1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
|
/*
* Copyright 2020-2022 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
/*
* Helper functions for 128 bit CBC CTS ciphers (Currently AES and Camellia).
*
* The function dispatch tables are embedded into cipher_aes.c
* and cipher_camellia.c using cipher_aes_cts.inc and cipher_camellia_cts.inc
*/
/*
* Refer to SP800-38A-Addendum
*
* Ciphertext stealing encrypts plaintext using a block cipher, without padding
* the message to a multiple of the block size, so the ciphertext is the same
* size as the plaintext.
* It does this by altering processing of the last two blocks of the message.
* The processing of all but the last two blocks is unchanged, but a portion of
* the second-last block's ciphertext is "stolen" to pad the last plaintext
* block. The padded final block is then encrypted as usual.
* The final ciphertext for the last two blocks, consists of the partial block
* (with the "stolen" portion omitted) plus the full final block,
* which are the same size as the original plaintext.
* Decryption requires decrypting the final block first, then restoring the
* stolen ciphertext to the partial block, which can then be decrypted as usual.
* AES_CBC_CTS has 3 variants:
* (1) CS1 The NIST variant.
* If the length is a multiple of the blocksize it is the same as CBC mode.
* otherwise it produces C1||C2||(C(n-1))*||Cn.
* Where C(n-1)* is a partial block.
* (2) CS2
* If the length is a multiple of the blocksize it is the same as CBC mode.
* otherwise it produces C1||C2||Cn||(C(n-1))*.
* Where C(n-1)* is a partial block.
* (3) CS3 The Kerberos5 variant.
* Produces C1||C2||Cn||(C(n-1))* regardless of the length.
* If the length is a multiple of the blocksize it looks similar to CBC mode
* with the last 2 blocks swapped.
* Otherwise it is the same as CS2.
*/
#include <openssl/core_names.h>
#include "prov/ciphercommon.h"
#include "internal/nelem.h"
#include "cipher_cts.h"
/* The value assigned to 0 is the default */
#define CTS_CS1 0
#define CTS_CS2 1
#define CTS_CS3 2
#define CTS_BLOCK_SIZE 16
typedef union {
size_t align;
unsigned char c[CTS_BLOCK_SIZE];
} aligned_16bytes;
typedef struct cts_mode_name2id_st {
unsigned int id;
const char *name;
} CTS_MODE_NAME2ID;
static CTS_MODE_NAME2ID cts_modes[] =
{
{ CTS_CS1, OSSL_CIPHER_CTS_MODE_CS1 },
{ CTS_CS2, OSSL_CIPHER_CTS_MODE_CS2 },
{ CTS_CS3, OSSL_CIPHER_CTS_MODE_CS3 },
};
const char *ossl_cipher_cbc_cts_mode_id2name(unsigned int id)
{
size_t i;
for (i = 0; i < OSSL_NELEM(cts_modes); ++i) {
if (cts_modes[i].id == id)
return cts_modes[i].name;
}
return NULL;
}
int ossl_cipher_cbc_cts_mode_name2id(const char *name)
{
size_t i;
for (i = 0; i < OSSL_NELEM(cts_modes); ++i) {
if (OPENSSL_strcasecmp(name, cts_modes[i].name) == 0)
return (int)cts_modes[i].id;
}
return -1;
}
static size_t cts128_cs1_encrypt(PROV_CIPHER_CTX *ctx, const unsigned char *in,
unsigned char *out, size_t len)
{
aligned_16bytes tmp_in;
size_t residue;
residue = len % CTS_BLOCK_SIZE;
len -= residue;
if (!ctx->hw->cipher(ctx, out, in, len))
return 0;
if (residue == 0)
return len;
in += len;
out += len;
memset(tmp_in.c, 0, sizeof(tmp_in));
memcpy(tmp_in.c, in, residue);
if (!ctx->hw->cipher(ctx, out - CTS_BLOCK_SIZE + residue, tmp_in.c,
CTS_BLOCK_SIZE))
return 0;
return len + residue;
}
static void do_xor(const unsigned char *in1, const unsigned char *in2,
size_t len, unsigned char *out)
{
size_t i;
for (i = 0; i < len; ++i)
out[i] = in1[i] ^ in2[i];
}
static size_t cts128_cs1_decrypt(PROV_CIPHER_CTX *ctx, const unsigned char *in,
unsigned char *out, size_t len)
{
aligned_16bytes mid_iv, ct_mid, cn, pt_last;
size_t residue;
residue = len % CTS_BLOCK_SIZE;
if (residue == 0) {
/* If there are no partial blocks then it is the same as CBC mode */
if (!ctx->hw->cipher(ctx, out, in, len))
return 0;
return len;
}
/* Process blocks at the start - but leave the last 2 blocks */
len -= CTS_BLOCK_SIZE + residue;
if (len > 0) {
if (!ctx->hw->cipher(ctx, out, in, len))
return 0;
in += len;
out += len;
}
/* Save the iv that will be used by the second last block */
memcpy(mid_iv.c, ctx->iv, CTS_BLOCK_SIZE);
/* Save the C(n) block */
memcpy(cn.c, in + residue, CTS_BLOCK_SIZE);
/* Decrypt the last block first using an iv of zero */
memset(ctx->iv, 0, CTS_BLOCK_SIZE);
if (!ctx->hw->cipher(ctx, pt_last.c, in + residue, CTS_BLOCK_SIZE))
return 0;
/*
* Rebuild the ciphertext of the second last block as a combination of
* the decrypted last block + replace the start with the ciphertext bytes
* of the partial second last block.
*/
memcpy(ct_mid.c, in, residue);
memcpy(ct_mid.c + residue, pt_last.c + residue, CTS_BLOCK_SIZE - residue);
/*
* Restore the last partial ciphertext block.
* Now that we have the cipher text of the second last block, apply
* that to the partial plaintext end block. We have already decrypted the
* block using an IV of zero. For decryption the IV is just XORed after
* doing an Cipher CBC block - so just XOR in the cipher text.
*/
do_xor(ct_mid.c, pt_last.c, residue, out + CTS_BLOCK_SIZE);
/* Restore the iv needed by the second last block */
memcpy(ctx->iv, mid_iv.c, CTS_BLOCK_SIZE);
/*
* Decrypt the second last plaintext block now that we have rebuilt the
* ciphertext.
*/
if (!ctx->hw->cipher(ctx, out, ct_mid.c, CTS_BLOCK_SIZE))
return 0;
/* The returned iv is the C(n) block */
memcpy(ctx->iv, cn.c, CTS_BLOCK_SIZE);
return len + CTS_BLOCK_SIZE + residue;
}
static size_t cts128_cs3_encrypt(PROV_CIPHER_CTX *ctx, const unsigned char *in,
unsigned char *out, size_t len)
{
aligned_16bytes tmp_in;
size_t residue;
if (len < CTS_BLOCK_SIZE) /* CS3 requires at least one block */
return 0;
/* If we only have one block then just process the aligned block */
if (len == CTS_BLOCK_SIZE)
return ctx->hw->cipher(ctx, out, in, len) ? len : 0;
residue = len % CTS_BLOCK_SIZE;
if (residue == 0)
residue = CTS_BLOCK_SIZE;
len -= residue;
if (!ctx->hw->cipher(ctx, out, in, len))
return 0;
in += len;
out += len;
memset(tmp_in.c, 0, sizeof(tmp_in));
memcpy(tmp_in.c, in, residue);
memcpy(out, out - CTS_BLOCK_SIZE, residue);
if (!ctx->hw->cipher(ctx, out - CTS_BLOCK_SIZE, tmp_in.c, CTS_BLOCK_SIZE))
return 0;
return len + residue;
}
/*
* Note:
* The cipher text (in) is of the form C(0), C(1), ., C(n), C(n-1)* where
* C(n) is a full block and C(n-1)* can be a partial block
* (but could be a full block).
* This means that the output plaintext (out) needs to swap the plaintext of
* the last two decoded ciphertext blocks.
*/
static size_t cts128_cs3_decrypt(PROV_CIPHER_CTX *ctx, const unsigned char *in,
unsigned char *out, size_t len)
{
aligned_16bytes mid_iv, ct_mid, cn, pt_last;
size_t residue;
if (len < CTS_BLOCK_SIZE) /* CS3 requires at least one block */
return 0;
/* If we only have one block then just process the aligned block */
if (len == CTS_BLOCK_SIZE)
return ctx->hw->cipher(ctx, out, in, len) ? len : 0;
/* Process blocks at the start - but leave the last 2 blocks */
residue = len % CTS_BLOCK_SIZE;
if (residue == 0)
residue = CTS_BLOCK_SIZE;
len -= CTS_BLOCK_SIZE + residue;
if (len > 0) {
if (!ctx->hw->cipher(ctx, out, in, len))
return 0;
in += len;
out += len;
}
/* Save the iv that will be used by the second last block */
memcpy(mid_iv.c, ctx->iv, CTS_BLOCK_SIZE);
/* Save the C(n) block : For CS3 it is C(1)||...||C(n-2)||C(n)||C(n-1)* */
memcpy(cn.c, in, CTS_BLOCK_SIZE);
/* Decrypt the C(n) block first using an iv of zero */
memset(ctx->iv, 0, CTS_BLOCK_SIZE);
if (!ctx->hw->cipher(ctx, pt_last.c, in, CTS_BLOCK_SIZE))
return 0;
/*
* Rebuild the ciphertext of C(n-1) as a combination of
* the decrypted C(n) block + replace the start with the ciphertext bytes
* of the partial last block.
*/
memcpy(ct_mid.c, in + CTS_BLOCK_SIZE, residue);
if (residue != CTS_BLOCK_SIZE)
memcpy(ct_mid.c + residue, pt_last.c + residue, CTS_BLOCK_SIZE - residue);
/*
* Restore the last partial ciphertext block.
* Now that we have the cipher text of the second last block, apply
* that to the partial plaintext end block. We have already decrypted the
* block using an IV of zero. For decryption the IV is just XORed after
* doing an AES block - so just XOR in the ciphertext.
*/
do_xor(ct_mid.c, pt_last.c, residue, out + CTS_BLOCK_SIZE);
/* Restore the iv needed by the second last block */
memcpy(ctx->iv, mid_iv.c, CTS_BLOCK_SIZE);
/*
* Decrypt the second last plaintext block now that we have rebuilt the
* ciphertext.
*/
if (!ctx->hw->cipher(ctx, out, ct_mid.c, CTS_BLOCK_SIZE))
return 0;
/* The returned iv is the C(n) block */
memcpy(ctx->iv, cn.c, CTS_BLOCK_SIZE);
return len + CTS_BLOCK_SIZE + residue;
}
static size_t cts128_cs2_encrypt(PROV_CIPHER_CTX *ctx, const unsigned char *in,
unsigned char *out, size_t len)
{
if (len % CTS_BLOCK_SIZE == 0) {
/* If there are no partial blocks then it is the same as CBC mode */
if (!ctx->hw->cipher(ctx, out, in, len))
return 0;
return len;
}
/* For partial blocks CS2 is equivalent to CS3 */
return cts128_cs3_encrypt(ctx, in, out, len);
}
static size_t cts128_cs2_decrypt(PROV_CIPHER_CTX *ctx, const unsigned char *in,
unsigned char *out, size_t len)
{
if (len % CTS_BLOCK_SIZE == 0) {
/* If there are no partial blocks then it is the same as CBC mode */
if (!ctx->hw->cipher(ctx, out, in, len))
return 0;
return len;
}
/* For partial blocks CS2 is equivalent to CS3 */
return cts128_cs3_decrypt(ctx, in, out, len);
}
int ossl_cipher_cbc_cts_block_update(void *vctx, unsigned char *out, size_t *outl,
size_t outsize, const unsigned char *in,
size_t inl)
{
PROV_CIPHER_CTX *ctx = (PROV_CIPHER_CTX *)vctx;
size_t sz = 0;
if (inl < CTS_BLOCK_SIZE) /* There must be at least one block for CTS mode */
return 0;
if (outsize < inl)
return 0;
if (out == NULL) {
*outl = inl;
return 1;
}
/*
* Return an error if the update is called multiple times, only one shot
* is supported.
*/
if (ctx->updated == 1)
return 0;
if (ctx->enc) {
if (ctx->cts_mode == CTS_CS1)
sz = cts128_cs1_encrypt(ctx, in, out, inl);
else if (ctx->cts_mode == CTS_CS2)
sz = cts128_cs2_encrypt(ctx, in, out, inl);
else if (ctx->cts_mode == CTS_CS3)
sz = cts128_cs3_encrypt(ctx, in, out, inl);
} else {
if (ctx->cts_mode == CTS_CS1)
sz = cts128_cs1_decrypt(ctx, in, out, inl);
else if (ctx->cts_mode == CTS_CS2)
sz = cts128_cs2_decrypt(ctx, in, out, inl);
else if (ctx->cts_mode == CTS_CS3)
sz = cts128_cs3_decrypt(ctx, in, out, inl);
}
if (sz == 0)
return 0;
ctx->updated = 1; /* Stop multiple updates being allowed */
*outl = sz;
return 1;
}
int ossl_cipher_cbc_cts_block_final(void *vctx, unsigned char *out, size_t *outl,
size_t outsize)
{
*outl = 0;
return 1;
}
|