1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
|
/*
* Copyright 2024 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
* https://www.openssl.org/source/license.html
* or in the file LICENSE in the source distribution.
*/
/*
* Test hashtable operation.
*/
#include <limits.h>
#include <openssl/err.h>
#include <openssl/bio.h>
#include <internal/common.h>
#include <internal/hashtable.h>
#include "fuzzer.h"
/*
* Make the key space very small here to make lookups
* easy to predict for the purposes of validation
* A two byte key gives us 65536 possible entries
* so we can allocate a flat table to compare to
*/
HT_START_KEY_DEFN(fuzzer_key)
HT_DEF_KEY_FIELD(fuzzkey, uint16_t)
HT_END_KEY_DEFN(FUZZER_KEY)
#define FZ_FLAG_ALLOCATED (1 << 0)
typedef struct fuzzer_value_st {
uint64_t flags;
uint64_t value;
} FUZZER_VALUE;
IMPLEMENT_HT_VALUE_TYPE_FNS(FUZZER_VALUE, fz, static)
static size_t skipped_values = 0;
static size_t inserts = 0;
static size_t replacements = 0;
static size_t deletes = 0;
static size_t flushes = 0;
static size_t lookups = 0;
static size_t foreaches = 0;
static size_t filters = 0;
static int valfound;
static FUZZER_VALUE *prediction_table = NULL;
static HT *fuzzer_table = NULL;
/*
* Operational values
*/
#define OP_INSERT 0
#define OP_DELETE 1
#define OP_LOOKUP 2
#define OP_FLUSH 3
#define OP_FOREACH 4
#define OP_FILTER 5
#define OP_END 6
#define OP_MASK 0x3f
#define INSERT_REPLACE_MASK 0x40
#define OPERATION(x) (((x) & OP_MASK) % OP_END)
#define IS_REPLACE(x) ((x) & INSERT_REPLACE_MASK)
static int table_iterator(HT_VALUE *v, void *arg)
{
uint16_t keyval = (*(uint16_t *)arg);
FUZZER_VALUE *f = ossl_ht_fz_FUZZER_VALUE_from_value(v);
if (f != NULL && f == &prediction_table[keyval]) {
valfound = 1;
return 0;
}
return 1;
}
static int filter_iterator(HT_VALUE *v, void *arg)
{
uint16_t keyval = (*(uint16_t *)arg);
FUZZER_VALUE *f = ossl_ht_fz_FUZZER_VALUE_from_value(v);
if (f != NULL && f == &prediction_table[keyval])
return 1;
return 0;
}
static void fuzz_free_cb(HT_VALUE *v)
{
FUZZER_VALUE *f = ossl_ht_fz_FUZZER_VALUE_from_value(v);
if (f != NULL)
f->flags &= ~FZ_FLAG_ALLOCATED;
}
int FuzzerInitialize(int *argc, char ***argv)
{
HT_CONFIG fuzz_conf = {NULL, fuzz_free_cb, NULL, 0, 1};
OPENSSL_init_crypto(OPENSSL_INIT_LOAD_CRYPTO_STRINGS, NULL);
ERR_clear_error();
prediction_table = OPENSSL_zalloc(sizeof(FUZZER_VALUE) * 65537);
if (prediction_table == NULL)
return -1;
fuzzer_table = ossl_ht_new(&fuzz_conf);
if (fuzzer_table == NULL) {
OPENSSL_free(prediction_table);
return -1;
}
return 0;
}
int FuzzerTestOneInput(const uint8_t *buf, size_t len)
{
uint8_t op_flags;
uint16_t keyval;
int rc;
int rc_prediction = 1;
size_t i;
FUZZER_VALUE *valptr, *lval;
FUZZER_KEY key;
HT_VALUE *v = NULL;
HT_VALUE tv;
HT_VALUE_LIST *htvlist;
/*
* We need at least 11 bytes to be able to do anything here
* 1 byte to detect the operation to perform, 2 bytes
* for the lookup key, and 8 bytes of value
*/
if (len < 11) {
skipped_values++;
return -1;
}
/*
* parse out our operation flags and key
*/
op_flags = buf[0];
memcpy(&keyval, &buf[1], sizeof(uint16_t));
/*
* Initialize our key
*/
HT_INIT_KEY(&key);
/*
* Now do our operation
*/
switch(OPERATION(op_flags)) {
case OP_INSERT:
valptr = &prediction_table[keyval];
/* reset our key */
HT_KEY_RESET(&key);
/* set the proper key value */
HT_SET_KEY_FIELD(&key, fuzzkey, keyval);
/* lock the table */
ossl_ht_write_lock(fuzzer_table);
/*
* If the value to insert is already allocated
* then we expect a conflict in the insert
* i.e. we predict a return code of 0 instead
* of 1. On replacement, we expect it to succeed
* always
*/
if (valptr->flags & FZ_FLAG_ALLOCATED) {
if (!IS_REPLACE(op_flags))
rc_prediction = 0;
}
memcpy(&valptr->value, &buf[3], sizeof(uint64_t));
/*
* do the insert/replace
*/
if (IS_REPLACE(op_flags))
rc = ossl_ht_fz_FUZZER_VALUE_insert(fuzzer_table, TO_HT_KEY(&key),
valptr, &lval);
else
rc = ossl_ht_fz_FUZZER_VALUE_insert(fuzzer_table, TO_HT_KEY(&key),
valptr, NULL);
if (rc == -1)
/* failed to grow the hash table due to too many collisions */
break;
/*
* mark the entry as being allocated
*/
valptr->flags |= FZ_FLAG_ALLOCATED;
/*
* unlock the table
*/
ossl_ht_write_unlock(fuzzer_table);
/*
* Now check to make sure we did the right thing
*/
OPENSSL_assert(rc == rc_prediction);
/*
* successful insertion if there wasn't a conflict
*/
if (rc_prediction == 1)
IS_REPLACE(op_flags) ? replacements++ : inserts++;
break;
case OP_DELETE:
valptr = &prediction_table[keyval];
/* reset our key */
HT_KEY_RESET(&key);
/* set the proper key value */
HT_SET_KEY_FIELD(&key, fuzzkey, keyval);
/* lock the table */
ossl_ht_write_lock(fuzzer_table);
/*
* If the value to delete is not already allocated
* then we expect a miss in the delete
* i.e. we predict a return code of 0 instead
* of 1
*/
if (!(valptr->flags & FZ_FLAG_ALLOCATED))
rc_prediction = 0;
/*
* do the delete
*/
rc = ossl_ht_delete(fuzzer_table, TO_HT_KEY(&key));
/*
* unlock the table
*/
ossl_ht_write_unlock(fuzzer_table);
/*
* Now check to make sure we did the right thing
*/
OPENSSL_assert(rc == rc_prediction);
/*
* once the unlock is done, the table rcu will have synced
* meaning the free function has run, so we can confirm now
* that the valptr is no longer allocated
*/
OPENSSL_assert(!(valptr->flags & FZ_FLAG_ALLOCATED));
/*
* successful deletion if there wasn't a conflict
*/
if (rc_prediction == 1)
deletes++;
break;
case OP_LOOKUP:
valptr = &prediction_table[keyval];
lval = NULL;
/* reset our key */
HT_KEY_RESET(&key);
/* set the proper key value */
HT_SET_KEY_FIELD(&key, fuzzkey, keyval);
/* lock the table for reading */
ossl_ht_read_lock(fuzzer_table);
/*
* If the value to find is not already allocated
* then we expect a miss in the lookup
* i.e. we predict a return code of NULL instead
* of a pointer
*/
if (!(valptr->flags & FZ_FLAG_ALLOCATED))
valptr = NULL;
/*
* do the lookup
*/
lval = ossl_ht_fz_FUZZER_VALUE_get(fuzzer_table, TO_HT_KEY(&key), &v);
/*
* unlock the table
*/
ossl_ht_read_unlock(fuzzer_table);
/*
* Now check to make sure we did the right thing
*/
OPENSSL_assert(lval == valptr);
/*
* if we expect a positive lookup, make sure that
* we can use the _type and to_value functions
*/
if (valptr != NULL) {
OPENSSL_assert(ossl_ht_fz_FUZZER_VALUE_type(v) == 1);
v = ossl_ht_fz_FUZZER_VALUE_to_value(lval, &tv);
OPENSSL_assert(v->value == lval);
}
/*
* successful lookup if we didn't expect a miss
*/
if (valptr != NULL)
lookups++;
break;
case OP_FLUSH:
/*
* only flush the table rarely
*/
if ((flushes % 100000) != 1) {
skipped_values++;
flushes++;
return 0;
}
/*
* lock the table
*/
ossl_ht_write_lock(fuzzer_table);
ossl_ht_flush(fuzzer_table);
ossl_ht_write_unlock(fuzzer_table);
/*
* now check to make sure everything is free
*/
for (i = 0; i < USHRT_MAX; i++)
OPENSSL_assert((prediction_table[i].flags & FZ_FLAG_ALLOCATED) == 0);
/* good flush */
flushes++;
break;
case OP_FOREACH:
valfound = 0;
valptr = &prediction_table[keyval];
rc_prediction = 0;
if (valptr->flags & FZ_FLAG_ALLOCATED)
rc_prediction = 1;
ossl_ht_foreach_until(fuzzer_table, table_iterator, &keyval);
OPENSSL_assert(valfound == rc_prediction);
foreaches++;
break;
case OP_FILTER:
valptr = &prediction_table[keyval];
rc_prediction = 0;
if (valptr->flags & FZ_FLAG_ALLOCATED)
rc_prediction = 1;
htvlist = ossl_ht_filter(fuzzer_table, 1, filter_iterator, &keyval);
OPENSSL_assert(htvlist->list_len == (size_t)rc_prediction);
ossl_ht_value_list_free(htvlist);
filters++;
break;
default:
return -1;
}
return 0;
}
void FuzzerCleanup(void)
{
ossl_ht_free(fuzzer_table);
OPENSSL_free(prediction_table);
OPENSSL_cleanup();
}
|