1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
|
/*
* Copyright 2022-2023 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include "internal/uint_set.h"
#include "internal/common.h"
#include <assert.h>
/*
* uint64_t Integer Sets
* =====================
*
* This data structure supports the following operations:
*
* Insert Range: Adds an inclusive range of integers [start, end]
* to the set. Equivalent to Insert for each number
* in the range.
*
* Remove Range: Removes an inclusive range of integers [start, end]
* from the set. Not all of the range need already be in
* the set, but any part of the range in the set is removed.
*
* Query: Is an integer in the data structure?
*
* The data structure can be iterated.
*
* For greater efficiency in tracking large numbers of contiguous integers, we
* track integer ranges rather than individual integers. The data structure
* manages a list of integer ranges [[start, end]...]. Internally this is
* implemented as a doubly linked sorted list of range structures, which are
* automatically split and merged as necessary.
*
* This data structure requires O(n) traversal of the list for insertion,
* removal and query when we are not adding/removing ranges which are near the
* beginning or end of the set of ranges. For the applications for which this
* data structure is used (e.g. QUIC PN tracking for ACK generation), it is
* expected that the number of integer ranges needed at any given time will
* generally be small and that most operations will be close to the beginning or
* end of the range.
*
* Invariant: The data structure is always sorted in ascending order by value.
*
* Invariant: No two adjacent ranges ever 'border' one another (have no
* numerical gap between them) as the data structure always ensures
* such ranges are merged.
*
* Invariant: No two ranges ever overlap.
*
* Invariant: No range [a, b] ever has a > b.
*
* Invariant: Since ranges are represented using inclusive bounds, no range
* item inside the data structure can represent a span of zero
* integers.
*/
void ossl_uint_set_init(UINT_SET *s)
{
ossl_list_uint_set_init(s);
}
void ossl_uint_set_destroy(UINT_SET *s)
{
UINT_SET_ITEM *x, *xnext;
for (x = ossl_list_uint_set_head(s); x != NULL; x = xnext) {
xnext = ossl_list_uint_set_next(x);
OPENSSL_free(x);
}
}
/* Possible merge of x, prev(x) */
static void uint_set_merge_adjacent(UINT_SET *s, UINT_SET_ITEM *x)
{
UINT_SET_ITEM *xprev = ossl_list_uint_set_prev(x);
if (xprev == NULL)
return;
if (x->range.start - 1 != xprev->range.end)
return;
x->range.start = xprev->range.start;
ossl_list_uint_set_remove(s, xprev);
OPENSSL_free(xprev);
}
static uint64_t u64_min(uint64_t x, uint64_t y)
{
return x < y ? x : y;
}
static uint64_t u64_max(uint64_t x, uint64_t y)
{
return x > y ? x : y;
}
/*
* Returns 1 if there exists an integer x which falls within both ranges a and
* b.
*/
static int uint_range_overlaps(const UINT_RANGE *a,
const UINT_RANGE *b)
{
return u64_min(a->end, b->end)
>= u64_max(a->start, b->start);
}
static UINT_SET_ITEM *create_set_item(uint64_t start, uint64_t end)
{
UINT_SET_ITEM *x = OPENSSL_malloc(sizeof(UINT_SET_ITEM));
if (x == NULL)
return NULL;
ossl_list_uint_set_init_elem(x);
x->range.start = start;
x->range.end = end;
return x;
}
int ossl_uint_set_insert(UINT_SET *s, const UINT_RANGE *range)
{
UINT_SET_ITEM *x, *xnext, *z, *zprev, *f;
uint64_t start = range->start, end = range->end;
if (!ossl_assert(start <= end))
return 0;
if (ossl_list_uint_set_is_empty(s)) {
/* Nothing in the set yet, so just add this range. */
x = create_set_item(start, end);
if (x == NULL)
return 0;
ossl_list_uint_set_insert_head(s, x);
return 1;
}
z = ossl_list_uint_set_tail(s);
if (start > z->range.end) {
/*
* Range is after the latest range in the set, so append.
*
* Note: The case where the range is before the earliest range in the
* set is handled as a degenerate case of the final case below. See
* optimization note (*) below.
*/
if (z->range.end + 1 == start) {
z->range.end = end;
return 1;
}
x = create_set_item(start, end);
if (x == NULL)
return 0;
ossl_list_uint_set_insert_tail(s, x);
return 1;
}
f = ossl_list_uint_set_head(s);
if (start <= f->range.start && end >= z->range.end) {
/*
* New range dwarfs all ranges in our set.
*
* Free everything except the first range in the set, which we scavenge
* and reuse.
*/
x = ossl_list_uint_set_head(s);
x->range.start = start;
x->range.end = end;
for (x = ossl_list_uint_set_next(x); x != NULL; x = xnext) {
xnext = ossl_list_uint_set_next(x);
ossl_list_uint_set_remove(s, x);
}
return 1;
}
/*
* Walk backwards since we will most often be inserting at the end. As an
* optimization, test the head node first and skip iterating over the
* entire list if we are inserting at the start. The assumption is that
* insertion at the start and end of the space will be the most common
* operations. (*)
*/
z = end < f->range.start ? f : z;
for (; z != NULL; z = zprev) {
zprev = ossl_list_uint_set_prev(z);
/* An existing range dwarfs our new range (optimisation). */
if (z->range.start <= start && z->range.end >= end)
return 1;
if (uint_range_overlaps(&z->range, range)) {
/*
* Our new range overlaps an existing range, or possibly several
* existing ranges.
*/
UINT_SET_ITEM *ovend = z;
ovend->range.end = u64_max(end, z->range.end);
/* Get earliest overlapping range. */
while (zprev != NULL && uint_range_overlaps(&zprev->range, range)) {
z = zprev;
zprev = ossl_list_uint_set_prev(z);
}
ovend->range.start = u64_min(start, z->range.start);
/* Replace sequence of nodes z..ovend with updated ovend only. */
while (z != ovend) {
z = ossl_list_uint_set_next(x = z);
ossl_list_uint_set_remove(s, x);
OPENSSL_free(x);
}
break;
} else if (end < z->range.start
&& (zprev == NULL || start > zprev->range.end)) {
if (z->range.start == end + 1) {
/* We can extend the following range backwards. */
z->range.start = start;
/*
* If this closes a gap we now need to merge
* consecutive nodes.
*/
uint_set_merge_adjacent(s, z);
} else if (zprev != NULL && zprev->range.end + 1 == start) {
/* We can extend the preceding range forwards. */
zprev->range.end = end;
/*
* If this closes a gap we now need to merge
* consecutive nodes.
*/
uint_set_merge_adjacent(s, z);
} else {
/*
* The new interval is between intervals without overlapping or
* touching them, so insert between, preserving sort.
*/
x = create_set_item(start, end);
if (x == NULL)
return 0;
ossl_list_uint_set_insert_before(s, z, x);
}
break;
}
}
return 1;
}
int ossl_uint_set_remove(UINT_SET *s, const UINT_RANGE *range)
{
UINT_SET_ITEM *z, *zprev, *y;
uint64_t start = range->start, end = range->end;
if (!ossl_assert(start <= end))
return 0;
/* Walk backwards since we will most often be removing at the end. */
for (z = ossl_list_uint_set_tail(s); z != NULL; z = zprev) {
zprev = ossl_list_uint_set_prev(z);
if (start > z->range.end)
/* No overlapping ranges can exist beyond this point, so stop. */
break;
if (start <= z->range.start && end >= z->range.end) {
/*
* The range being removed dwarfs this range, so it should be
* removed.
*/
ossl_list_uint_set_remove(s, z);
OPENSSL_free(z);
} else if (start <= z->range.start && end >= z->range.start) {
/*
* The range being removed includes start of this range, but does
* not cover the entire range (as this would be caught by the case
* above). Shorten the range.
*/
assert(end < z->range.end);
z->range.start = end + 1;
} else if (end >= z->range.end) {
/*
* The range being removed includes the end of this range, but does
* not cover the entire range (as this would be caught by the case
* above). Shorten the range. We can also stop iterating.
*/
assert(start > z->range.start);
assert(start > 0);
z->range.end = start - 1;
break;
} else if (start > z->range.start && end < z->range.end) {
/*
* The range being removed falls entirely in this range, so cut it
* into two. Cases where a zero-length range would be created are
* handled by the above cases.
*/
y = create_set_item(end + 1, z->range.end);
ossl_list_uint_set_insert_after(s, z, y);
z->range.end = start - 1;
break;
} else {
/* Assert no partial overlap; all cases should be covered above. */
assert(!uint_range_overlaps(&z->range, range));
}
}
return 1;
}
int ossl_uint_set_query(const UINT_SET *s, uint64_t v)
{
UINT_SET_ITEM *x;
if (ossl_list_uint_set_is_empty(s))
return 0;
for (x = ossl_list_uint_set_tail(s); x != NULL; x = ossl_list_uint_set_prev(x))
if (x->range.start <= v && x->range.end >= v)
return 1;
else if (x->range.end < v)
return 0;
return 0;
}
|