1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
|
/*
* Copyright 2025 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
* https://www.openssl.org/source/license.html
* or in the file LICENSE in the source distribution.
*/
/* Test ML-DSA operation. */
#include <string.h>
#include <openssl/evp.h>
#include <openssl/err.h>
#include <openssl/rand.h>
#include <openssl/byteorder.h>
#include "internal/nelem.h"
#include "fuzzer.h"
#include "crypto/ml_dsa.h"
/**
* @brief Consumes an 8-bit unsigned integer from a buffer.
*
* This function extracts an 8-bit unsigned integer from the provided buffer,
* updates the buffer pointer, and adjusts the remaining length.
*
* @param buf Pointer to the input buffer.
* @param len Pointer to the size of the remaining buffer; updated after consumption.
* @param val Pointer to store the extracted 8-bit value.
*
* @return Pointer to the updated buffer position after reading the value,
* or NULL if the buffer does not contain enough data.
*/
static uint8_t *consume_uint8_t(const uint8_t *buf, size_t *len, uint8_t *val)
{
if (*len < sizeof(uint8_t))
return NULL;
*val = *buf;
*len -= sizeof(uint8_t);
return (uint8_t *)buf + 1;
}
/**
* @brief Consumes a size_t from a buffer.
*
* This function extracts a size_t from the provided buffer, updates the buffer
* pointer, and adjusts the remaining length.
*
* @param buf Pointer to the input buffer.
* @param len Pointer to the size of the remaining buffer; updated after consumption.
* @param val Pointer to store the extracted size_t value.
*
* @return Pointer to the updated buffer position after reading the value,
* or NULL if the buffer does not contain enough data.
*/
static uint8_t *consume_size_t(const uint8_t *buf, size_t *len, size_t *val)
{
if (*len < sizeof(size_t))
return NULL;
*val = *buf;
*len -= sizeof(size_t);
return (uint8_t *)buf + sizeof(size_t);
}
/**
* @brief Selects a key type and size from a buffer.
*
* This function reads a key size value from the buffer, determines the
* corresponding key type and length, and updates the buffer pointer
* accordingly. If `only_valid` is set, it restricts selection to valid key
* sizes; otherwise, it includes some invalid sizes for testing.
*
* @param buf Pointer to the buffer pointer; updated after reading.
* @param len Pointer to the remaining buffer size; updated accordingly.
* @param keytype Pointer to store the selected key type string.
* @param keylen Pointer to store the selected key length.
* @param only_valid Flag to restrict selection to valid key sizes.
*
* @return 1 if a key type is successfully selected, 0 on failure.
*/
static int select_keytype_and_size(uint8_t **buf, size_t *len,
char **keytype, size_t *keylen,
int only_valid)
{
uint16_t keysize;
uint16_t modulus = 6;
/*
* Note: We don't really care about endianness here, we just want a random
* 16 bit value
*/
*buf = (uint8_t *)OPENSSL_load_u16_le(&keysize, *buf);
*len -= sizeof(uint16_t);
if (*buf == NULL)
return 0;
/*
* If `only_valid` is set, select only ML-DSA-44, ML-DSA-65, and ML-DSA-87.
* Otherwise, include some invalid sizes to trigger error paths.
*/
if (only_valid)
modulus = 3;
/*
* Note, keylens for valid values (cases 0-2) are taken based on input
* values from our unit tests
*/
switch (keysize % modulus) {
case 0:
*keytype = "ML-DSA-44";
*keylen = ML_DSA_44_PUB_LEN;
break;
case 1:
*keytype = "ML-DSA-65";
*keylen = ML_DSA_65_PUB_LEN;
break;
case 2:
*keytype = "ML-DSA-87";
*keylen = ML_DSA_87_PUB_LEN;
break;
case 3:
/* select invalid alg */
*keytype = "ML-DSA-33";
*keylen = 33;
break;
case 4:
/* Select valid alg, but bogus size */
*keytype = "ML-DSA-87";
*buf = (uint8_t *)OPENSSL_load_u16_le(&keysize, *buf);
*len -= sizeof(uint16_t);
*keylen = (size_t)keysize;
*keylen %= ML_DSA_87_PUB_LEN; /* size to our key buffer */
break;
default:
*keytype = NULL;
*keylen = 0;
break;
}
return 1;
}
/**
* @brief Creates an ML-DSA raw key from a buffer.
*
* This function selects a key type and size from the buffer, generates a random
* key of the appropriate length, and creates either a public or private ML-DSA
* key using OpenSSL's EVP_PKEY interface.
*
* @param buf Pointer to the buffer pointer; updated after reading.
* @param len Pointer to the remaining buffer size; updated accordingly.
* @param key1 Pointer to store the generated EVP_PKEY key (public or private).
* @param key2 Unused parameter (reserved for future use).
*
* @note The generated key is allocated using OpenSSL's EVP_PKEY functions
* and should be freed appropriately using `EVP_PKEY_free()`.
*/
static void create_ml_dsa_raw_key(uint8_t **buf, size_t *len,
void **key1, void **key2)
{
EVP_PKEY *pubkey;
char *keytype = NULL;
size_t keylen = 0;
/* MAX_ML_DSA_PRIV_LEN is longer of that and ML_DSA_87_PUB_LEN */
uint8_t key[MAX_ML_DSA_PRIV_LEN];
int pub = 0;
if (!select_keytype_and_size(buf, len, &keytype, &keylen, 0))
return;
/*
* Select public or private key creation based on the low order bit of the
* next buffer value.
* Note that keylen as returned from select_keytype_and_size is a public key
* length, so make the adjustment to private key lengths here.
*/
if ((*buf)[0] & 0x1) {
pub = 1;
} else {
switch (keylen) {
case (ML_DSA_44_PUB_LEN):
keylen = ML_DSA_44_PRIV_LEN;
break;
case (ML_DSA_65_PUB_LEN):
keylen = ML_DSA_65_PRIV_LEN;
break;
case (ML_DSA_87_PUB_LEN):
keylen = ML_DSA_87_PRIV_LEN;
break;
default:
return;
}
}
/*
* libfuzzer provides by default up to 4096 bit input buffers, but it's
* typically much less (between 1 and 100 bytes) so use RAND_bytes here
* instead
*/
if (!RAND_bytes(key, keylen))
return;
/*
* Try to generate either a raw public or private key using random data
* Because the input is completely random, it's effectively certain this
* operation will fail, but it will still exercise the code paths below,
* which is what we want the fuzzer to do
*/
if (pub == 1)
pubkey = EVP_PKEY_new_raw_public_key_ex(NULL, keytype, NULL, key, keylen);
else
pubkey = EVP_PKEY_new_raw_private_key_ex(NULL, keytype, NULL, key, keylen);
*key1 = pubkey;
return;
}
static int keygen_ml_dsa_real_key_helper(uint8_t **buf, size_t *len,
EVP_PKEY **key)
{
char *keytype = NULL;
size_t keylen = 0;
EVP_PKEY_CTX *ctx = NULL;
int ret = 0;
/*
* Only generate valid key types and lengths. Note, no adjustment is made to
* keylen here, as the provider is responsible for selecting the keys and
* sizes for us during the EVP_PKEY_keygen call
*/
if (!select_keytype_and_size(buf, len, &keytype, &keylen, 1))
goto err;
ctx = EVP_PKEY_CTX_new_from_name(NULL, keytype, NULL);
if (!ctx) {
fprintf(stderr, "Failed to generate ctx\n");
goto err;
}
if (!EVP_PKEY_keygen_init(ctx)) {
fprintf(stderr, "Failed to init keygen ctx\n");
goto err;
}
*key = EVP_PKEY_new();
if (*key == NULL)
goto err;
if (!EVP_PKEY_generate(ctx, key)) {
fprintf(stderr, "Failed to generate new real key\n");
goto err;
}
ret = 1;
err:
EVP_PKEY_CTX_free(ctx);
return ret;
}
/**
* @brief Generates a valid ML-DSA key using OpenSSL.
*
* This function selects a valid ML-DSA key type and size from the buffer,
* initializes an OpenSSL EVP_PKEY context, and generates a cryptographic key
* accordingly.
*
* @param buf Pointer to the buffer pointer; updated after reading.
* @param len Pointer to the remaining buffer size; updated accordingly.
* @param key1 Pointer to store the first generated EVP_PKEY key.
* @param key2 Pointer to store the second generated EVP_PKEY key.
*
* @note The generated key is allocated using OpenSSL's EVP_PKEY functions
* and should be freed using `EVP_PKEY_free()`.
*/
static void keygen_ml_dsa_real_key(uint8_t **buf, size_t *len,
void **key1, void **key2)
{
if (!keygen_ml_dsa_real_key_helper(buf, len, (EVP_PKEY **)key1)
|| !keygen_ml_dsa_real_key_helper(buf, len, (EVP_PKEY **)key2))
fprintf(stderr, "Unable to generate valid keys");
}
/**
* @brief Performs key sign and verify using an EVP_PKEY.
*
* This function generates a random key, signs random data using the provided
* public key, then verifies it. It makes use of OpenSSL's EVP_PKEY API for
* encryption and decryption.
*
* @param[out] buf Unused output buffer (reserved for future use).
* @param[out] len Unused length parameter (reserved for future use).
* @param[in] key1 Pointer to an EVP_PKEY structure used for key operations.
* @param[in] in2 Unused input parameter (reserved for future use).
* @param[out] out1 Unused output parameter (reserved for future use).
* @param[out] out2 Unused output parameter (reserved for future use).
*/
static void ml_dsa_sign_verify(uint8_t **buf, size_t *len, void *key1,
void *in2, void **out1, void **out2)
{
EVP_PKEY *key = (EVP_PKEY *)key1;
EVP_PKEY_CTX *ctx = EVP_PKEY_CTX_new_from_pkey(NULL, key, NULL);
EVP_SIGNATURE *sig_alg = NULL;
unsigned char *sig = NULL;
size_t sig_len = 0, tbslen;
unsigned char *tbs = NULL;
/* Ownership of alg is retained by the pkey object */
const char *alg = EVP_PKEY_get0_type_name(key);
const OSSL_PARAM params[] = {
OSSL_PARAM_octet_string("context-string",
(unsigned char *)"A context string", 16),
OSSL_PARAM_END
};
if (!consume_size_t(*buf, len, &tbslen)) {
fprintf(stderr, "Failed to set tbslen");
goto err;
}
/* Keep tbslen within a reasonable value we can malloc */
tbslen = (tbslen % 2048) + 1;
if ((tbs = OPENSSL_malloc(tbslen)) == NULL
|| ctx == NULL || alg == NULL
|| !RAND_bytes_ex(NULL, tbs, tbslen, 0)) {
fprintf(stderr, "Failed basic initialization\n");
goto err;
}
/*
* Because ML-DSA is fundamentally a one-shot algorithm like "pure" Ed25519
* and Ed448, we don't have any immediate plans to implement intermediate
* sign/verify functions. Therefore, we only test the one-shot functions.
*/
if ((sig_alg = EVP_SIGNATURE_fetch(NULL, alg, NULL)) == NULL
|| EVP_PKEY_sign_message_init(ctx, sig_alg, params) <= 0
|| EVP_PKEY_sign(ctx, NULL, &sig_len, tbs, tbslen) <= 0
|| (sig = OPENSSL_zalloc(sig_len)) == NULL
|| EVP_PKEY_sign(ctx, sig, &sig_len, tbs, tbslen) <= 0) {
fprintf(stderr, "Failed to sign message\n");
goto err;
}
/* Verify signature */
EVP_PKEY_CTX_free(ctx);
ctx = NULL;
if ((ctx = EVP_PKEY_CTX_new_from_pkey(NULL, key, NULL)) == NULL
|| EVP_PKEY_verify_message_init(ctx, sig_alg, params) <= 0
|| EVP_PKEY_verify(ctx, sig, sig_len, tbs, tbslen) <= 0) {
fprintf(stderr, "Failed to verify message\n");
goto err;
}
err:
OPENSSL_free(tbs);
EVP_PKEY_CTX_free(ctx);
EVP_SIGNATURE_free(sig_alg);
OPENSSL_free(sig);
return;
}
/**
* @brief Performs key sign and verify using an EVP_PKEY.
*
* This function generates a random key, signs random data using the provided
* public key, then verifies it. It makes use of OpenSSL's EVP_PKEY API for
* encryption and decryption.
*
* @param[out] buf Unused output buffer (reserved for future use).
* @param[out] len Unused length parameter (reserved for future use).
* @param[in] key1 Pointer to an EVP_PKEY structure used for key operations.
* @param[in] in2 Unused input parameter (reserved for future use).
* @param[out] out1 Unused output parameter (reserved for future use).
* @param[out] out2 Unused output parameter (reserved for future use).
*/
static void ml_dsa_digest_sign_verify(uint8_t **buf, size_t *len, void *key1,
void *in2, void **out1, void **out2)
{
EVP_PKEY *key = (EVP_PKEY *)key1;
EVP_MD_CTX *ctx = EVP_MD_CTX_new();
EVP_SIGNATURE *sig_alg = NULL;
unsigned char *sig = NULL;
size_t sig_len, tbslen;
unsigned char *tbs = NULL;
const OSSL_PARAM params[] = {
OSSL_PARAM_octet_string("context-string",
(unsigned char *)"A context string", 16),
OSSL_PARAM_END
};
if (!consume_size_t(*buf, len, &tbslen)) {
fprintf(stderr, "Failed to set tbslen");
goto err;
}
/* Keep tbslen within a reasonable value we can malloc */
tbslen = (tbslen % 2048) + 1;
if ((tbs = OPENSSL_malloc(tbslen)) == NULL
|| ctx == NULL
|| !RAND_bytes_ex(NULL, tbs, tbslen, 0)) {
fprintf(stderr, "Failed basic initialization\n");
goto err;
}
/*
* Because ML-DSA is fundamentally a one-shot algorithm like "pure" Ed25519
* and Ed448, we don't have any immediate plans to implement intermediate
* sign/verify functions. Therefore, we only test the one-shot functions.
*/
if (!EVP_DigestSignInit_ex(ctx, NULL, NULL, NULL, "?fips=true", key, params)
|| EVP_DigestSign(ctx, NULL, &sig_len, tbs, tbslen) <= 0
|| (sig = OPENSSL_malloc(sig_len)) == NULL
|| EVP_DigestSign(ctx, sig, &sig_len, tbs, tbslen) <= 0) {
fprintf(stderr, "Failed to sign digest with EVP_DigestSign\n");
goto err;
}
/* Verify signature */
EVP_MD_CTX_free(ctx);
ctx = NULL;
if ((ctx = EVP_MD_CTX_new()) == NULL
|| EVP_DigestVerifyInit_ex(ctx, NULL, NULL, NULL, "?fips=true", key,
params) <= 0
|| EVP_DigestVerify(ctx, sig, sig_len, tbs, tbslen) <= 0) {
fprintf(stderr, "Failed to verify digest with EVP_DigestVerify\n");
goto err;
}
err:
OPENSSL_free(tbs);
EVP_MD_CTX_free(ctx);
EVP_SIGNATURE_free(sig_alg);
OPENSSL_free(sig);
return;
}
/**
* @brief Exports and imports an ML-DSA key.
*
* This function extracts key material from the given key (`key1`), exports it
* as parameters, and then attempts to reconstruct a new key from those
* parameters. It uses OpenSSL's `EVP_PKEY_todata()` and `EVP_PKEY_fromdata()`
* functions for this process.
*
* @param[out] buf Unused output buffer (reserved for future use).
* @param[out] len Unused output length (reserved for future use).
* @param[in] key1 The key to be exported and imported.
* @param[in] key2 Unused input key (reserved for future use).
* @param[out] out1 Unused output parameter (reserved for future use).
* @param[out] out2 Unused output parameter (reserved for future use).
*
* @note If any step in the export-import process fails, the function
* logs an error and cleans up allocated resources.
*/
static void ml_dsa_export_import(uint8_t **buf, size_t *len, void *key1,
void *key2, void **out1, void **out2)
{
EVP_PKEY *alice = (EVP_PKEY *)key1;
EVP_PKEY *new_key = NULL;
EVP_PKEY_CTX *ctx = NULL;
OSSL_PARAM *params = NULL;
if (!EVP_PKEY_todata(alice, EVP_PKEY_KEYPAIR, ¶ms)) {
fprintf(stderr, "Failed todata\n");
goto err;
}
ctx = EVP_PKEY_CTX_new_from_pkey(NULL, alice, NULL);
if (ctx == NULL) {
fprintf(stderr, "Failed new ctx\n");
goto err;
}
if (!EVP_PKEY_fromdata(ctx, &new_key, EVP_PKEY_KEYPAIR, params)) {
fprintf(stderr, "Failed fromdata\n");
goto err;
}
err:
EVP_PKEY_CTX_free(ctx);
EVP_PKEY_free(new_key);
OSSL_PARAM_free(params);
}
/**
* @brief Compares two cryptographic keys and performs equality checks.
*
* This function takes in two cryptographic keys, casts them to `EVP_PKEY`
* structures, and checks their equality using `EVP_PKEY_eq()`. The purpose of
* `buf`, `len`, `out1`, and `out2` parameters is not clear from the function's
* current implementation.
*
* @param buf Unused parameter (purpose unclear).
* @param len Unused parameter (purpose unclear).
* @param key1 First key, expected to be an `EVP_PKEY *`.
* @param key2 Second key, expected to be an `EVP_PKEY *`.
* @param out1 Unused parameter (purpose unclear).
* @param out2 Unused parameter (purpose unclear).
*/
static void ml_dsa_compare(uint8_t **buf, size_t *len, void *key1,
void *key2, void **out1, void **out2)
{
EVP_PKEY *alice = (EVP_PKEY *)key1;
EVP_PKEY *bob = (EVP_PKEY *)key2;
EVP_PKEY_eq(alice, alice);
EVP_PKEY_eq(alice, bob);
}
/**
* @brief Frees allocated ML-DSA keys.
*
* This function releases memory associated with up to four EVP_PKEY objects by
* calling `EVP_PKEY_free()` on each provided key.
*
* @param key1 Pointer to the first key to be freed.
* @param key2 Pointer to the second key to be freed.
* @param key3 Pointer to the third key to be freed.
* @param key4 Pointer to the fourth key to be freed.
*
* @note This function assumes that each key is either a valid EVP_PKEY
* object or NULL. Passing NULL is safe and has no effect.
*/
static void cleanup_ml_dsa_keys(void *key1, void *key2,
void *key3, void *key4)
{
EVP_PKEY_free((EVP_PKEY *)key1);
EVP_PKEY_free((EVP_PKEY *)key2);
EVP_PKEY_free((EVP_PKEY *)key3);
EVP_PKEY_free((EVP_PKEY *)key4);
}
/**
* @brief Represents an operation table entry for cryptographic operations.
*
* This structure defines a table entry containing function pointers for setting
* up, executing, and cleaning up cryptographic operations, along with
* associated metadata such as a name and description.
*
* @struct op_table_entry
*/
struct op_table_entry {
/** Name of the operation. */
char *name;
/** Description of the operation. */
char *desc;
/**
* @brief Function pointer for setting up the operation.
*
* @param buf Pointer to the buffer pointer; may be updated.
* @param len Pointer to the remaining buffer size; may be updated.
* @param out1 Pointer to store the first output of the setup function.
* @param out2 Pointer to store the second output of the setup function.
*/
void (*setup)(uint8_t **buf, size_t *len, void **out1, void **out2);
/**
* @brief Function pointer for executing the operation.
*
* @param buf Pointer to the buffer pointer; may be updated.
* @param len Pointer to the remaining buffer size; may be updated.
* @param in1 First input parameter for the operation.
* @param in2 Second input parameter for the operation.
* @param out1 Pointer to store the first output of the operation.
* @param out2 Pointer to store the second output of the operation.
*/
void (*doit)(uint8_t **buf, size_t *len, void *in1, void *in2,
void **out1, void **out2);
/**
* @brief Function pointer for cleaning up after the operation.
*
* @param in1 First input parameter to be cleaned up.
* @param in2 Second input parameter to be cleaned up.
* @param out1 First output parameter to be cleaned up.
* @param out2 Second output parameter to be cleaned up.
*/
void (*cleanup)(void *in1, void *in2, void *out1, void *out2);
};
static struct op_table_entry ops[] = {
{
"Generate ML-DSA raw key",
"Try generate a raw keypair using random data. Usually fails",
create_ml_dsa_raw_key,
NULL,
cleanup_ml_dsa_keys
}, {
"Generate ML-DSA keypair, using EVP_PKEY_keygen",
"Generates a real ML-DSA keypair, should always work",
keygen_ml_dsa_real_key,
NULL,
cleanup_ml_dsa_keys
}, {
"Do a sign/verify operation on a key",
"Generate key, sign random data, verify it, should work",
keygen_ml_dsa_real_key,
ml_dsa_sign_verify,
cleanup_ml_dsa_keys
}, {
"Do a digest sign/verify operation on a key",
"Generate key, digest sign random data, verify it, should work",
keygen_ml_dsa_real_key,
ml_dsa_digest_sign_verify,
cleanup_ml_dsa_keys
}, {
"Do an export/import of key data",
"Exercise EVP_PKEY_todata/fromdata",
keygen_ml_dsa_real_key,
ml_dsa_export_import,
cleanup_ml_dsa_keys
}, {
"Compare keys for equality",
"Compare key1/key1 and key1/key2 for equality",
keygen_ml_dsa_real_key,
ml_dsa_compare,
cleanup_ml_dsa_keys
}
};
int FuzzerInitialize(int *argc, char ***argv)
{
return 0;
}
/**
* @brief Processes a fuzzing input by selecting and executing an operation.
*
* This function interprets the first byte of the input buffer to determine an
* operation to execute. It then follows a setup, execution, and cleanup
* sequence based on the selected operation.
*
* @param buf Pointer to the input buffer.
* @param len Length of the input buffer.
*
* @return 0 on successful execution, -1 if the input is too short.
*
* @note The function requires at least 32 bytes in the buffer to proceed.
* It utilizes the `ops` operation table to dynamically determine and
* execute the selected operation.
*/
int FuzzerTestOneInput(const uint8_t *buf, size_t len)
{
uint8_t operation;
uint8_t *buffer_cursor;
void *in1 = NULL, *in2 = NULL;
void *out1 = NULL, *out2 = NULL;
if (len < 32)
return -1;
/* Get the first byte of the buffer to tell us what operation to perform */
buffer_cursor = consume_uint8_t(buf, &len, &operation);
if (buffer_cursor == NULL)
return -1;
/* Adjust for operational array size */
operation %= OSSL_NELEM(ops);
/* And run our setup/doit/cleanup sequence */
if (ops[operation].setup != NULL)
ops[operation].setup(&buffer_cursor, &len, &in1, &in2);
if (ops[operation].doit != NULL)
ops[operation].doit(&buffer_cursor, &len, in1, in2, &out1, &out2);
if (ops[operation].cleanup != NULL)
ops[operation].cleanup(in1, in2, out1, out2);
return 0;
}
void FuzzerCleanup(void)
{
OPENSSL_cleanup();
}
|