File: thread_win.c

package info (click to toggle)
openssl 3.6.0-2
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 148,104 kB
  • sloc: ansic: 612,658; perl: 248,939; asm: 6,332; sh: 1,755; pascal: 997; python: 648; makefile: 551; lisp: 35; ruby: 16; cpp: 10; sed: 6
file content (599 lines) | stat: -rw-r--r-- 18,392 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
/*
 * Copyright 2019-2025 The OpenSSL Project Authors. All Rights Reserved.
 *
 * Licensed under the Apache License 2.0 (the "License").  You may not use
 * this file except in compliance with the License.  You can obtain a copy
 * in the file LICENSE in the source distribution or at
 * https://www.openssl.org/source/license.html
 */

#include <internal/thread_arch.h>

#if defined(OPENSSL_THREADS_WINNT)
# include <process.h>
# include <windows.h>

static unsigned __stdcall thread_start_thunk(LPVOID vthread)
{
    CRYPTO_THREAD *thread;
    CRYPTO_THREAD_RETVAL ret;

    thread = (CRYPTO_THREAD *)vthread;

    thread->thread_id = GetCurrentThreadId();

    ret = thread->routine(thread->data);
    ossl_crypto_mutex_lock(thread->statelock);
    CRYPTO_THREAD_SET_STATE(thread, CRYPTO_THREAD_FINISHED);
    thread->retval = ret;
    ossl_crypto_condvar_signal(thread->condvar);
    ossl_crypto_mutex_unlock(thread->statelock);

    return 0;
}

int ossl_crypto_thread_native_spawn(CRYPTO_THREAD *thread)
{
    HANDLE *handle;

    handle = OPENSSL_zalloc(sizeof(*handle));
    if (handle == NULL)
        goto fail;

    *handle = (HANDLE)_beginthreadex(NULL, 0, &thread_start_thunk, thread, 0, NULL);
    if (*handle == NULL)
        goto fail;

    thread->handle = handle;
    return 1;

fail:
    thread->handle = NULL;
    OPENSSL_free(handle);
    return 0;
}

int ossl_crypto_thread_native_perform_join(CRYPTO_THREAD *thread, CRYPTO_THREAD_RETVAL *retval)
{
    DWORD thread_retval;
    HANDLE *handle;

    if (thread == NULL || thread->handle == NULL)
        return 0;

    handle = (HANDLE *) thread->handle;
    if (WaitForSingleObject(*handle, INFINITE) != WAIT_OBJECT_0)
        return 0;

    if (GetExitCodeThread(*handle, &thread_retval) == 0)
        return 0;

    /*
     * GetExitCodeThread call followed by this check is to make sure that
     * the thread exited properly. In particular, thread_retval may be
     * non-zero when exited via explicit ExitThread/TerminateThread or
     * if the thread is still active (returns STILL_ACTIVE (259)).
     */
    if (thread_retval != 0)
        return 0;

    if (CloseHandle(*handle) == 0)
        return 0;

    return 1;
}

int ossl_crypto_thread_native_exit(void)
{
    _endthreadex(0);
    return 1;
}

int ossl_crypto_thread_native_is_self(CRYPTO_THREAD *thread)
{
    return thread->thread_id == GetCurrentThreadId();
}

CRYPTO_MUTEX *ossl_crypto_mutex_new(void)
{
    CRITICAL_SECTION *mutex;

    if ((mutex = OPENSSL_zalloc(sizeof(*mutex))) == NULL)
        return NULL;
    InitializeCriticalSection(mutex);
    return (CRYPTO_MUTEX *)mutex;
}

void ossl_crypto_mutex_lock(CRYPTO_MUTEX *mutex)
{
    CRITICAL_SECTION *mutex_p;

    mutex_p = (CRITICAL_SECTION *)mutex;
    EnterCriticalSection(mutex_p);
}

int ossl_crypto_mutex_try_lock(CRYPTO_MUTEX *mutex)
{
    CRITICAL_SECTION *mutex_p;

    mutex_p = (CRITICAL_SECTION *)mutex;
    if (TryEnterCriticalSection(mutex_p))
        return 1;

    return 0;
}

void ossl_crypto_mutex_unlock(CRYPTO_MUTEX *mutex)
{
    CRITICAL_SECTION *mutex_p;

    mutex_p = (CRITICAL_SECTION *)mutex;
    LeaveCriticalSection(mutex_p);
}

void ossl_crypto_mutex_free(CRYPTO_MUTEX **mutex)
{
    CRITICAL_SECTION **mutex_p;

    mutex_p = (CRITICAL_SECTION **)mutex;
    if (*mutex_p != NULL)
        DeleteCriticalSection(*mutex_p);
    OPENSSL_free(*mutex_p);
    *mutex = NULL;
}

static int determine_timeout(OSSL_TIME deadline, DWORD *w_timeout_p)
{
    OSSL_TIME now, delta;
    uint64_t ms;

    if (ossl_time_is_infinite(deadline)) {
        *w_timeout_p = INFINITE;
        return 1;
    }

    now = ossl_time_now();
    delta = ossl_time_subtract(deadline, now);

    if (ossl_time_is_zero(delta))
        return 0;

    ms = ossl_time2ms(delta);

    /*
     * Amount of time we want to wait is too long for the 32-bit argument to
     * the Win32 API, so just wait as long as possible.
     */
    if (ms > (uint64_t)(INFINITE - 1))
        *w_timeout_p = INFINITE - 1;
    else
        *w_timeout_p = (DWORD)ms;

    return 1;
}

# if defined(OPENSSL_THREADS_WINNT_LEGACY)
#  include <assert.h>

/*
 * Win32, before Vista, did not have an OS-provided condition variable
 * construct. This leads to the need to construct our own condition variable
 * construct in order to support Windows XP.
 *
 * It is difficult to construct a condition variable construct using the
 * OS-provided primitives in a way that is both correct (avoiding race
 * conditions where broadcasts get lost) and fair.
 *
 * CORRECTNESS:
 *   A blocked thread is a thread which is calling wait(), between the
 *   precise instants at which the external mutex passed to wait() is
 *   unlocked and the instant at which it is relocked.
 *
 *   a)
 *     - If broadcast() is called, ALL blocked threads MUST be unblocked.
 *     - If signal() is called, at least one blocked thread MUST be unblocked.
 *
 *     (i.e.: a signal or broadcast must never get 'lost')
 *
 *   b)
 *     - If broadcast() or signal() is called, this must not cause a thread
 *       which is not blocked to return immediately from a subsequent
 *       call to wait().
 *
 * FAIRNESS:
 *   If broadcast() is called at time T1, all blocked threads must be unblocked
 *   before any thread which subsequently calls wait() at time T2 > T1 is
 *   unblocked.
 *
 *   An example of an implementation which lacks fairness is as follows:
 *
 *     t1 enters wait()
 *     t2 enters wait()
 *
 *     tZ calls broadcast()
 *
 *     t1 exits wait()
 *     t1 enters wait()
 *
 *     tZ calls broadcast()
 *
 *     t1 exits wait()
 *
 * IMPLEMENTATION:
 *
 *   The most suitable primitives available to us in Windows XP are semaphores,
 *   auto-reset events and manual-reset events. A solution based on semaphores
 *   is chosen.
 *
 *   PROBLEM. Designing a solution based on semaphores is non-trivial because,
 *   while it is easy to track the number of waiters in an interlocked data
 *   structure and then add that number to the semaphore, this does not
 *   guarantee fairness or correctness. Consider the following situation:
 *
 *     - t1 enters wait(), adding 1 to the wait counter & blocks on the semaphore
 *     - t2 enters wait(), adding 1 to the wait counter & blocks on the semaphore
 *     - tZ calls broadcast(), finds the wait counter is 2, adds 2 to the semaphore
 *
 *     - t1 exits wait()
 *     - t1 immediately reenters wait() and blocks on the semaphore
 *     - The semaphore is still positive due to also having been signalled
 *       for t2, therefore it is decremented
 *     - t1 exits wait() immediately; t2 is never woken
 *
 *   GENERATION COUNTERS. One naive solution to this is to use a generation
 *   counter. Each broadcast() invocation increments a generation counter. If
 *   the generation counter has not changed during a semaphore wait operation
 *   inside wait(), this indicates that no broadcast() call has been made in
 *   the meantime; therefore, the successful semaphore decrement must have
 *   'stolen' a wakeup from another thread which was waiting to wakeup from the
 *   prior broadcast() call but which had not yet had a chance to do so. The
 *   semaphore can then be reincremented and the wait() operation repeated.
 *
 *   However, this suffers from the obvious problem that without OS guarantees
 *   as to how semaphore readiness events are distributed amongst threads,
 *   there is no particular guarantee that the semaphore readiness event will
 *   not be immediately redistributed back to the same thread t1.
 *
 *   SOLUTION. A solution is chosen as follows. In its initial state, a
 *   condition variable can accept waiters, who wait for the semaphore
 *   normally. However, once broadcast() is called, the condition
 *   variable becomes 'closed'. Any existing blocked threads are unblocked,
 *   but any new calls to wait() will instead enter a blocking pre-wait stage.
 *   Pre-wait threads are not considered to be waiting (and the external
 *   mutex remains held). A call to wait() in pre-wait cannot progress
 *   to waiting until all threads due to be unblocked by the prior broadcast()
 *   call have returned and had a chance to execute.
 *
 *   This pre-wait does not affect a thread if it does not call wait()
 *   again until after all threads have had a chance to execute.
 *
 *   RESOURCE USAGE. Aside from an allocation for the condition variable
 *   structure, this solution uses two Win32 semaphores.
 *
 * FUTURE OPTIMISATIONS:
 *
 *   An optimised multi-generation implementation is possible at the cost of
 *   higher Win32 resource usage. Multiple 'buckets' could be defined, with
 *   usage rotating between buckets internally as buckets become closed.
 *   This would avoid the need for the prewait in more cases, depending
 *   on intensity of usage.
 *
 */
typedef struct legacy_condvar_st {
    CRYPTO_MUTEX    *int_m;       /* internal mutex */
    HANDLE          sema;         /* main wait semaphore */
    HANDLE          prewait_sema; /* prewait semaphore */
    /*
     * All of the following fields are protected by int_m.
     *
     * num_wake only ever increases by virtue of a corresponding decrease in
     * num_wait. num_wait can decrease for other reasons (for example due to a
     * wait operation timing out).
     */
    size_t          num_wait;     /* Num. threads currently blocked */
    size_t          num_wake;     /* Num. threads due to wake up */
    size_t          num_prewait;  /* Num. threads in prewait */
    size_t          gen;          /* Prewait generation */
    int             closed;       /* Is closed? */
} LEGACY_CONDVAR;

CRYPTO_CONDVAR *ossl_crypto_condvar_new(void)
{
    LEGACY_CONDVAR *cv;

    if ((cv = OPENSSL_malloc(sizeof(LEGACY_CONDVAR))) == NULL)
        return NULL;

    if ((cv->int_m = ossl_crypto_mutex_new()) == NULL) {
        OPENSSL_free(cv);
        return NULL;
    }

    if ((cv->sema = CreateSemaphoreA(NULL, 0, LONG_MAX, NULL)) == NULL) {
        ossl_crypto_mutex_free(&cv->int_m);
        OPENSSL_free(cv);
        return NULL;
    }

    if ((cv->prewait_sema = CreateSemaphoreA(NULL, 0, LONG_MAX, NULL)) == NULL) {
        CloseHandle(cv->sema);
        ossl_crypto_mutex_free(&cv->int_m);
        OPENSSL_free(cv);
        return NULL;
    }

    cv->num_wait      = 0;
    cv->num_wake      = 0;
    cv->num_prewait   = 0;
    cv->closed        = 0;

    return (CRYPTO_CONDVAR *)cv;
}

void ossl_crypto_condvar_free(CRYPTO_CONDVAR **cv_p)
{
    if (*cv_p != NULL) {
        LEGACY_CONDVAR *cv = *(LEGACY_CONDVAR **)cv_p;

        CloseHandle(cv->sema);
        CloseHandle(cv->prewait_sema);
        ossl_crypto_mutex_free(&cv->int_m);
        OPENSSL_free(cv);
    }

    *cv_p = NULL;
}

static uint32_t obj_wait(HANDLE h, OSSL_TIME deadline)
{
    DWORD timeout;

    if (!determine_timeout(deadline, &timeout))
        timeout = 1;

    return WaitForSingleObject(h, timeout);
}

void ossl_crypto_condvar_wait_timeout(CRYPTO_CONDVAR *cv_, CRYPTO_MUTEX *ext_m,
                                      OSSL_TIME deadline)
{
    LEGACY_CONDVAR *cv = (LEGACY_CONDVAR *)cv_;
    int closed, set_prewait = 0, have_orig_gen = 0;
    uint32_t rc;
    size_t orig_gen;

    /* Admission control - prewait until we can enter our actual wait phase. */
    do {
        ossl_crypto_mutex_lock(cv->int_m);

        closed = cv->closed;

        /*
         * Once prewait is over the prewait semaphore is signalled and
         * num_prewait is set to 0. Use a generation counter to track if we need
         * to remove a value we added to num_prewait when exiting (e.g. due to
         * timeout or failure of WaitForSingleObject).
         */
        if (!have_orig_gen) {
            orig_gen = cv->gen;
            have_orig_gen = 1;
        } else if (cv->gen != orig_gen) {
            set_prewait = 0;
            orig_gen = cv->gen;
        }

        if (!closed) {
            /* We can now be admitted. */
            ++cv->num_wait;
            if (set_prewait) {
                --cv->num_prewait;
                set_prewait = 0;
            }
        } else if (!set_prewait) {
            ++cv->num_prewait;
            set_prewait = 1;
        }

        ossl_crypto_mutex_unlock(cv->int_m);

        if (closed)
            if (obj_wait(cv->prewait_sema, deadline) != WAIT_OBJECT_0) {
                /*
                 * If we got WAIT_OBJECT_0 we are safe - num_prewait has been
                 * set to 0 and the semaphore has been consumed. On the other
                 * hand if we timed out, there may be a residual posting that
                 * was made just after we timed out. However in the worst case
                 * this will just cause an internal spurious wakeup here in the
                 * future, so we do not care too much about this. We treat
                 * failure and timeout cases as the same, and simply exit in
                 * this case.
                 */
                ossl_crypto_mutex_lock(cv->int_m);
                if (set_prewait && cv->gen == orig_gen)
                    --cv->num_prewait;
                ossl_crypto_mutex_unlock(cv->int_m);
                return;
            }
    } while (closed);

    /*
     * Unlock external mutex. Do not do this until we have been admitted, as we
     * must guarantee we wake if broadcast is called at any time after ext_m is
     * unlocked.
     */
    ossl_crypto_mutex_unlock(ext_m);

    for (;;) {
        /* Wait. */
        rc = obj_wait(cv->sema, deadline);

        /* Reacquire internal mutex and probe state. */
        ossl_crypto_mutex_lock(cv->int_m);

        if (cv->num_wake > 0) {
            /*
             * A wake token is available, so we can wake up. Consume the token
             * and get out of here. We don't care what WaitForSingleObject
             * returned here (e.g. if it timed out coincidentally). In the
             * latter case a signal might be left in the semaphore which causes
             * a future WaitForSingleObject call to return immediately, but in
             * this case we will just loop again.
             */
            --cv->num_wake;
            if (cv->num_wake == 0 && cv->closed) {
                /*
                 * We consumed the last wake token, so we can now open the
                 * condition variable for new admissions.
                 */
                cv->closed = 0;
                if (cv->num_prewait > 0) {
                    ReleaseSemaphore(cv->prewait_sema, (LONG)cv->num_prewait, NULL);
                    cv->num_prewait = 0;
                    ++cv->gen;
                }
            }
        } else if (rc == WAIT_OBJECT_0) {
            /*
             * We got a wakeup from the semaphore but we did not have any wake
             * tokens. This ideally does not happen, but might if during a
             * previous wait() call the semaphore is posted just after
             * WaitForSingleObject returns due to a timeout (such that the
             * num_wake > 0 case is taken above). Just spin again. (It is worth
             * noting that repeated WaitForSingleObject calls is the only method
             * documented for decrementing a Win32 semaphore, so this is
             * basically the best possible strategy.)
             */
            ossl_crypto_mutex_unlock(cv->int_m);
            continue;
        } else {
            /*
             * Assume we timed out. The WaitForSingleObject call may also have
             * failed for some other reason, which we treat as a timeout.
             */
            assert(cv->num_wait > 0);
            --cv->num_wait;
        }

        break;
    }

    ossl_crypto_mutex_unlock(cv->int_m);
    ossl_crypto_mutex_lock(ext_m);
}

void ossl_crypto_condvar_wait(CRYPTO_CONDVAR *cv, CRYPTO_MUTEX *ext_m)
{
    ossl_crypto_condvar_wait_timeout(cv, ext_m, ossl_time_infinite());
}

void ossl_crypto_condvar_broadcast(CRYPTO_CONDVAR *cv_)
{
    LEGACY_CONDVAR *cv = (LEGACY_CONDVAR *)cv_;
    size_t num_wake;

    ossl_crypto_mutex_lock(cv->int_m);

    num_wake = cv->num_wait;
    if (num_wake == 0) {
        ossl_crypto_mutex_unlock(cv->int_m);
        return;
    }

    cv->num_wake  += num_wake;
    cv->num_wait  -= num_wake;
    cv->closed     = 1;

    ossl_crypto_mutex_unlock(cv->int_m);
    ReleaseSemaphore(cv->sema, (LONG)num_wake, NULL);
}

void ossl_crypto_condvar_signal(CRYPTO_CONDVAR *cv_)
{
    LEGACY_CONDVAR *cv = (LEGACY_CONDVAR *)cv_;

    ossl_crypto_mutex_lock(cv->int_m);

    if (cv->num_wait == 0) {
        ossl_crypto_mutex_unlock(cv->int_m);
        return;
    }

    /*
     * We do not close the condition variable when merely signalling, as there
     * are no guaranteed fairness semantics here, unlike for a broadcast.
     */
    --cv->num_wait;
    ++cv->num_wake;

    ossl_crypto_mutex_unlock(cv->int_m);
    ReleaseSemaphore(cv->sema, 1, NULL);
}

# else

CRYPTO_CONDVAR *ossl_crypto_condvar_new(void)
{
    CONDITION_VARIABLE *cv_p;

    if ((cv_p = OPENSSL_zalloc(sizeof(*cv_p))) == NULL)
        return NULL;
    InitializeConditionVariable(cv_p);
    return (CRYPTO_CONDVAR *)cv_p;
}

void ossl_crypto_condvar_wait(CRYPTO_CONDVAR *cv, CRYPTO_MUTEX *mutex)
{
    CONDITION_VARIABLE *cv_p;
    CRITICAL_SECTION *mutex_p;

    cv_p = (CONDITION_VARIABLE *)cv;
    mutex_p = (CRITICAL_SECTION *)mutex;
    SleepConditionVariableCS(cv_p, mutex_p, INFINITE);
}

void ossl_crypto_condvar_wait_timeout(CRYPTO_CONDVAR *cv, CRYPTO_MUTEX *mutex,
                                      OSSL_TIME deadline)
{
    DWORD timeout;
    CONDITION_VARIABLE *cv_p = (CONDITION_VARIABLE *)cv;
    CRITICAL_SECTION *mutex_p = (CRITICAL_SECTION *)mutex;

    if (!determine_timeout(deadline, &timeout))
        timeout = 1;

    SleepConditionVariableCS(cv_p, mutex_p, timeout);
}

void ossl_crypto_condvar_broadcast(CRYPTO_CONDVAR *cv)
{
    CONDITION_VARIABLE *cv_p;

    cv_p = (CONDITION_VARIABLE *)cv;
    WakeAllConditionVariable(cv_p);
}

void ossl_crypto_condvar_signal(CRYPTO_CONDVAR *cv)
{
    CONDITION_VARIABLE *cv_p;

    cv_p = (CONDITION_VARIABLE *)cv;
    WakeConditionVariable(cv_p);
}

void ossl_crypto_condvar_free(CRYPTO_CONDVAR **cv)
{
    CONDITION_VARIABLE **cv_p;

    cv_p = (CONDITION_VARIABLE **)cv;
    OPENSSL_free(*cv_p);
    *cv_p = NULL;
}

# endif

void ossl_crypto_mem_barrier(void)
{
    MemoryBarrier();
}

#endif