1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
|
/*
* Copyright 2011-2025 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <stdlib.h>
#include <string.h>
#include <openssl/crypto.h>
#include <openssl/err.h>
#include <openssl/rand.h>
#include <openssl/aes.h>
#include <openssl/proverr.h>
#include "crypto/modes.h"
#include "internal/thread_once.h"
#include "prov/implementations.h"
#include "prov/providercommon.h"
#include "prov/provider_ctx.h"
#include "drbg_local.h"
#include "internal/cryptlib.h"
static OSSL_FUNC_rand_newctx_fn drbg_ctr_new_wrapper;
static OSSL_FUNC_rand_freectx_fn drbg_ctr_free;
static OSSL_FUNC_rand_instantiate_fn drbg_ctr_instantiate_wrapper;
static OSSL_FUNC_rand_uninstantiate_fn drbg_ctr_uninstantiate_wrapper;
static OSSL_FUNC_rand_generate_fn drbg_ctr_generate_wrapper;
static OSSL_FUNC_rand_reseed_fn drbg_ctr_reseed_wrapper;
static OSSL_FUNC_rand_settable_ctx_params_fn drbg_ctr_settable_ctx_params;
static OSSL_FUNC_rand_set_ctx_params_fn drbg_ctr_set_ctx_params;
static OSSL_FUNC_rand_gettable_ctx_params_fn drbg_ctr_gettable_ctx_params;
static OSSL_FUNC_rand_get_ctx_params_fn drbg_ctr_get_ctx_params;
static OSSL_FUNC_rand_verify_zeroization_fn drbg_ctr_verify_zeroization;
/*
* The state of a DRBG AES-CTR.
*/
typedef struct rand_drbg_ctr_st {
EVP_CIPHER_CTX *ctx_ecb;
EVP_CIPHER_CTX *ctx_ctr;
EVP_CIPHER_CTX *ctx_df;
EVP_CIPHER *cipher_ecb;
EVP_CIPHER *cipher_ctr;
size_t keylen;
int use_df;
unsigned char K[32];
unsigned char V[16];
/* Temporary block storage used by ctr_df */
unsigned char bltmp[16];
size_t bltmp_pos;
unsigned char KX[48];
} PROV_DRBG_CTR;
/*
* Implementation of NIST SP 800-90A CTR DRBG.
*/
static void inc_128(PROV_DRBG_CTR *ctr)
{
unsigned char *p = &ctr->V[0];
u32 n = 16, c = 1;
do {
--n;
c += p[n];
p[n] = (u8)c;
c >>= 8;
} while (n);
}
static void ctr_XOR(PROV_DRBG_CTR *ctr, const unsigned char *in, size_t inlen)
{
size_t i, n;
if (in == NULL || inlen == 0)
return;
/*
* Any zero padding will have no effect on the result as we
* are XORing. So just process however much input we have.
*/
n = inlen < ctr->keylen ? inlen : ctr->keylen;
if (!ossl_assert(n <= sizeof(ctr->K)))
return;
for (i = 0; i < n; i++)
ctr->K[i] ^= in[i];
if (inlen <= ctr->keylen)
return;
n = inlen - ctr->keylen;
if (n > 16) {
/* Should never happen */
n = 16;
}
for (i = 0; i < n; i++)
ctr->V[i] ^= in[i + ctr->keylen];
}
/*
* Process a complete block using BCC algorithm of SP 800-90A 10.3.3
*/
__owur static int ctr_BCC_block(PROV_DRBG_CTR *ctr, unsigned char *out,
const unsigned char *in, int len)
{
int i, outlen = AES_BLOCK_SIZE;
for (i = 0; i < len; i++)
out[i] ^= in[i];
if (!EVP_CipherUpdate(ctr->ctx_df, out, &outlen, out, len)
|| outlen != len)
return 0;
return 1;
}
/*
* Handle several BCC operations for as much data as we need for K and X
*/
__owur static int ctr_BCC_blocks(PROV_DRBG_CTR *ctr, const unsigned char *in)
{
unsigned char in_tmp[48];
unsigned char num_of_blk = 2;
memcpy(in_tmp, in, 16);
memcpy(in_tmp + 16, in, 16);
if (ctr->keylen != 16) {
memcpy(in_tmp + 32, in, 16);
num_of_blk = 3;
}
return ctr_BCC_block(ctr, ctr->KX, in_tmp, AES_BLOCK_SIZE * num_of_blk);
}
/*
* Initialise BCC blocks: these have the value 0,1,2 in leftmost positions:
* see 10.3.1 stage 7.
*/
__owur static int ctr_BCC_init(PROV_DRBG_CTR *ctr)
{
unsigned char bltmp[48] = {0};
unsigned char num_of_blk;
memset(ctr->KX, 0, 48);
num_of_blk = ctr->keylen == 16 ? 2 : 3;
bltmp[(AES_BLOCK_SIZE * 1) + 3] = 1;
bltmp[(AES_BLOCK_SIZE * 2) + 3] = 2;
return ctr_BCC_block(ctr, ctr->KX, bltmp, num_of_blk * AES_BLOCK_SIZE);
}
/*
* Process several blocks into BCC algorithm, some possibly partial
*/
__owur static int ctr_BCC_update(PROV_DRBG_CTR *ctr,
const unsigned char *in, size_t inlen)
{
if (in == NULL || inlen == 0)
return 1;
/* If we have partial block handle it first */
if (ctr->bltmp_pos) {
size_t left = 16 - ctr->bltmp_pos;
/* If we now have a complete block process it */
if (inlen >= left) {
memcpy(ctr->bltmp + ctr->bltmp_pos, in, left);
if (!ctr_BCC_blocks(ctr, ctr->bltmp))
return 0;
ctr->bltmp_pos = 0;
inlen -= left;
in += left;
}
}
/* Process zero or more complete blocks */
for (; inlen >= 16; in += 16, inlen -= 16) {
if (!ctr_BCC_blocks(ctr, in))
return 0;
}
/* Copy any remaining partial block to the temporary buffer */
if (inlen > 0) {
memcpy(ctr->bltmp + ctr->bltmp_pos, in, inlen);
ctr->bltmp_pos += inlen;
}
return 1;
}
__owur static int ctr_BCC_final(PROV_DRBG_CTR *ctr)
{
if (ctr->bltmp_pos) {
memset(ctr->bltmp + ctr->bltmp_pos, 0, 16 - ctr->bltmp_pos);
if (!ctr_BCC_blocks(ctr, ctr->bltmp))
return 0;
}
return 1;
}
__owur static int ctr_df(PROV_DRBG_CTR *ctr,
const unsigned char *in1, size_t in1len,
const unsigned char *in2, size_t in2len,
const unsigned char *in3, size_t in3len)
{
static unsigned char c80 = 0x80;
size_t inlen;
unsigned char *p = ctr->bltmp;
int outlen = AES_BLOCK_SIZE;
if (!ctr_BCC_init(ctr))
return 0;
if (in1 == NULL)
in1len = 0;
if (in2 == NULL)
in2len = 0;
if (in3 == NULL)
in3len = 0;
inlen = in1len + in2len + in3len;
/* Initialise L||N in temporary block */
*p++ = (inlen >> 24) & 0xff;
*p++ = (inlen >> 16) & 0xff;
*p++ = (inlen >> 8) & 0xff;
*p++ = inlen & 0xff;
/* NB keylen is at most 32 bytes */
*p++ = 0;
*p++ = 0;
*p++ = 0;
*p = (unsigned char)((ctr->keylen + 16) & 0xff);
ctr->bltmp_pos = 8;
if (!ctr_BCC_update(ctr, in1, in1len)
|| !ctr_BCC_update(ctr, in2, in2len)
|| !ctr_BCC_update(ctr, in3, in3len)
|| !ctr_BCC_update(ctr, &c80, 1)
|| !ctr_BCC_final(ctr))
return 0;
/* Set up key K */
if (!EVP_CipherInit_ex(ctr->ctx_ecb, NULL, NULL, ctr->KX, NULL, -1))
return 0;
/* X follows key K */
if (!EVP_CipherUpdate(ctr->ctx_ecb, ctr->KX, &outlen, ctr->KX + ctr->keylen,
AES_BLOCK_SIZE)
|| outlen != AES_BLOCK_SIZE)
return 0;
if (!EVP_CipherUpdate(ctr->ctx_ecb, ctr->KX + 16, &outlen, ctr->KX,
AES_BLOCK_SIZE)
|| outlen != AES_BLOCK_SIZE)
return 0;
if (ctr->keylen != 16)
if (!EVP_CipherUpdate(ctr->ctx_ecb, ctr->KX + 32, &outlen,
ctr->KX + 16, AES_BLOCK_SIZE)
|| outlen != AES_BLOCK_SIZE)
return 0;
return 1;
}
/*
* NB the no-df Update in SP800-90A specifies a constant input length
* of seedlen, however other uses of this algorithm pad the input with
* zeroes if necessary and have up to two parameters XORed together,
* so we handle both cases in this function instead.
*/
__owur static int ctr_update(PROV_DRBG *drbg,
const unsigned char *in1, size_t in1len,
const unsigned char *in2, size_t in2len,
const unsigned char *nonce, size_t noncelen)
{
PROV_DRBG_CTR *ctr = (PROV_DRBG_CTR *)drbg->data;
int outlen = AES_BLOCK_SIZE;
unsigned char V_tmp[48], out[48];
unsigned char len;
/* correct key is already set up. */
memcpy(V_tmp, ctr->V, 16);
inc_128(ctr);
memcpy(V_tmp + 16, ctr->V, 16);
if (ctr->keylen == 16) {
len = 32;
} else {
inc_128(ctr);
memcpy(V_tmp + 32, ctr->V, 16);
len = 48;
}
if (!EVP_CipherUpdate(ctr->ctx_ecb, out, &outlen, V_tmp, len)
|| outlen != len)
return 0;
memcpy(ctr->K, out, ctr->keylen);
memcpy(ctr->V, out + ctr->keylen, 16);
if (ctr->use_df) {
/* If no input reuse existing derived value */
if (in1 != NULL || nonce != NULL || in2 != NULL)
if (!ctr_df(ctr, in1, in1len, nonce, noncelen, in2, in2len))
return 0;
/* If this a reuse input in1len != 0 */
if (in1len)
ctr_XOR(ctr, ctr->KX, drbg->seedlen);
} else {
ctr_XOR(ctr, in1, in1len);
ctr_XOR(ctr, in2, in2len);
}
if (!EVP_CipherInit_ex(ctr->ctx_ecb, NULL, NULL, ctr->K, NULL, -1)
|| !EVP_CipherInit_ex(ctr->ctx_ctr, NULL, NULL, ctr->K, NULL, -1))
return 0;
return 1;
}
static int drbg_ctr_instantiate(PROV_DRBG *drbg,
const unsigned char *entropy, size_t entropylen,
const unsigned char *nonce, size_t noncelen,
const unsigned char *pers, size_t perslen)
{
PROV_DRBG_CTR *ctr = (PROV_DRBG_CTR *)drbg->data;
if (entropy == NULL)
return 0;
memset(ctr->K, 0, sizeof(ctr->K));
memset(ctr->V, 0, sizeof(ctr->V));
if (!EVP_CipherInit_ex(ctr->ctx_ecb, NULL, NULL, ctr->K, NULL, -1))
return 0;
inc_128(ctr);
if (!ctr_update(drbg, entropy, entropylen, pers, perslen, nonce, noncelen))
return 0;
return 1;
}
static int drbg_ctr_instantiate_wrapper(void *vdrbg, unsigned int strength,
int prediction_resistance,
const unsigned char *pstr,
size_t pstr_len,
const OSSL_PARAM params[])
{
PROV_DRBG *drbg = (PROV_DRBG *)vdrbg;
if (!ossl_prov_is_running() || !drbg_ctr_set_ctx_params(drbg, params))
return 0;
return ossl_prov_drbg_instantiate(drbg, strength, prediction_resistance,
pstr, pstr_len);
}
static int drbg_ctr_reseed(PROV_DRBG *drbg,
const unsigned char *entropy, size_t entropylen,
const unsigned char *adin, size_t adinlen)
{
PROV_DRBG_CTR *ctr = (PROV_DRBG_CTR *)drbg->data;
if (entropy == NULL)
return 0;
inc_128(ctr);
if (!ctr_update(drbg, entropy, entropylen, adin, adinlen, NULL, 0))
return 0;
return 1;
}
static int drbg_ctr_reseed_wrapper(void *vdrbg, int prediction_resistance,
const unsigned char *ent, size_t ent_len,
const unsigned char *adin, size_t adin_len)
{
PROV_DRBG *drbg = (PROV_DRBG *)vdrbg;
return ossl_prov_drbg_reseed(drbg, prediction_resistance, ent, ent_len,
adin, adin_len);
}
static void ctr96_inc(unsigned char *counter)
{
u32 n = 12, c = 1;
do {
--n;
c += counter[n];
counter[n] = (u8)c;
c >>= 8;
} while (n);
}
static int drbg_ctr_generate(PROV_DRBG *drbg,
unsigned char *out, size_t outlen,
const unsigned char *adin, size_t adinlen)
{
PROV_DRBG_CTR *ctr = (PROV_DRBG_CTR *)drbg->data;
unsigned int ctr32, blocks;
int outl, buflen;
if (adin != NULL && adinlen != 0) {
inc_128(ctr);
if (!ctr_update(drbg, adin, adinlen, NULL, 0, NULL, 0))
return 0;
/* This means we reuse derived value */
if (ctr->use_df) {
adin = NULL;
adinlen = 1;
}
} else {
adinlen = 0;
}
inc_128(ctr);
if (outlen == 0) {
inc_128(ctr);
if (!ctr_update(drbg, adin, adinlen, NULL, 0, NULL, 0))
return 0;
return 1;
}
memset(out, 0, outlen);
do {
if (!EVP_CipherInit_ex(ctr->ctx_ctr,
NULL, NULL, NULL, ctr->V, -1))
return 0;
/*-
* outlen has type size_t while EVP_CipherUpdate takes an
* int argument and thus cannot be guaranteed to process more
* than 2^31-1 bytes at a time. We process such huge generate
* requests in 2^30 byte chunks, which is the greatest multiple
* of AES block size lower than or equal to 2^31-1.
*/
buflen = outlen > (1U << 30) ? (1U << 30) : outlen;
blocks = (buflen + 15) / 16;
ctr32 = GETU32(ctr->V + 12) + blocks;
if (ctr32 < blocks) {
/* 32-bit counter overflow into V. */
if (ctr32 != 0) {
blocks -= ctr32;
buflen = blocks * 16;
ctr32 = 0;
}
ctr96_inc(ctr->V);
}
PUTU32(ctr->V + 12, ctr32);
if (!EVP_CipherUpdate(ctr->ctx_ctr, out, &outl, out, buflen)
|| outl != buflen)
return 0;
out += buflen;
outlen -= buflen;
} while (outlen);
if (!ctr_update(drbg, adin, adinlen, NULL, 0, NULL, 0))
return 0;
return 1;
}
static int drbg_ctr_generate_wrapper
(void *vdrbg, unsigned char *out, size_t outlen,
unsigned int strength, int prediction_resistance,
const unsigned char *adin, size_t adin_len)
{
PROV_DRBG *drbg = (PROV_DRBG *)vdrbg;
return ossl_prov_drbg_generate(drbg, out, outlen, strength,
prediction_resistance, adin, adin_len);
}
static int drbg_ctr_uninstantiate(PROV_DRBG *drbg)
{
PROV_DRBG_CTR *ctr = (PROV_DRBG_CTR *)drbg->data;
OPENSSL_cleanse(ctr->K, sizeof(ctr->K));
OPENSSL_cleanse(ctr->V, sizeof(ctr->V));
OPENSSL_cleanse(ctr->bltmp, sizeof(ctr->bltmp));
OPENSSL_cleanse(ctr->KX, sizeof(ctr->KX));
ctr->bltmp_pos = 0;
return ossl_prov_drbg_uninstantiate(drbg);
}
static int drbg_ctr_uninstantiate_wrapper(void *vdrbg)
{
return drbg_ctr_uninstantiate((PROV_DRBG *)vdrbg);
}
static int drbg_ctr_verify_zeroization(void *vdrbg)
{
PROV_DRBG *drbg = (PROV_DRBG *)vdrbg;
PROV_DRBG_CTR *ctr = (PROV_DRBG_CTR *)drbg->data;
PROV_DRBG_VERYIFY_ZEROIZATION(ctr->K);
PROV_DRBG_VERYIFY_ZEROIZATION(ctr->V);
PROV_DRBG_VERYIFY_ZEROIZATION(ctr->bltmp);
PROV_DRBG_VERYIFY_ZEROIZATION(ctr->KX);
if (ctr->bltmp_pos != 0)
return 0;
return 1;
}
static int drbg_ctr_init_lengths(PROV_DRBG *drbg)
{
PROV_DRBG_CTR *ctr = (PROV_DRBG_CTR *)drbg->data;
int res = 1;
/* Maximum number of bits per request = 2^19 = 2^16 bytes */
drbg->max_request = 1 << 16;
if (ctr->use_df) {
drbg->min_entropylen = 0;
drbg->max_entropylen = DRBG_MAX_LENGTH;
drbg->min_noncelen = 0;
drbg->max_noncelen = DRBG_MAX_LENGTH;
drbg->max_perslen = DRBG_MAX_LENGTH;
drbg->max_adinlen = DRBG_MAX_LENGTH;
if (ctr->keylen > 0) {
drbg->min_entropylen = ctr->keylen;
drbg->min_noncelen = drbg->min_entropylen / 2;
}
} else {
const size_t len = ctr->keylen > 0 ? drbg->seedlen : DRBG_MAX_LENGTH;
drbg->min_entropylen = len;
drbg->max_entropylen = len;
/* Nonce not used */
drbg->min_noncelen = 0;
drbg->max_noncelen = 0;
drbg->max_perslen = len;
drbg->max_adinlen = len;
}
return res;
}
static int drbg_ctr_init(PROV_DRBG *drbg)
{
PROV_DRBG_CTR *ctr = (PROV_DRBG_CTR *)drbg->data;
size_t keylen;
if (ctr->cipher_ctr == NULL) {
ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_CIPHER);
return 0;
}
ctr->keylen = keylen = EVP_CIPHER_get_key_length(ctr->cipher_ctr);
if (ctr->ctx_ecb == NULL)
ctr->ctx_ecb = EVP_CIPHER_CTX_new();
if (ctr->ctx_ctr == NULL)
ctr->ctx_ctr = EVP_CIPHER_CTX_new();
if (ctr->ctx_ecb == NULL || ctr->ctx_ctr == NULL) {
ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE);
goto err;
}
if (!EVP_CipherInit_ex(ctr->ctx_ecb,
ctr->cipher_ecb, NULL, NULL, NULL, 1)
|| !EVP_CipherInit_ex(ctr->ctx_ctr,
ctr->cipher_ctr, NULL, NULL, NULL, 1)) {
ERR_raise(ERR_LIB_PROV, PROV_R_UNABLE_TO_INITIALISE_CIPHERS);
goto err;
}
drbg->strength = keylen * 8;
drbg->seedlen = keylen + 16;
if (ctr->use_df) {
/* df initialisation */
static const unsigned char df_key[32] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f
};
if (ctr->ctx_df == NULL)
ctr->ctx_df = EVP_CIPHER_CTX_new();
if (ctr->ctx_df == NULL) {
ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE);
goto err;
}
/* Set key schedule for df_key */
if (!EVP_CipherInit_ex(ctr->ctx_df,
ctr->cipher_ecb, NULL, df_key, NULL, 1)) {
ERR_raise(ERR_LIB_PROV, PROV_R_DERIVATION_FUNCTION_INIT_FAILED);
goto err;
}
}
return drbg_ctr_init_lengths(drbg);
err:
EVP_CIPHER_CTX_free(ctr->ctx_ecb);
EVP_CIPHER_CTX_free(ctr->ctx_ctr);
ctr->ctx_ecb = ctr->ctx_ctr = NULL;
return 0;
}
static int drbg_ctr_new(PROV_DRBG *drbg)
{
PROV_DRBG_CTR *ctr;
ctr = OPENSSL_secure_zalloc(sizeof(*ctr));
if (ctr == NULL) {
ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE);
return 0;
}
ctr->use_df = 1;
drbg->data = ctr;
return drbg_ctr_init_lengths(drbg);
}
static void *drbg_ctr_new_wrapper(void *provctx, void *parent,
const OSSL_DISPATCH *parent_dispatch)
{
return ossl_rand_drbg_new(provctx, parent, parent_dispatch,
&drbg_ctr_new, &drbg_ctr_free,
&drbg_ctr_instantiate, &drbg_ctr_uninstantiate,
&drbg_ctr_reseed, &drbg_ctr_generate);
}
static void drbg_ctr_free(void *vdrbg)
{
PROV_DRBG *drbg = (PROV_DRBG *)vdrbg;
PROV_DRBG_CTR *ctr;
if (drbg != NULL && (ctr = (PROV_DRBG_CTR *)drbg->data) != NULL) {
EVP_CIPHER_CTX_free(ctr->ctx_ecb);
EVP_CIPHER_CTX_free(ctr->ctx_ctr);
EVP_CIPHER_CTX_free(ctr->ctx_df);
EVP_CIPHER_free(ctr->cipher_ecb);
EVP_CIPHER_free(ctr->cipher_ctr);
OPENSSL_secure_clear_free(ctr, sizeof(*ctr));
}
ossl_rand_drbg_free(drbg);
}
static int drbg_ctr_get_ctx_params(void *vdrbg, OSSL_PARAM params[])
{
PROV_DRBG *drbg = (PROV_DRBG *)vdrbg;
PROV_DRBG_CTR *ctr = (PROV_DRBG_CTR *)drbg->data;
OSSL_PARAM *p;
p = OSSL_PARAM_locate(params, OSSL_DRBG_PARAM_USE_DF);
if (p != NULL && !OSSL_PARAM_set_int(p, ctr->use_df))
return 0;
p = OSSL_PARAM_locate(params, OSSL_DRBG_PARAM_CIPHER);
if (p != NULL) {
if (ctr->cipher_ctr == NULL
|| !OSSL_PARAM_set_utf8_string(p,
EVP_CIPHER_get0_name(ctr->cipher_ctr)))
return 0;
}
return ossl_drbg_get_ctx_params(drbg, params);
}
static const OSSL_PARAM *drbg_ctr_gettable_ctx_params(ossl_unused void *vctx,
ossl_unused void *provctx)
{
static const OSSL_PARAM known_gettable_ctx_params[] = {
OSSL_PARAM_utf8_string(OSSL_DRBG_PARAM_CIPHER, NULL, 0),
OSSL_PARAM_int(OSSL_DRBG_PARAM_USE_DF, NULL),
OSSL_PARAM_DRBG_GETTABLE_CTX_COMMON,
OSSL_PARAM_END
};
return known_gettable_ctx_params;
}
static int drbg_ctr_set_ctx_params(void *vctx, const OSSL_PARAM params[])
{
PROV_DRBG *ctx = (PROV_DRBG *)vctx;
PROV_DRBG_CTR *ctr = (PROV_DRBG_CTR *)ctx->data;
OSSL_LIB_CTX *libctx = PROV_LIBCTX_OF(ctx->provctx);
const OSSL_PARAM *p;
char *ecb;
const char *propquery = NULL;
int i, cipher_init = 0;
if ((p = OSSL_PARAM_locate_const(params, OSSL_DRBG_PARAM_USE_DF)) != NULL
&& OSSL_PARAM_get_int(p, &i)) {
/* FIPS errors out in the drbg_ctr_init() call later */
ctr->use_df = i != 0;
cipher_init = 1;
}
if ((p = OSSL_PARAM_locate_const(params,
OSSL_DRBG_PARAM_PROPERTIES)) != NULL) {
if (p->data_type != OSSL_PARAM_UTF8_STRING)
return 0;
propquery = (const char *)p->data;
}
if ((p = OSSL_PARAM_locate_const(params, OSSL_DRBG_PARAM_CIPHER)) != NULL) {
const char *base = (const char *)p->data;
size_t ctr_str_len = sizeof("CTR") - 1;
size_t ecb_str_len = sizeof("ECB") - 1;
if (p->data_type != OSSL_PARAM_UTF8_STRING
|| p->data_size < ctr_str_len)
return 0;
if (OPENSSL_strcasecmp("CTR", base + p->data_size - ctr_str_len) != 0) {
ERR_raise(ERR_LIB_PROV, PROV_R_REQUIRE_CTR_MODE_CIPHER);
return 0;
}
if ((ecb = OPENSSL_strndup(base, p->data_size)) == NULL) {
ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE);
return 0;
}
strcpy(ecb + p->data_size - ecb_str_len, "ECB");
EVP_CIPHER_free(ctr->cipher_ecb);
EVP_CIPHER_free(ctr->cipher_ctr);
ctr->cipher_ctr = EVP_CIPHER_fetch(libctx, base, propquery);
ctr->cipher_ecb = EVP_CIPHER_fetch(libctx, ecb, propquery);
OPENSSL_free(ecb);
if (ctr->cipher_ctr == NULL || ctr->cipher_ecb == NULL) {
ERR_raise(ERR_LIB_PROV, PROV_R_UNABLE_TO_FIND_CIPHERS);
return 0;
}
cipher_init = 1;
}
if (cipher_init && !drbg_ctr_init(ctx))
return 0;
return ossl_drbg_set_ctx_params(ctx, params);
}
static const OSSL_PARAM *drbg_ctr_settable_ctx_params(ossl_unused void *vctx,
ossl_unused void *provctx)
{
static const OSSL_PARAM known_settable_ctx_params[] = {
OSSL_PARAM_utf8_string(OSSL_DRBG_PARAM_PROPERTIES, NULL, 0),
OSSL_PARAM_utf8_string(OSSL_DRBG_PARAM_CIPHER, NULL, 0),
OSSL_PARAM_int(OSSL_DRBG_PARAM_USE_DF, NULL),
OSSL_PARAM_DRBG_SETTABLE_CTX_COMMON,
OSSL_PARAM_END
};
return known_settable_ctx_params;
}
const OSSL_DISPATCH ossl_drbg_ctr_functions[] = {
{ OSSL_FUNC_RAND_NEWCTX, (void(*)(void))drbg_ctr_new_wrapper },
{ OSSL_FUNC_RAND_FREECTX, (void(*)(void))drbg_ctr_free },
{ OSSL_FUNC_RAND_INSTANTIATE,
(void(*)(void))drbg_ctr_instantiate_wrapper },
{ OSSL_FUNC_RAND_UNINSTANTIATE,
(void(*)(void))drbg_ctr_uninstantiate_wrapper },
{ OSSL_FUNC_RAND_GENERATE, (void(*)(void))drbg_ctr_generate_wrapper },
{ OSSL_FUNC_RAND_RESEED, (void(*)(void))drbg_ctr_reseed_wrapper },
{ OSSL_FUNC_RAND_ENABLE_LOCKING, (void(*)(void))ossl_drbg_enable_locking },
{ OSSL_FUNC_RAND_LOCK, (void(*)(void))ossl_drbg_lock },
{ OSSL_FUNC_RAND_UNLOCK, (void(*)(void))ossl_drbg_unlock },
{ OSSL_FUNC_RAND_SETTABLE_CTX_PARAMS,
(void(*)(void))drbg_ctr_settable_ctx_params },
{ OSSL_FUNC_RAND_SET_CTX_PARAMS, (void(*)(void))drbg_ctr_set_ctx_params },
{ OSSL_FUNC_RAND_GETTABLE_CTX_PARAMS,
(void(*)(void))drbg_ctr_gettable_ctx_params },
{ OSSL_FUNC_RAND_GET_CTX_PARAMS, (void(*)(void))drbg_ctr_get_ctx_params },
{ OSSL_FUNC_RAND_VERIFY_ZEROIZATION,
(void(*)(void))drbg_ctr_verify_zeroization },
{ OSSL_FUNC_RAND_GET_SEED, (void(*)(void))ossl_drbg_get_seed },
{ OSSL_FUNC_RAND_CLEAR_SEED, (void(*)(void))ossl_drbg_clear_seed },
{ 0, NULL }
};
|