1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
|
/*
* Copyright 2016-2025 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <stdio.h>
#include <string.h>
#include <openssl/x509.h>
#include <openssl/x509v3.h>
#include <openssl/pem.h>
#include <openssl/err.h>
#include "internal/nelem.h"
#include "testutil.h"
static const char *infile;
static int test_pathlen(void)
{
X509 *x = NULL;
BIO *b = NULL;
long pathlen;
int ret = 0;
if (!TEST_ptr(b = BIO_new_file(infile, "r"))
|| !TEST_ptr(x = PEM_read_bio_X509(b, NULL, NULL, NULL))
|| !TEST_int_eq(pathlen = X509_get_pathlen(x), 6))
goto end;
ret = 1;
end:
BIO_free(b);
X509_free(x);
return ret;
}
#ifndef OPENSSL_NO_RFC3779
static int test_asid(void)
{
ASN1_INTEGER *val1 = NULL, *val2 = NULL;
ASIdentifiers *asid1 = ASIdentifiers_new(), *asid2 = ASIdentifiers_new(),
*asid3 = ASIdentifiers_new(), *asid4 = ASIdentifiers_new();
int testresult = 0;
if (!TEST_ptr(asid1)
|| !TEST_ptr(asid2)
|| !TEST_ptr(asid3))
goto err;
if (!TEST_ptr(val1 = ASN1_INTEGER_new())
|| !TEST_true(ASN1_INTEGER_set_int64(val1, 64496)))
goto err;
if (!TEST_true(X509v3_asid_add_id_or_range(asid1, V3_ASID_ASNUM, val1, NULL)))
goto err;
val1 = NULL;
if (!TEST_ptr(val2 = ASN1_INTEGER_new())
|| !TEST_true(ASN1_INTEGER_set_int64(val2, 64497)))
goto err;
if (!TEST_true(X509v3_asid_add_id_or_range(asid2, V3_ASID_ASNUM, val2, NULL)))
goto err;
val2 = NULL;
if (!TEST_ptr(val1 = ASN1_INTEGER_new())
|| !TEST_true(ASN1_INTEGER_set_int64(val1, 64496))
|| !TEST_ptr(val2 = ASN1_INTEGER_new())
|| !TEST_true(ASN1_INTEGER_set_int64(val2, 64497)))
goto err;
/*
* Just tests V3_ASID_ASNUM for now. Could be extended at some point to also
* test V3_ASID_RDI if we think it is worth it.
*/
if (!TEST_true(X509v3_asid_add_id_or_range(asid3, V3_ASID_ASNUM, val1, val2)))
goto err;
val1 = val2 = NULL;
/* Actual subsets */
if (!TEST_true(X509v3_asid_subset(NULL, NULL))
|| !TEST_true(X509v3_asid_subset(NULL, asid1))
|| !TEST_true(X509v3_asid_subset(asid1, asid1))
|| !TEST_true(X509v3_asid_subset(asid2, asid2))
|| !TEST_true(X509v3_asid_subset(asid1, asid3))
|| !TEST_true(X509v3_asid_subset(asid2, asid3))
|| !TEST_true(X509v3_asid_subset(asid3, asid3))
|| !TEST_true(X509v3_asid_subset(asid4, asid1))
|| !TEST_true(X509v3_asid_subset(asid4, asid2))
|| !TEST_true(X509v3_asid_subset(asid4, asid3)))
goto err;
/* Not subsets */
if (!TEST_false(X509v3_asid_subset(asid1, NULL))
|| !TEST_false(X509v3_asid_subset(asid1, asid2))
|| !TEST_false(X509v3_asid_subset(asid2, asid1))
|| !TEST_false(X509v3_asid_subset(asid3, asid1))
|| !TEST_false(X509v3_asid_subset(asid3, asid2))
|| !TEST_false(X509v3_asid_subset(asid1, asid4))
|| !TEST_false(X509v3_asid_subset(asid2, asid4))
|| !TEST_false(X509v3_asid_subset(asid3, asid4)))
goto err;
testresult = 1;
err:
ASN1_INTEGER_free(val1);
ASN1_INTEGER_free(val2);
ASIdentifiers_free(asid1);
ASIdentifiers_free(asid2);
ASIdentifiers_free(asid3);
ASIdentifiers_free(asid4);
return testresult;
}
static struct ip_ranges_st {
const unsigned int afi;
const char *ip1;
const char *ip2;
int rorp;
} ranges[] = {
{ IANA_AFI_IPV4, "192.168.0.0", "192.168.0.1", IPAddressOrRange_addressPrefix},
{ IANA_AFI_IPV4, "192.168.0.0", "192.168.0.2", IPAddressOrRange_addressRange},
{ IANA_AFI_IPV4, "192.168.0.0", "192.168.0.3", IPAddressOrRange_addressPrefix},
{ IANA_AFI_IPV4, "192.168.0.0", "192.168.0.254", IPAddressOrRange_addressRange},
{ IANA_AFI_IPV4, "192.168.0.0", "192.168.0.255", IPAddressOrRange_addressPrefix},
{ IANA_AFI_IPV4, "192.168.0.1", "192.168.0.255", IPAddressOrRange_addressRange},
{ IANA_AFI_IPV4, "192.168.0.1", "192.168.0.1", IPAddressOrRange_addressPrefix},
{ IANA_AFI_IPV4, "192.168.0.0", "192.168.255.255", IPAddressOrRange_addressPrefix},
{ IANA_AFI_IPV4, "192.168.1.0", "192.168.255.255", IPAddressOrRange_addressRange},
{ IANA_AFI_IPV6, "2001:0db8::0", "2001:0db8::1", IPAddressOrRange_addressPrefix},
{ IANA_AFI_IPV6, "2001:0db8::0", "2001:0db8::2", IPAddressOrRange_addressRange},
{ IANA_AFI_IPV6, "2001:0db8::0", "2001:0db8::3", IPAddressOrRange_addressPrefix},
{ IANA_AFI_IPV6, "2001:0db8::0", "2001:0db8::fffe", IPAddressOrRange_addressRange},
{ IANA_AFI_IPV6, "2001:0db8::0", "2001:0db8::ffff", IPAddressOrRange_addressPrefix},
{ IANA_AFI_IPV6, "2001:0db8::1", "2001:0db8::ffff", IPAddressOrRange_addressRange},
{ IANA_AFI_IPV6, "2001:0db8::1", "2001:0db8::1", IPAddressOrRange_addressPrefix},
{ IANA_AFI_IPV6, "2001:0db8::0:0", "2001:0db8::ffff:ffff", IPAddressOrRange_addressPrefix},
{ IANA_AFI_IPV6, "2001:0db8::1:0", "2001:0db8::ffff:ffff", IPAddressOrRange_addressRange}
};
static int check_addr(IPAddrBlocks *addr, int type)
{
IPAddressFamily *fam;
IPAddressOrRange *aorr;
if (!TEST_int_eq(sk_IPAddressFamily_num(addr), 1))
return 0;
fam = sk_IPAddressFamily_value(addr, 0);
if (!TEST_ptr(fam))
return 0;
if (!TEST_int_eq(fam->ipAddressChoice->type, IPAddressChoice_addressesOrRanges))
return 0;
if (!TEST_int_eq(sk_IPAddressOrRange_num(fam->ipAddressChoice->u.addressesOrRanges), 1))
return 0;
aorr = sk_IPAddressOrRange_value(fam->ipAddressChoice->u.addressesOrRanges, 0);
if (!TEST_ptr(aorr))
return 0;
if (!TEST_int_eq(aorr->type, type))
return 0;
return 1;
}
static int test_addr_ranges(void)
{
IPAddrBlocks *addr = NULL;
ASN1_OCTET_STRING *ip1 = NULL, *ip2 = NULL;
size_t i;
int testresult = 0;
for (i = 0; i < OSSL_NELEM(ranges); i++) {
addr = sk_IPAddressFamily_new_null();
if (!TEST_ptr(addr))
goto end;
/*
* Has the side effect of installing the comparison function onto the
* stack.
*/
if (!TEST_true(X509v3_addr_canonize(addr)))
goto end;
ip1 = a2i_IPADDRESS(ranges[i].ip1);
if (!TEST_ptr(ip1))
goto end;
if (!TEST_true(ip1->length == 4 || ip1->length == 16))
goto end;
ip2 = a2i_IPADDRESS(ranges[i].ip2);
if (!TEST_ptr(ip2))
goto end;
if (!TEST_int_eq(ip2->length, ip1->length))
goto end;
if (!TEST_true(memcmp(ip1->data, ip2->data, ip1->length) <= 0))
goto end;
if (!TEST_true(X509v3_addr_add_range(addr, ranges[i].afi, NULL, ip1->data, ip2->data)))
goto end;
if (!TEST_true(X509v3_addr_is_canonical(addr)))
goto end;
if (!check_addr(addr, ranges[i].rorp))
goto end;
sk_IPAddressFamily_pop_free(addr, IPAddressFamily_free);
addr = NULL;
ASN1_OCTET_STRING_free(ip1);
ASN1_OCTET_STRING_free(ip2);
ip1 = ip2 = NULL;
}
testresult = 1;
end:
sk_IPAddressFamily_pop_free(addr, IPAddressFamily_free);
ASN1_OCTET_STRING_free(ip1);
ASN1_OCTET_STRING_free(ip2);
return testresult;
}
static int test_addr_fam_len(void)
{
int testresult = 0;
IPAddrBlocks *addr = NULL;
IPAddressFamily *f1 = NULL;
ASN1_OCTET_STRING *ip1 = NULL, *ip2 = NULL;
unsigned char key[6];
unsigned int keylen;
unsigned afi = IANA_AFI_IPV4;
/* Create the IPAddrBlocks with a good IPAddressFamily */
addr = sk_IPAddressFamily_new_null();
if (!TEST_ptr(addr))
goto end;
ip1 = a2i_IPADDRESS(ranges[0].ip1);
if (!TEST_ptr(ip1))
goto end;
ip2 = a2i_IPADDRESS(ranges[0].ip2);
if (!TEST_ptr(ip2))
goto end;
if (!TEST_true(X509v3_addr_add_range(addr, ranges[0].afi, NULL, ip1->data, ip2->data)))
goto end;
if (!TEST_true(X509v3_addr_is_canonical(addr)))
goto end;
/* Create our malformed IPAddressFamily */
key[0] = (afi >> 8) & 0xFF;
key[1] = afi & 0xFF;
key[2] = 0xD;
key[3] = 0xE;
key[4] = 0xA;
key[5] = 0xD;
keylen = 6;
if ((f1 = IPAddressFamily_new()) == NULL)
goto end;
if (f1->ipAddressChoice == NULL &&
(f1->ipAddressChoice = IPAddressChoice_new()) == NULL)
goto end;
if (f1->addressFamily == NULL &&
(f1->addressFamily = ASN1_OCTET_STRING_new()) == NULL)
goto end;
if (!ASN1_OCTET_STRING_set(f1->addressFamily, key, keylen))
goto end;
/* Push and transfer memory ownership to stack */
if (!sk_IPAddressFamily_push(addr, f1))
goto end;
f1 = NULL;
/* Shouldn't be able to canonize this as the len is > 3*/
if (!TEST_false(X509v3_addr_canonize(addr)))
goto end;
/* Pop and free the new stack element */
IPAddressFamily_free(sk_IPAddressFamily_pop(addr));
/* Create a well-formed IPAddressFamily */
key[0] = (afi >> 8) & 0xFF;
key[1] = afi & 0xFF;
key[2] = 0x1;
keylen = 3;
if ((f1 = IPAddressFamily_new()) == NULL)
goto end;
if (f1->ipAddressChoice == NULL &&
(f1->ipAddressChoice = IPAddressChoice_new()) == NULL)
goto end;
if (f1->addressFamily == NULL &&
(f1->addressFamily = ASN1_OCTET_STRING_new()) == NULL)
goto end;
if (!ASN1_OCTET_STRING_set(f1->addressFamily, key, keylen))
goto end;
/* Mark this as inheritance so we skip some of the is_canonize checks */
f1->ipAddressChoice->type = IPAddressChoice_inherit;
/* Push and transfer memory ownership to stack */
if (!sk_IPAddressFamily_push(addr, f1))
goto end;
f1 = NULL;
/* Should be able to canonize now */
if (!TEST_true(X509v3_addr_canonize(addr)))
goto end;
testresult = 1;
end:
/* Free stack and any memory owned by detached element */
IPAddressFamily_free(f1);
sk_IPAddressFamily_pop_free(addr, IPAddressFamily_free);
ASN1_OCTET_STRING_free(ip1);
ASN1_OCTET_STRING_free(ip2);
return testresult;
}
static struct extvalues_st {
const char *value;
int pass;
} extvalues[] = {
/* No prefix is ok */
{ "sbgp-ipAddrBlock = IPv4:192.0.0.1\n", 1 },
{ "sbgp-ipAddrBlock = IPv4:192.0.0.0/0\n", 1 },
{ "sbgp-ipAddrBlock = IPv4:192.0.0.0/1\n", 1 },
{ "sbgp-ipAddrBlock = IPv4:192.0.0.0/32\n", 1 },
/* Prefix is too long */
{ "sbgp-ipAddrBlock = IPv4:192.0.0.0/33\n", 0 },
/* Unreasonably large prefix */
{ "sbgp-ipAddrBlock = IPv4:192.0.0.0/12341234\n", 0 },
/* Invalid IP addresses */
{ "sbgp-ipAddrBlock = IPv4:192.0.0\n", 0 },
{ "sbgp-ipAddrBlock = IPv4:256.0.0.0\n", 0 },
{ "sbgp-ipAddrBlock = IPv4:-1.0.0.0\n", 0 },
{ "sbgp-ipAddrBlock = IPv4:192.0.0.0.0\n", 0 },
{ "sbgp-ipAddrBlock = IPv3:192.0.0.0\n", 0 },
/* IPv6 */
/* No prefix is ok */
{ "sbgp-ipAddrBlock = IPv6:2001:db8::\n", 1 },
{ "sbgp-ipAddrBlock = IPv6:2001::db8\n", 1 },
{ "sbgp-ipAddrBlock = IPv6:2001:0db8:0000:0000:0000:0000:0000:0000\n", 1 },
{ "sbgp-ipAddrBlock = IPv6:2001:db8::/0\n", 1 },
{ "sbgp-ipAddrBlock = IPv6:2001:db8::/1\n", 1 },
{ "sbgp-ipAddrBlock = IPv6:2001:db8::/32\n", 1 },
{ "sbgp-ipAddrBlock = IPv6:2001:0db8:0000:0000:0000:0000:0000:0000/32\n", 1 },
{ "sbgp-ipAddrBlock = IPv6:2001:db8::/128\n", 1 },
/* Prefix is too long */
{ "sbgp-ipAddrBlock = IPv6:2001:db8::/129\n", 0 },
/* Unreasonably large prefix */
{ "sbgp-ipAddrBlock = IPv6:2001:db8::/12341234\n", 0 },
/* Invalid IP addresses */
/* Not enough blocks of numbers */
{ "sbgp-ipAddrBlock = IPv6:2001:0db8:0000:0000:0000:0000:0000\n", 0 },
/* Too many blocks of numbers */
{ "sbgp-ipAddrBlock = IPv6:2001:0db8:0000:0000:0000:0000:0000:0000:0000\n", 0 },
/* First value too large */
{ "sbgp-ipAddrBlock = IPv6:1ffff:0db8:0000:0000:0000:0000:0000:0000\n", 0 },
/* First value with invalid characters */
{ "sbgp-ipAddrBlock = IPv6:fffg:0db8:0000:0000:0000:0000:0000:0000\n", 0 },
/* First value is negative */
{ "sbgp-ipAddrBlock = IPv6:-1:0db8:0000:0000:0000:0000:0000:0000\n", 0 }
};
static int test_ext_syntax(void)
{
size_t i;
int testresult = 1;
for (i = 0; i < OSSL_NELEM(extvalues); i++) {
X509V3_CTX ctx;
BIO *extbio = BIO_new_mem_buf(extvalues[i].value,
strlen(extvalues[i].value));
CONF *conf;
long eline;
if (!TEST_ptr(extbio))
return 0 ;
conf = NCONF_new_ex(NULL, NULL);
if (!TEST_ptr(conf)) {
BIO_free(extbio);
return 0;
}
if (!TEST_long_gt(NCONF_load_bio(conf, extbio, &eline), 0)) {
testresult = 0;
} else {
X509V3_set_ctx_test(&ctx);
X509V3_set_nconf(&ctx, conf);
if (extvalues[i].pass) {
if (!TEST_true(X509V3_EXT_add_nconf(conf, &ctx, "default",
NULL))) {
TEST_info("Value: %s", extvalues[i].value);
testresult = 0;
}
} else {
ERR_set_mark();
if (!TEST_false(X509V3_EXT_add_nconf(conf, &ctx, "default",
NULL))) {
testresult = 0;
TEST_info("Value: %s", extvalues[i].value);
ERR_clear_last_mark();
} else {
ERR_pop_to_mark();
}
}
}
BIO_free(extbio);
NCONF_free(conf);
}
return testresult;
}
static int test_addr_subset(void)
{
int i;
int ret = 0;
IPAddrBlocks *addrEmpty = NULL;
IPAddrBlocks *addr[3] = { NULL, NULL };
ASN1_OCTET_STRING *ip1[3] = { NULL, NULL };
ASN1_OCTET_STRING *ip2[3] = { NULL, NULL };
int sz = OSSL_NELEM(addr);
for (i = 0; i < sz; ++i) {
/* Create the IPAddrBlocks with a good IPAddressFamily */
if (!TEST_ptr(addr[i] = sk_IPAddressFamily_new_null())
|| !TEST_ptr(ip1[i] = a2i_IPADDRESS(ranges[i].ip1))
|| !TEST_ptr(ip2[i] = a2i_IPADDRESS(ranges[i].ip2))
|| !TEST_true(X509v3_addr_add_range(addr[i], ranges[i].afi, NULL,
ip1[i]->data, ip2[i]->data)))
goto end;
}
ret = TEST_ptr(addrEmpty = sk_IPAddressFamily_new_null())
&& TEST_true(X509v3_addr_subset(NULL, NULL))
&& TEST_true(X509v3_addr_subset(NULL, addr[0]))
&& TEST_true(X509v3_addr_subset(addrEmpty, addr[0]))
&& TEST_true(X509v3_addr_subset(addr[0], addr[0]))
&& TEST_true(X509v3_addr_subset(addr[0], addr[1]))
&& TEST_true(X509v3_addr_subset(addr[0], addr[2]))
&& TEST_true(X509v3_addr_subset(addr[1], addr[2]))
&& TEST_false(X509v3_addr_subset(addr[0], NULL))
&& TEST_false(X509v3_addr_subset(addr[1], addr[0]))
&& TEST_false(X509v3_addr_subset(addr[2], addr[1]))
&& TEST_false(X509v3_addr_subset(addr[0], addrEmpty));
end:
sk_IPAddressFamily_pop_free(addrEmpty, IPAddressFamily_free);
for (i = 0; i < sz; ++i) {
sk_IPAddressFamily_pop_free(addr[i], IPAddressFamily_free);
ASN1_OCTET_STRING_free(ip1[i]);
ASN1_OCTET_STRING_free(ip2[i]);
}
return ret;
}
#endif /* OPENSSL_NO_RFC3779 */
OPT_TEST_DECLARE_USAGE("cert.pem\n")
int setup_tests(void)
{
if (!test_skip_common_options()) {
TEST_error("Error parsing test options\n");
return 0;
}
if (!TEST_ptr(infile = test_get_argument(0)))
return 0;
ADD_TEST(test_pathlen);
#ifndef OPENSSL_NO_RFC3779
ADD_TEST(test_asid);
ADD_TEST(test_addr_ranges);
ADD_TEST(test_ext_syntax);
ADD_TEST(test_addr_fam_len);
ADD_TEST(test_addr_subset);
#endif /* OPENSSL_NO_RFC3779 */
return 1;
}
|