1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
|
#!/usr/bin/env perl
# ====================================================================
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see http://www.openssl.org/~appro/cryptogams/.
# ====================================================================
# March 2010
#
# The module implements "4-bit" GCM GHASH function and underlying
# single multiplication operation in GF(2^128). "4-bit" means that it
# uses 256 bytes per-key table [+128 bytes shared table]. Performance
# results are for streamed GHASH subroutine on UltraSPARC pre-Tx CPU
# and are expressed in cycles per processed byte, less is better:
#
# gcc 3.3.x cc 5.2 this assembler
#
# 32-bit build 81.4 43.3 12.6 (+546%/+244%)
# 64-bit build 20.2 21.2 12.6 (+60%/+68%)
#
# Here is data collected on UltraSPARC T1 system running Linux:
#
# gcc 4.4.1 this assembler
#
# 32-bit build 566 50 (+1000%)
# 64-bit build 56 50 (+12%)
#
# I don't quite understand why difference between 32-bit and 64-bit
# compiler-generated code is so big. Compilers *were* instructed to
# generate code for UltraSPARC and should have used 64-bit registers
# for Z vector (see C code) even in 32-bit build... Oh well, it only
# means more impressive improvement coefficients for this assembler
# module;-) Loops are aggressively modulo-scheduled in respect to
# references to input data and Z.hi updates to achieve 12 cycles
# timing. To anchor to something else, sha1-sparcv9.pl spends 11.6
# cycles to process one byte on UltraSPARC pre-Tx CPU and ~24 on T1.
$bits=32;
for (@ARGV) { $bits=64 if (/\-m64/ || /\-xarch\=v9/); }
if ($bits==64) { $bias=2047; $frame=192; }
else { $bias=0; $frame=112; }
$output=shift;
open STDOUT,">$output";
$Zhi="%o0"; # 64-bit values
$Zlo="%o1";
$Thi="%o2";
$Tlo="%o3";
$rem="%o4";
$tmp="%o5";
$nhi="%l0"; # small values and pointers
$nlo="%l1";
$xi0="%l2";
$xi1="%l3";
$rem_4bit="%l4";
$remi="%l5";
$Htblo="%l6";
$cnt="%l7";
$Xi="%i0"; # input argument block
$Htbl="%i1";
$inp="%i2";
$len="%i3";
$code.=<<___;
.section ".text",#alloc,#execinstr
.align 64
rem_4bit:
.long `0x0000<<16`,0,`0x1C20<<16`,0,`0x3840<<16`,0,`0x2460<<16`,0
.long `0x7080<<16`,0,`0x6CA0<<16`,0,`0x48C0<<16`,0,`0x54E0<<16`,0
.long `0xE100<<16`,0,`0xFD20<<16`,0,`0xD940<<16`,0,`0xC560<<16`,0
.long `0x9180<<16`,0,`0x8DA0<<16`,0,`0xA9C0<<16`,0,`0xB5E0<<16`,0
.type rem_4bit,#object
.size rem_4bit,(.-rem_4bit)
.globl gcm_ghash_4bit
.align 32
gcm_ghash_4bit:
save %sp,-$frame,%sp
ldub [$inp+15],$nlo
ldub [$Xi+15],$xi0
ldub [$Xi+14],$xi1
add $len,$inp,$len
add $Htbl,8,$Htblo
1: call .+8
add %o7,rem_4bit-1b,$rem_4bit
.Louter:
xor $xi0,$nlo,$nlo
and $nlo,0xf0,$nhi
and $nlo,0x0f,$nlo
sll $nlo,4,$nlo
ldx [$Htblo+$nlo],$Zlo
ldx [$Htbl+$nlo],$Zhi
ldub [$inp+14],$nlo
ldx [$Htblo+$nhi],$Tlo
and $Zlo,0xf,$remi
ldx [$Htbl+$nhi],$Thi
sll $remi,3,$remi
ldx [$rem_4bit+$remi],$rem
srlx $Zlo,4,$Zlo
mov 13,$cnt
sllx $Zhi,60,$tmp
xor $Tlo,$Zlo,$Zlo
srlx $Zhi,4,$Zhi
xor $Zlo,$tmp,$Zlo
xor $xi1,$nlo,$nlo
and $Zlo,0xf,$remi
and $nlo,0xf0,$nhi
and $nlo,0x0f,$nlo
ba .Lghash_inner
sll $nlo,4,$nlo
.align 32
.Lghash_inner:
ldx [$Htblo+$nlo],$Tlo
sll $remi,3,$remi
xor $Thi,$Zhi,$Zhi
ldx [$Htbl+$nlo],$Thi
srlx $Zlo,4,$Zlo
xor $rem,$Zhi,$Zhi
ldx [$rem_4bit+$remi],$rem
sllx $Zhi,60,$tmp
xor $Tlo,$Zlo,$Zlo
ldub [$inp+$cnt],$nlo
srlx $Zhi,4,$Zhi
xor $Zlo,$tmp,$Zlo
ldub [$Xi+$cnt],$xi1
xor $Thi,$Zhi,$Zhi
and $Zlo,0xf,$remi
ldx [$Htblo+$nhi],$Tlo
sll $remi,3,$remi
xor $rem,$Zhi,$Zhi
ldx [$Htbl+$nhi],$Thi
srlx $Zlo,4,$Zlo
ldx [$rem_4bit+$remi],$rem
sllx $Zhi,60,$tmp
xor $xi1,$nlo,$nlo
srlx $Zhi,4,$Zhi
and $nlo,0xf0,$nhi
addcc $cnt,-1,$cnt
xor $Zlo,$tmp,$Zlo
and $nlo,0x0f,$nlo
xor $Tlo,$Zlo,$Zlo
sll $nlo,4,$nlo
blu .Lghash_inner
and $Zlo,0xf,$remi
ldx [$Htblo+$nlo],$Tlo
sll $remi,3,$remi
xor $Thi,$Zhi,$Zhi
ldx [$Htbl+$nlo],$Thi
srlx $Zlo,4,$Zlo
xor $rem,$Zhi,$Zhi
ldx [$rem_4bit+$remi],$rem
sllx $Zhi,60,$tmp
xor $Tlo,$Zlo,$Zlo
srlx $Zhi,4,$Zhi
xor $Zlo,$tmp,$Zlo
xor $Thi,$Zhi,$Zhi
add $inp,16,$inp
cmp $inp,$len
be,pn `$bits==64?"%xcc":"%icc"`,.Ldone
and $Zlo,0xf,$remi
ldx [$Htblo+$nhi],$Tlo
sll $remi,3,$remi
xor $rem,$Zhi,$Zhi
ldx [$Htbl+$nhi],$Thi
srlx $Zlo,4,$Zlo
ldx [$rem_4bit+$remi],$rem
sllx $Zhi,60,$tmp
xor $Tlo,$Zlo,$Zlo
ldub [$inp+15],$nlo
srlx $Zhi,4,$Zhi
xor $Zlo,$tmp,$Zlo
xor $Thi,$Zhi,$Zhi
stx $Zlo,[$Xi+8]
xor $rem,$Zhi,$Zhi
stx $Zhi,[$Xi]
srl $Zlo,8,$xi1
and $Zlo,0xff,$xi0
ba .Louter
and $xi1,0xff,$xi1
.align 32
.Ldone:
ldx [$Htblo+$nhi],$Tlo
sll $remi,3,$remi
xor $rem,$Zhi,$Zhi
ldx [$Htbl+$nhi],$Thi
srlx $Zlo,4,$Zlo
ldx [$rem_4bit+$remi],$rem
sllx $Zhi,60,$tmp
xor $Tlo,$Zlo,$Zlo
srlx $Zhi,4,$Zhi
xor $Zlo,$tmp,$Zlo
xor $Thi,$Zhi,$Zhi
stx $Zlo,[$Xi+8]
xor $rem,$Zhi,$Zhi
stx $Zhi,[$Xi]
ret
restore
.type gcm_ghash_4bit,#function
.size gcm_ghash_4bit,(.-gcm_ghash_4bit)
___
undef $inp;
undef $len;
$code.=<<___;
.globl gcm_gmult_4bit
.align 32
gcm_gmult_4bit:
save %sp,-$frame,%sp
ldub [$Xi+15],$nlo
add $Htbl,8,$Htblo
1: call .+8
add %o7,rem_4bit-1b,$rem_4bit
and $nlo,0xf0,$nhi
and $nlo,0x0f,$nlo
sll $nlo,4,$nlo
ldx [$Htblo+$nlo],$Zlo
ldx [$Htbl+$nlo],$Zhi
ldub [$Xi+14],$nlo
ldx [$Htblo+$nhi],$Tlo
and $Zlo,0xf,$remi
ldx [$Htbl+$nhi],$Thi
sll $remi,3,$remi
ldx [$rem_4bit+$remi],$rem
srlx $Zlo,4,$Zlo
mov 13,$cnt
sllx $Zhi,60,$tmp
xor $Tlo,$Zlo,$Zlo
srlx $Zhi,4,$Zhi
xor $Zlo,$tmp,$Zlo
and $Zlo,0xf,$remi
and $nlo,0xf0,$nhi
and $nlo,0x0f,$nlo
ba .Lgmult_inner
sll $nlo,4,$nlo
.align 32
.Lgmult_inner:
ldx [$Htblo+$nlo],$Tlo
sll $remi,3,$remi
xor $Thi,$Zhi,$Zhi
ldx [$Htbl+$nlo],$Thi
srlx $Zlo,4,$Zlo
xor $rem,$Zhi,$Zhi
ldx [$rem_4bit+$remi],$rem
sllx $Zhi,60,$tmp
xor $Tlo,$Zlo,$Zlo
ldub [$Xi+$cnt],$nlo
srlx $Zhi,4,$Zhi
xor $Zlo,$tmp,$Zlo
xor $Thi,$Zhi,$Zhi
and $Zlo,0xf,$remi
ldx [$Htblo+$nhi],$Tlo
sll $remi,3,$remi
xor $rem,$Zhi,$Zhi
ldx [$Htbl+$nhi],$Thi
srlx $Zlo,4,$Zlo
ldx [$rem_4bit+$remi],$rem
sllx $Zhi,60,$tmp
srlx $Zhi,4,$Zhi
and $nlo,0xf0,$nhi
addcc $cnt,-1,$cnt
xor $Zlo,$tmp,$Zlo
and $nlo,0x0f,$nlo
xor $Tlo,$Zlo,$Zlo
sll $nlo,4,$nlo
blu .Lgmult_inner
and $Zlo,0xf,$remi
ldx [$Htblo+$nlo],$Tlo
sll $remi,3,$remi
xor $Thi,$Zhi,$Zhi
ldx [$Htbl+$nlo],$Thi
srlx $Zlo,4,$Zlo
xor $rem,$Zhi,$Zhi
ldx [$rem_4bit+$remi],$rem
sllx $Zhi,60,$tmp
xor $Tlo,$Zlo,$Zlo
srlx $Zhi,4,$Zhi
xor $Zlo,$tmp,$Zlo
xor $Thi,$Zhi,$Zhi
and $Zlo,0xf,$remi
ldx [$Htblo+$nhi],$Tlo
sll $remi,3,$remi
xor $rem,$Zhi,$Zhi
ldx [$Htbl+$nhi],$Thi
srlx $Zlo,4,$Zlo
ldx [$rem_4bit+$remi],$rem
sllx $Zhi,60,$tmp
xor $Tlo,$Zlo,$Zlo
srlx $Zhi,4,$Zhi
xor $Zlo,$tmp,$Zlo
xor $Thi,$Zhi,$Zhi
stx $Zlo,[$Xi+8]
xor $rem,$Zhi,$Zhi
stx $Zhi,[$Xi]
ret
restore
.type gcm_gmult_4bit,#function
.size gcm_gmult_4bit,(.-gcm_gmult_4bit)
.asciz "GHASH for SPARCv9, CRYPTOGAMS by <appro\@openssl.org>"
.align 4
___
$code =~ s/\`([^\`]*)\`/eval $1/gem;
print $code;
close STDOUT;
|