterface<SimplePathfindingScenario>
{
};

TEST_P(ImpossiblePathfindingTest, CannotFindPathFromStartToGoal)
{
    const SimplePathfindingScenario& scenario = GetParam();
    TileCoordsXYZ pos = scenario.start;
    ASSERT_PRED_FORMAT1(AssertIsStartPosition, scenario.start);

    auto ride = FindRideByName(scenario.name);
    ASSERT_NE(ride, nullptr);

    auto entrancePos = ride->GetStation().Entrance;
    TileCoordsXYZ goal = TileCoordsXYZ(
        entrancePos.x + TileDirectionDelta[entrancePos.direction].x,
        entrancePos.y + TileDirectionDelta[entrancePos.direction].y, entrancePos.z);

    EXPECT_FALSE(FindPath(&pos, goal, 10000, ride->id));
}

INSTANTIATE_TEST_SUITE_P(
    ForScenario, ImpossiblePathfindingTest,
    ::testing::Values(
        SimplePathfindingScenario("PathWithGap", { 1, 6, 14 }, 10000),
        SimplePathfindingScenario("PathWithFences", { 11, 6, 14 }, 10000),
        SimplePathfindingScenario("PathWithCliff", { 7, 17, 14 }, 10000)),
    SimplePathfindingScenario::ToName);