1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
|
/*
* Copyright 2018-2025 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <openssl/evp.h>
#include <openssl/core_names.h>
#include <openssl/rand.h>
#include "../../ssl_local.h"
#include "../record_local.h"
#include "recmethod_local.h"
#include "internal/ktls.h"
static struct record_functions_st ossl_ktls_funcs;
#if defined(__FreeBSD__)
# include "crypto/cryptodev.h"
/*-
* Check if a given cipher is supported by the KTLS interface.
* The kernel might still fail the setsockopt() if no suitable
* provider is found, but this checks if the socket option
* supports the cipher suite used at all.
*/
static int ktls_int_check_supported_cipher(OSSL_RECORD_LAYER *rl,
const EVP_CIPHER *c,
const EVP_MD *md,
size_t taglen)
{
switch (rl->version) {
case TLS1_VERSION:
case TLS1_1_VERSION:
case TLS1_2_VERSION:
#ifdef OPENSSL_KTLS_TLS13
case TLS1_3_VERSION:
#endif
break;
default:
return 0;
}
if (EVP_CIPHER_is_a(c, "AES-128-GCM")
|| EVP_CIPHER_is_a(c, "AES-256-GCM")
# ifdef OPENSSL_KTLS_CHACHA20_POLY1305
|| EVP_CIPHER_is_a(c, "CHACHA20-POLY1305")
# endif
)
return 1;
if (!EVP_CIPHER_is_a(c, "AES-128-CBC")
&& !EVP_CIPHER_is_a(c, "AES-256-CBC"))
return 0;
if (rl->use_etm)
return 0;
if (md == NULL)
return 0;
if (EVP_MD_is_a(md, "SHA1")
|| EVP_MD_is_a(md, "SHA2-256")
|| EVP_MD_is_a(md, "SHA2-384"))
return 1;
return 0;
}
/* Function to configure kernel TLS structure */
static
int ktls_configure_crypto(OSSL_LIB_CTX *libctx, int version, const EVP_CIPHER *c,
EVP_MD *md, void *rl_sequence,
ktls_crypto_info_t *crypto_info, int is_tx,
unsigned char *iv, size_t ivlen,
unsigned char *key, size_t keylen,
unsigned char *mac_key, size_t mac_secret_size)
{
memset(crypto_info, 0, sizeof(*crypto_info));
if (EVP_CIPHER_is_a(c, "AES-128-GCM")
|| EVP_CIPHER_is_a(c, "AES-256-GCM")) {
crypto_info->cipher_algorithm = CRYPTO_AES_NIST_GCM_16;
crypto_info->iv_len = ivlen;
} else
# ifdef OPENSSL_KTLS_CHACHA20_POLY1305
if (EVP_CIPHER_is_a(c, "CHACHA20-POLY1305")) {
crypto_info->cipher_algorithm = CRYPTO_CHACHA20_POLY1305;
crypto_info->iv_len = ivlen;
} else
# endif
if (EVP_CIPHER_is_a(c, "AES-128-CBC") || EVP_CIPHER_is_a(c, "AES-256-CBC")) {
if (md == NULL)
return 0;
if (EVP_MD_is_a(md, "SHA1"))
crypto_info->auth_algorithm = CRYPTO_SHA1_HMAC;
else if (EVP_MD_is_a(md, "SHA2-256"))
crypto_info->auth_algorithm = CRYPTO_SHA2_256_HMAC;
else if (EVP_MD_is_a(md, "SHA2-384"))
crypto_info->auth_algorithm = CRYPTO_SHA2_384_HMAC;
else
return 0;
crypto_info->cipher_algorithm = CRYPTO_AES_CBC;
crypto_info->iv_len = ivlen;
crypto_info->auth_key = mac_key;
crypto_info->auth_key_len = mac_secret_size;
} else {
return 0;
}
crypto_info->cipher_key = key;
crypto_info->cipher_key_len = keylen;
crypto_info->iv = iv;
crypto_info->tls_vmajor = (version >> 8) & 0x000000ff;
crypto_info->tls_vminor = (version & 0x000000ff);
# ifdef TCP_RXTLS_ENABLE
memcpy(crypto_info->rec_seq, rl_sequence, sizeof(crypto_info->rec_seq));
# else
if (!is_tx)
return 0;
# endif
return 1;
};
#endif /* __FreeBSD__ */
#if defined(OPENSSL_SYS_LINUX)
/* Function to check supported ciphers in Linux */
static int ktls_int_check_supported_cipher(OSSL_RECORD_LAYER *rl,
const EVP_CIPHER *c,
const EVP_MD *md,
size_t taglen)
{
switch (rl->version) {
case TLS1_2_VERSION:
#ifdef OPENSSL_KTLS_TLS13
case TLS1_3_VERSION:
#endif
break;
default:
return 0;
}
/*
* Check that cipher is AES_GCM_128, AES_GCM_256, AES_CCM_128
* or Chacha20-Poly1305
*/
# ifdef OPENSSL_KTLS_AES_CCM_128
if (EVP_CIPHER_is_a(c, "AES-128-CCM")) {
if (taglen != EVP_CCM_TLS_TAG_LEN)
return 0;
return 1;
} else
# endif
if (0
# ifdef OPENSSL_KTLS_AES_GCM_128
|| EVP_CIPHER_is_a(c, "AES-128-GCM")
# endif
# ifdef OPENSSL_KTLS_AES_GCM_256
|| EVP_CIPHER_is_a(c, "AES-256-GCM")
# endif
# ifdef OPENSSL_KTLS_CHACHA20_POLY1305
|| EVP_CIPHER_is_a(c, "ChaCha20-Poly1305")
# endif
) {
return 1;
}
return 0;
}
/* Function to configure kernel TLS structure */
static
int ktls_configure_crypto(OSSL_LIB_CTX *libctx, int version, const EVP_CIPHER *c,
const EVP_MD *md, void *rl_sequence,
ktls_crypto_info_t *crypto_info, int is_tx,
unsigned char *iv, size_t ivlen,
unsigned char *key, size_t keylen,
unsigned char *mac_key, size_t mac_secret_size)
{
unsigned char geniv[EVP_GCM_TLS_EXPLICIT_IV_LEN];
unsigned char *eiv = NULL;
# ifdef OPENSSL_NO_KTLS_RX
if (!is_tx)
return 0;
# endif
if (EVP_CIPHER_get_mode(c) == EVP_CIPH_GCM_MODE
|| EVP_CIPHER_get_mode(c) == EVP_CIPH_CCM_MODE) {
if (!ossl_assert(EVP_GCM_TLS_FIXED_IV_LEN == EVP_CCM_TLS_FIXED_IV_LEN)
|| !ossl_assert(EVP_GCM_TLS_EXPLICIT_IV_LEN
== EVP_CCM_TLS_EXPLICIT_IV_LEN))
return 0;
if (version == TLS1_2_VERSION) {
if (!ossl_assert(ivlen == EVP_GCM_TLS_FIXED_IV_LEN))
return 0;
if (is_tx) {
if (RAND_bytes_ex(libctx, geniv,
EVP_GCM_TLS_EXPLICIT_IV_LEN, 0) <= 0)
return 0;
} else {
memset(geniv, 0, EVP_GCM_TLS_EXPLICIT_IV_LEN);
}
eiv = geniv;
} else {
if (!ossl_assert(ivlen == EVP_GCM_TLS_FIXED_IV_LEN
+ EVP_GCM_TLS_EXPLICIT_IV_LEN))
return 0;
eiv = iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE;
}
}
memset(crypto_info, 0, sizeof(*crypto_info));
switch (EVP_CIPHER_get_nid(c)) {
# ifdef OPENSSL_KTLS_AES_GCM_128
case NID_aes_128_gcm:
if (!ossl_assert(TLS_CIPHER_AES_GCM_128_SALT_SIZE
== EVP_GCM_TLS_FIXED_IV_LEN)
|| !ossl_assert(TLS_CIPHER_AES_GCM_128_IV_SIZE
== EVP_GCM_TLS_EXPLICIT_IV_LEN))
return 0;
crypto_info->gcm128.info.cipher_type = TLS_CIPHER_AES_GCM_128;
crypto_info->gcm128.info.version = version;
crypto_info->tls_crypto_info_len = sizeof(crypto_info->gcm128);
memcpy(crypto_info->gcm128.iv, eiv, TLS_CIPHER_AES_GCM_128_IV_SIZE);
memcpy(crypto_info->gcm128.salt, iv, TLS_CIPHER_AES_GCM_128_SALT_SIZE);
memcpy(crypto_info->gcm128.key, key, keylen);
memcpy(crypto_info->gcm128.rec_seq, rl_sequence,
TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
return 1;
# endif
# ifdef OPENSSL_KTLS_AES_GCM_256
case NID_aes_256_gcm:
if (!ossl_assert(TLS_CIPHER_AES_GCM_256_SALT_SIZE
== EVP_GCM_TLS_FIXED_IV_LEN)
|| !ossl_assert(TLS_CIPHER_AES_GCM_256_IV_SIZE
== EVP_GCM_TLS_EXPLICIT_IV_LEN))
return 0;
crypto_info->gcm256.info.cipher_type = TLS_CIPHER_AES_GCM_256;
crypto_info->gcm256.info.version = version;
crypto_info->tls_crypto_info_len = sizeof(crypto_info->gcm256);
memcpy(crypto_info->gcm256.iv, eiv, TLS_CIPHER_AES_GCM_256_IV_SIZE);
memcpy(crypto_info->gcm256.salt, iv, TLS_CIPHER_AES_GCM_256_SALT_SIZE);
memcpy(crypto_info->gcm256.key, key, keylen);
memcpy(crypto_info->gcm256.rec_seq, rl_sequence,
TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE);
return 1;
# endif
# ifdef OPENSSL_KTLS_AES_CCM_128
case NID_aes_128_ccm:
if (!ossl_assert(TLS_CIPHER_AES_CCM_128_SALT_SIZE
== EVP_CCM_TLS_FIXED_IV_LEN)
|| !ossl_assert(TLS_CIPHER_AES_CCM_128_IV_SIZE
== EVP_CCM_TLS_EXPLICIT_IV_LEN))
return 0;
crypto_info->ccm128.info.cipher_type = TLS_CIPHER_AES_CCM_128;
crypto_info->ccm128.info.version = version;
crypto_info->tls_crypto_info_len = sizeof(crypto_info->ccm128);
memcpy(crypto_info->ccm128.iv, eiv, TLS_CIPHER_AES_CCM_128_IV_SIZE);
memcpy(crypto_info->ccm128.salt, iv, TLS_CIPHER_AES_CCM_128_SALT_SIZE);
memcpy(crypto_info->ccm128.key, key, keylen);
memcpy(crypto_info->ccm128.rec_seq, rl_sequence,
TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE);
return 1;
# endif
# ifdef OPENSSL_KTLS_CHACHA20_POLY1305
case NID_chacha20_poly1305:
if (!ossl_assert(ivlen == TLS_CIPHER_CHACHA20_POLY1305_IV_SIZE))
return 0;
crypto_info->chacha20poly1305.info.cipher_type
= TLS_CIPHER_CHACHA20_POLY1305;
crypto_info->chacha20poly1305.info.version = version;
crypto_info->tls_crypto_info_len = sizeof(crypto_info->chacha20poly1305);
memcpy(crypto_info->chacha20poly1305.iv, iv, ivlen);
memcpy(crypto_info->chacha20poly1305.key, key, keylen);
memcpy(crypto_info->chacha20poly1305.rec_seq, rl_sequence,
TLS_CIPHER_CHACHA20_POLY1305_REC_SEQ_SIZE);
return 1;
# endif
default:
return 0;
}
}
#endif /* OPENSSL_SYS_LINUX */
static int ktls_set_crypto_state(OSSL_RECORD_LAYER *rl, int level,
unsigned char *key, size_t keylen,
unsigned char *iv, size_t ivlen,
unsigned char *mackey, size_t mackeylen,
const EVP_CIPHER *ciph,
size_t taglen,
int mactype,
const EVP_MD *md,
COMP_METHOD *comp)
{
ktls_crypto_info_t crypto_info;
/*
* Check if we are suitable for KTLS. If not suitable we return
* OSSL_RECORD_RETURN_NON_FATAL_ERR so that other record layers can be tried
* instead
*/
if (comp != NULL)
return OSSL_RECORD_RETURN_NON_FATAL_ERR;
/* ktls supports only the maximum fragment size */
if (rl->max_frag_len != SSL3_RT_MAX_PLAIN_LENGTH)
return OSSL_RECORD_RETURN_NON_FATAL_ERR;
/* check that cipher is supported */
if (!ktls_int_check_supported_cipher(rl, ciph, md, taglen))
return OSSL_RECORD_RETURN_NON_FATAL_ERR;
/* All future data will get encrypted by ktls. Flush the BIO or skip ktls */
if (rl->direction == OSSL_RECORD_DIRECTION_WRITE) {
if (BIO_flush(rl->bio) <= 0)
return OSSL_RECORD_RETURN_NON_FATAL_ERR;
/* KTLS does not support record padding */
if (rl->padding != NULL || rl->block_padding > 0)
return OSSL_RECORD_RETURN_NON_FATAL_ERR;
}
if (!ktls_configure_crypto(rl->libctx, rl->version, ciph, md, rl->sequence,
&crypto_info,
rl->direction == OSSL_RECORD_DIRECTION_WRITE,
iv, ivlen, key, keylen, mackey, mackeylen))
return OSSL_RECORD_RETURN_NON_FATAL_ERR;
if (!BIO_set_ktls(rl->bio, &crypto_info, rl->direction))
return OSSL_RECORD_RETURN_NON_FATAL_ERR;
if (rl->direction == OSSL_RECORD_DIRECTION_WRITE &&
(rl->options & SSL_OP_ENABLE_KTLS_TX_ZEROCOPY_SENDFILE) != 0)
/* Ignore errors. The application opts in to using the zerocopy
* optimization. If the running kernel doesn't support it, just
* continue without the optimization.
*/
BIO_set_ktls_tx_zerocopy_sendfile(rl->bio);
return OSSL_RECORD_RETURN_SUCCESS;
}
static int ktls_read_n(OSSL_RECORD_LAYER *rl, size_t n, size_t max, int extend,
int clearold, size_t *readbytes)
{
int ret;
ret = tls_default_read_n(rl, n, max, extend, clearold, readbytes);
if (ret < OSSL_RECORD_RETURN_RETRY) {
switch (errno) {
case EBADMSG:
RLAYERfatal(rl, SSL_AD_BAD_RECORD_MAC,
SSL_R_DECRYPTION_FAILED_OR_BAD_RECORD_MAC);
break;
case EMSGSIZE:
RLAYERfatal(rl, SSL_AD_RECORD_OVERFLOW,
SSL_R_PACKET_LENGTH_TOO_LONG);
break;
case EINVAL:
RLAYERfatal(rl, SSL_AD_PROTOCOL_VERSION,
SSL_R_WRONG_VERSION_NUMBER);
break;
default:
break;
}
}
return ret;
}
static int ktls_cipher(OSSL_RECORD_LAYER *rl, TLS_RL_RECORD *inrecs,
size_t n_recs, int sending, SSL_MAC_BUF *mac,
size_t macsize)
{
return 1;
}
static int ktls_validate_record_header(OSSL_RECORD_LAYER *rl, TLS_RL_RECORD *rec)
{
if (rec->rec_version != TLS1_2_VERSION) {
RLAYERfatal(rl, SSL_AD_DECODE_ERROR, SSL_R_WRONG_VERSION_NUMBER);
return 0;
}
return 1;
}
static int ktls_post_process_record(OSSL_RECORD_LAYER *rl, TLS_RL_RECORD *rec)
{
if (rl->version == TLS1_3_VERSION)
return tls13_common_post_process_record(rl, rec);
return 1;
}
static int
ktls_new_record_layer(OSSL_LIB_CTX *libctx, const char *propq, int vers,
int role, int direction, int level, uint16_t epoch,
unsigned char *secret, size_t secretlen,
unsigned char *key, size_t keylen, unsigned char *iv,
size_t ivlen, unsigned char *mackey, size_t mackeylen,
const EVP_CIPHER *ciph, size_t taglen,
int mactype,
const EVP_MD *md, COMP_METHOD *comp,
const EVP_MD *kdfdigest, BIO *prev, BIO *transport,
BIO *next, BIO_ADDR *local, BIO_ADDR *peer,
const OSSL_PARAM *settings, const OSSL_PARAM *options,
const OSSL_DISPATCH *fns, void *cbarg, void *rlarg,
OSSL_RECORD_LAYER **retrl)
{
int ret;
ret = tls_int_new_record_layer(libctx, propq, vers, role, direction, level,
ciph, taglen, md, comp, prev,
transport, next, settings,
options, fns, cbarg, retrl);
if (ret != OSSL_RECORD_RETURN_SUCCESS)
return ret;
(*retrl)->funcs = &ossl_ktls_funcs;
ret = (*retrl)->funcs->set_crypto_state(*retrl, level, key, keylen, iv,
ivlen, mackey, mackeylen, ciph,
taglen, mactype, md, comp);
if (ret != OSSL_RECORD_RETURN_SUCCESS) {
tls_free(*retrl);
*retrl = NULL;
} else {
/*
* With KTLS we always try and read as much as possible and fill the
* buffer
*/
(*retrl)->read_ahead = 1;
}
return ret;
}
static int ktls_allocate_write_buffers(OSSL_RECORD_LAYER *rl,
OSSL_RECORD_TEMPLATE *templates,
size_t numtempl, size_t *prefix)
{
if (!ossl_assert(numtempl == 1))
return 0;
/*
* We just use the end application buffer in the case of KTLS, so nothing
* to do. We pretend we set up one buffer.
*/
rl->numwpipes = 1;
return 1;
}
static int ktls_initialise_write_packets(OSSL_RECORD_LAYER *rl,
OSSL_RECORD_TEMPLATE *templates,
size_t numtempl,
OSSL_RECORD_TEMPLATE *prefixtempl,
WPACKET *pkt,
TLS_BUFFER *bufs,
size_t *wpinited)
{
TLS_BUFFER *wb;
/*
* We just use the application buffer directly and don't use any WPACKET
* structures
*/
wb = &bufs[0];
wb->type = templates[0].type;
/*
* ktls doesn't modify the buffer, but to avoid a warning we need
* to discard the const qualifier.
* This doesn't leak memory because the buffers have never been allocated
* with KTLS
*/
TLS_BUFFER_set_buf(wb, (unsigned char *)templates[0].buf);
TLS_BUFFER_set_offset(wb, 0);
TLS_BUFFER_set_app_buffer(wb, 1);
return 1;
}
static int ktls_prepare_record_header(OSSL_RECORD_LAYER *rl,
WPACKET *thispkt,
OSSL_RECORD_TEMPLATE *templ,
uint8_t rectype,
unsigned char **recdata)
{
/* The kernel writes the record header, so nothing to do */
*recdata = NULL;
return 1;
}
static int ktls_prepare_for_encryption(OSSL_RECORD_LAYER *rl,
size_t mac_size,
WPACKET *thispkt,
TLS_RL_RECORD *thiswr)
{
/* No encryption, so nothing to do */
return 1;
}
static int ktls_post_encryption_processing(OSSL_RECORD_LAYER *rl,
size_t mac_size,
OSSL_RECORD_TEMPLATE *templ,
WPACKET *thispkt,
TLS_RL_RECORD *thiswr)
{
/* The kernel does anything that is needed, so nothing to do here */
return 1;
}
static int ktls_prepare_write_bio(OSSL_RECORD_LAYER *rl, int type)
{
/*
* To prevent coalescing of control and data messages,
* such as in buffer_write, we flush the BIO
*/
if (type != SSL3_RT_APPLICATION_DATA) {
int ret, i = BIO_flush(rl->bio);
if (i <= 0) {
if (BIO_should_retry(rl->bio))
ret = OSSL_RECORD_RETURN_RETRY;
else
ret = OSSL_RECORD_RETURN_FATAL;
return ret;
}
BIO_set_ktls_ctrl_msg(rl->bio, type);
}
return OSSL_RECORD_RETURN_SUCCESS;
}
static int ktls_alloc_buffers(OSSL_RECORD_LAYER *rl)
{
/* We use the application buffer directly for writing */
if (rl->direction == OSSL_RECORD_DIRECTION_WRITE)
return 1;
return tls_alloc_buffers(rl);
}
static int ktls_free_buffers(OSSL_RECORD_LAYER *rl)
{
/* We use the application buffer directly for writing */
if (rl->direction == OSSL_RECORD_DIRECTION_WRITE)
return 1;
return tls_free_buffers(rl);
}
static struct record_functions_st ossl_ktls_funcs = {
ktls_set_crypto_state,
ktls_cipher,
NULL,
tls_default_set_protocol_version,
ktls_read_n,
tls_get_more_records,
ktls_validate_record_header,
ktls_post_process_record,
tls_get_max_records_default,
tls_write_records_default,
ktls_allocate_write_buffers,
ktls_initialise_write_packets,
NULL,
ktls_prepare_record_header,
NULL,
ktls_prepare_for_encryption,
ktls_post_encryption_processing,
ktls_prepare_write_bio
};
const OSSL_RECORD_METHOD ossl_ktls_record_method = {
ktls_new_record_layer,
tls_free,
tls_unprocessed_read_pending,
tls_processed_read_pending,
tls_app_data_pending,
tls_get_max_records,
tls_write_records,
tls_retry_write_records,
tls_read_record,
tls_release_record,
tls_get_alert_code,
tls_set1_bio,
tls_set_protocol_version,
tls_set_plain_alerts,
tls_set_first_handshake,
tls_set_max_pipelines,
NULL,
tls_get_state,
tls_set_options,
tls_get_compression,
tls_set_max_frag_len,
NULL,
tls_increment_sequence_ctr,
ktls_alloc_buffers,
ktls_free_buffers
};
|