1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947
|
/*
* Copyright 1995-2025 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>
#include <openssl/objects.h>
#include <openssl/evp.h>
#include <openssl/hmac.h>
#include <openssl/core_names.h>
#include <openssl/ocsp.h>
#include <openssl/conf.h>
#include <openssl/x509v3.h>
#include <openssl/dh.h>
#include <openssl/bn.h>
#include <openssl/provider.h>
#include <openssl/param_build.h>
#include "internal/nelem.h"
#include "internal/sizes.h"
#include "internal/tlsgroups.h"
#include "internal/ssl_unwrap.h"
#include "ssl_local.h"
#include "quic/quic_local.h"
#include <openssl/ct.h>
static const SIGALG_LOOKUP *find_sig_alg(SSL_CONNECTION *s, X509 *x, EVP_PKEY *pkey);
static int tls12_sigalg_allowed(const SSL_CONNECTION *s, int op, const SIGALG_LOOKUP *lu);
SSL3_ENC_METHOD const TLSv1_enc_data = {
tls1_setup_key_block,
tls1_generate_master_secret,
tls1_change_cipher_state,
tls1_final_finish_mac,
TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
tls1_alert_code,
tls1_export_keying_material,
0,
ssl3_set_handshake_header,
tls_close_construct_packet,
ssl3_handshake_write
};
SSL3_ENC_METHOD const TLSv1_1_enc_data = {
tls1_setup_key_block,
tls1_generate_master_secret,
tls1_change_cipher_state,
tls1_final_finish_mac,
TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
tls1_alert_code,
tls1_export_keying_material,
0,
ssl3_set_handshake_header,
tls_close_construct_packet,
ssl3_handshake_write
};
SSL3_ENC_METHOD const TLSv1_2_enc_data = {
tls1_setup_key_block,
tls1_generate_master_secret,
tls1_change_cipher_state,
tls1_final_finish_mac,
TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
tls1_alert_code,
tls1_export_keying_material,
SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF
| SSL_ENC_FLAG_TLS1_2_CIPHERS,
ssl3_set_handshake_header,
tls_close_construct_packet,
ssl3_handshake_write
};
SSL3_ENC_METHOD const TLSv1_3_enc_data = {
tls13_setup_key_block,
tls13_generate_master_secret,
tls13_change_cipher_state,
tls13_final_finish_mac,
TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
tls13_alert_code,
tls13_export_keying_material,
SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF,
ssl3_set_handshake_header,
tls_close_construct_packet,
ssl3_handshake_write
};
OSSL_TIME tls1_default_timeout(void)
{
/*
* 2 hours, the 24 hours mentioned in the TLSv1 spec is way too long for
* http, the cache would over fill
*/
return ossl_seconds2time(60 * 60 * 2);
}
int tls1_new(SSL *s)
{
if (!ssl3_new(s))
return 0;
if (!s->method->ssl_clear(s))
return 0;
return 1;
}
void tls1_free(SSL *s)
{
SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
if (sc == NULL)
return;
OPENSSL_free(sc->ext.session_ticket);
ssl3_free(s);
}
int tls1_clear(SSL *s)
{
SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
if (sc == NULL)
return 0;
if (!ssl3_clear(s))
return 0;
if (s->method->version == TLS_ANY_VERSION)
sc->version = TLS_MAX_VERSION_INTERNAL;
else
sc->version = s->method->version;
return 1;
}
/* Legacy NID to group_id mapping. Only works for groups we know about */
static const struct {
int nid;
uint16_t group_id;
} nid_to_group[] = {
{NID_sect163k1, OSSL_TLS_GROUP_ID_sect163k1},
{NID_sect163r1, OSSL_TLS_GROUP_ID_sect163r1},
{NID_sect163r2, OSSL_TLS_GROUP_ID_sect163r2},
{NID_sect193r1, OSSL_TLS_GROUP_ID_sect193r1},
{NID_sect193r2, OSSL_TLS_GROUP_ID_sect193r2},
{NID_sect233k1, OSSL_TLS_GROUP_ID_sect233k1},
{NID_sect233r1, OSSL_TLS_GROUP_ID_sect233r1},
{NID_sect239k1, OSSL_TLS_GROUP_ID_sect239k1},
{NID_sect283k1, OSSL_TLS_GROUP_ID_sect283k1},
{NID_sect283r1, OSSL_TLS_GROUP_ID_sect283r1},
{NID_sect409k1, OSSL_TLS_GROUP_ID_sect409k1},
{NID_sect409r1, OSSL_TLS_GROUP_ID_sect409r1},
{NID_sect571k1, OSSL_TLS_GROUP_ID_sect571k1},
{NID_sect571r1, OSSL_TLS_GROUP_ID_sect571r1},
{NID_secp160k1, OSSL_TLS_GROUP_ID_secp160k1},
{NID_secp160r1, OSSL_TLS_GROUP_ID_secp160r1},
{NID_secp160r2, OSSL_TLS_GROUP_ID_secp160r2},
{NID_secp192k1, OSSL_TLS_GROUP_ID_secp192k1},
{NID_X9_62_prime192v1, OSSL_TLS_GROUP_ID_secp192r1},
{NID_secp224k1, OSSL_TLS_GROUP_ID_secp224k1},
{NID_secp224r1, OSSL_TLS_GROUP_ID_secp224r1},
{NID_secp256k1, OSSL_TLS_GROUP_ID_secp256k1},
{NID_X9_62_prime256v1, OSSL_TLS_GROUP_ID_secp256r1},
{NID_secp384r1, OSSL_TLS_GROUP_ID_secp384r1},
{NID_secp521r1, OSSL_TLS_GROUP_ID_secp521r1},
{NID_brainpoolP256r1, OSSL_TLS_GROUP_ID_brainpoolP256r1},
{NID_brainpoolP384r1, OSSL_TLS_GROUP_ID_brainpoolP384r1},
{NID_brainpoolP512r1, OSSL_TLS_GROUP_ID_brainpoolP512r1},
{EVP_PKEY_X25519, OSSL_TLS_GROUP_ID_x25519},
{EVP_PKEY_X448, OSSL_TLS_GROUP_ID_x448},
{NID_brainpoolP256r1tls13, OSSL_TLS_GROUP_ID_brainpoolP256r1_tls13},
{NID_brainpoolP384r1tls13, OSSL_TLS_GROUP_ID_brainpoolP384r1_tls13},
{NID_brainpoolP512r1tls13, OSSL_TLS_GROUP_ID_brainpoolP512r1_tls13},
{NID_id_tc26_gost_3410_2012_256_paramSetA, OSSL_TLS_GROUP_ID_gc256A},
{NID_id_tc26_gost_3410_2012_256_paramSetB, OSSL_TLS_GROUP_ID_gc256B},
{NID_id_tc26_gost_3410_2012_256_paramSetC, OSSL_TLS_GROUP_ID_gc256C},
{NID_id_tc26_gost_3410_2012_256_paramSetD, OSSL_TLS_GROUP_ID_gc256D},
{NID_id_tc26_gost_3410_2012_512_paramSetA, OSSL_TLS_GROUP_ID_gc512A},
{NID_id_tc26_gost_3410_2012_512_paramSetB, OSSL_TLS_GROUP_ID_gc512B},
{NID_id_tc26_gost_3410_2012_512_paramSetC, OSSL_TLS_GROUP_ID_gc512C},
{NID_ffdhe2048, OSSL_TLS_GROUP_ID_ffdhe2048},
{NID_ffdhe3072, OSSL_TLS_GROUP_ID_ffdhe3072},
{NID_ffdhe4096, OSSL_TLS_GROUP_ID_ffdhe4096},
{NID_ffdhe6144, OSSL_TLS_GROUP_ID_ffdhe6144},
{NID_ffdhe8192, OSSL_TLS_GROUP_ID_ffdhe8192}
};
static const unsigned char ecformats_default[] = {
TLSEXT_ECPOINTFORMAT_uncompressed
};
static const unsigned char ecformats_all[] = {
TLSEXT_ECPOINTFORMAT_uncompressed,
TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime,
TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2
};
/* Group list string of the built-in pseudo group DEFAULT */
#define DEFAULT_GROUP_NAME "DEFAULT"
#define TLS_DEFAULT_GROUP_LIST \
"?*X25519MLKEM768 / ?*X25519:?secp256r1 / ?X448:?secp384r1:?secp521r1 / ?ffdhe2048:?ffdhe3072"
static const uint16_t suiteb_curves[] = {
OSSL_TLS_GROUP_ID_secp256r1,
OSSL_TLS_GROUP_ID_secp384r1,
};
/* Group list string of the built-in pseudo group DEFAULT_SUITE_B */
#define SUITE_B_GROUP_NAME "DEFAULT_SUITE_B"
#define SUITE_B_GROUP_LIST "secp256r1:secp384r1",
struct provider_ctx_data_st {
SSL_CTX *ctx;
OSSL_PROVIDER *provider;
};
#define TLS_GROUP_LIST_MALLOC_BLOCK_SIZE 10
static OSSL_CALLBACK add_provider_groups;
static int add_provider_groups(const OSSL_PARAM params[], void *data)
{
struct provider_ctx_data_st *pgd = data;
SSL_CTX *ctx = pgd->ctx;
const OSSL_PARAM *p;
TLS_GROUP_INFO *ginf = NULL;
EVP_KEYMGMT *keymgmt;
unsigned int gid;
unsigned int is_kem = 0;
int ret = 0;
if (ctx->group_list_max_len == ctx->group_list_len) {
TLS_GROUP_INFO *tmp = NULL;
if (ctx->group_list_max_len == 0)
tmp = OPENSSL_malloc_array(TLS_GROUP_LIST_MALLOC_BLOCK_SIZE,
sizeof(TLS_GROUP_INFO));
else
tmp = OPENSSL_realloc_array(ctx->group_list,
ctx->group_list_max_len
+ TLS_GROUP_LIST_MALLOC_BLOCK_SIZE,
sizeof(TLS_GROUP_INFO));
if (tmp == NULL)
return 0;
ctx->group_list = tmp;
memset(tmp + ctx->group_list_max_len,
0,
sizeof(TLS_GROUP_INFO) * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
ctx->group_list_max_len += TLS_GROUP_LIST_MALLOC_BLOCK_SIZE;
}
ginf = &ctx->group_list[ctx->group_list_len];
p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME);
if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
goto err;
}
ginf->tlsname = OPENSSL_strdup(p->data);
if (ginf->tlsname == NULL)
goto err;
p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME_INTERNAL);
if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
goto err;
}
ginf->realname = OPENSSL_strdup(p->data);
if (ginf->realname == NULL)
goto err;
p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ID);
if (p == NULL || !OSSL_PARAM_get_uint(p, &gid) || gid > UINT16_MAX) {
ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
goto err;
}
ginf->group_id = (uint16_t)gid;
p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ALG);
if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
goto err;
}
ginf->algorithm = OPENSSL_strdup(p->data);
if (ginf->algorithm == NULL)
goto err;
p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_SECURITY_BITS);
if (p == NULL || !OSSL_PARAM_get_uint(p, &ginf->secbits)) {
ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
goto err;
}
p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_IS_KEM);
if (p != NULL && (!OSSL_PARAM_get_uint(p, &is_kem) || is_kem > 1)) {
ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
goto err;
}
ginf->is_kem = 1 & is_kem;
p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_TLS);
if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mintls)) {
ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
goto err;
}
p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_TLS);
if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxtls)) {
ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
goto err;
}
p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_DTLS);
if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mindtls)) {
ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
goto err;
}
p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_DTLS);
if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxdtls)) {
ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
goto err;
}
/*
* Now check that the algorithm is actually usable for our property query
* string. Regardless of the result we still return success because we have
* successfully processed this group, even though we may decide not to use
* it.
*/
ret = 1;
ERR_set_mark();
keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, ginf->algorithm, ctx->propq);
if (keymgmt != NULL) {
/* We have successfully fetched the algorithm, we can use the group. */
ctx->group_list_len++;
ginf = NULL;
EVP_KEYMGMT_free(keymgmt);
}
ERR_pop_to_mark();
err:
if (ginf != NULL) {
OPENSSL_free(ginf->tlsname);
OPENSSL_free(ginf->realname);
OPENSSL_free(ginf->algorithm);
ginf->algorithm = ginf->tlsname = ginf->realname = NULL;
}
return ret;
}
static int discover_provider_groups(OSSL_PROVIDER *provider, void *vctx)
{
struct provider_ctx_data_st pgd;
pgd.ctx = vctx;
pgd.provider = provider;
return OSSL_PROVIDER_get_capabilities(provider, "TLS-GROUP",
add_provider_groups, &pgd);
}
int ssl_load_groups(SSL_CTX *ctx)
{
if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_groups, ctx))
return 0;
return SSL_CTX_set1_groups_list(ctx, TLS_DEFAULT_GROUP_LIST);
}
#define TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE 10
static OSSL_CALLBACK add_provider_sigalgs;
static int add_provider_sigalgs(const OSSL_PARAM params[], void *data)
{
struct provider_ctx_data_st *pgd = data;
SSL_CTX *ctx = pgd->ctx;
OSSL_PROVIDER *provider = pgd->provider;
const OSSL_PARAM *p;
TLS_SIGALG_INFO *sinf = NULL;
EVP_KEYMGMT *keymgmt;
const char *keytype;
unsigned int code_point = 0;
int ret = 0;
if (ctx->sigalg_list_max_len == ctx->sigalg_list_len) {
TLS_SIGALG_INFO *tmp = NULL;
if (ctx->sigalg_list_max_len == 0)
tmp = OPENSSL_malloc_array(TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE,
sizeof(TLS_SIGALG_INFO));
else
tmp = OPENSSL_realloc_array(ctx->sigalg_list,
ctx->sigalg_list_max_len
+ TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE,
sizeof(TLS_SIGALG_INFO));
if (tmp == NULL)
return 0;
ctx->sigalg_list = tmp;
memset(tmp + ctx->sigalg_list_max_len, 0,
sizeof(TLS_SIGALG_INFO) * TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE);
ctx->sigalg_list_max_len += TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE;
}
sinf = &ctx->sigalg_list[ctx->sigalg_list_len];
/* First, mandatory parameters */
p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_NAME);
if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
goto err;
}
OPENSSL_free(sinf->sigalg_name);
sinf->sigalg_name = OPENSSL_strdup(p->data);
if (sinf->sigalg_name == NULL)
goto err;
p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_IANA_NAME);
if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
goto err;
}
OPENSSL_free(sinf->name);
sinf->name = OPENSSL_strdup(p->data);
if (sinf->name == NULL)
goto err;
p = OSSL_PARAM_locate_const(params,
OSSL_CAPABILITY_TLS_SIGALG_CODE_POINT);
if (p == NULL
|| !OSSL_PARAM_get_uint(p, &code_point)
|| code_point > UINT16_MAX) {
ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
goto err;
}
sinf->code_point = (uint16_t)code_point;
p = OSSL_PARAM_locate_const(params,
OSSL_CAPABILITY_TLS_SIGALG_SECURITY_BITS);
if (p == NULL || !OSSL_PARAM_get_uint(p, &sinf->secbits)) {
ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
goto err;
}
/* Now, optional parameters */
p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_OID);
if (p == NULL) {
sinf->sigalg_oid = NULL;
} else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
goto err;
} else {
OPENSSL_free(sinf->sigalg_oid);
sinf->sigalg_oid = OPENSSL_strdup(p->data);
if (sinf->sigalg_oid == NULL)
goto err;
}
p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_SIG_NAME);
if (p == NULL) {
sinf->sig_name = NULL;
} else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
goto err;
} else {
OPENSSL_free(sinf->sig_name);
sinf->sig_name = OPENSSL_strdup(p->data);
if (sinf->sig_name == NULL)
goto err;
}
p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_SIG_OID);
if (p == NULL) {
sinf->sig_oid = NULL;
} else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
goto err;
} else {
OPENSSL_free(sinf->sig_oid);
sinf->sig_oid = OPENSSL_strdup(p->data);
if (sinf->sig_oid == NULL)
goto err;
}
p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_HASH_NAME);
if (p == NULL) {
sinf->hash_name = NULL;
} else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
goto err;
} else {
OPENSSL_free(sinf->hash_name);
sinf->hash_name = OPENSSL_strdup(p->data);
if (sinf->hash_name == NULL)
goto err;
}
p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_HASH_OID);
if (p == NULL) {
sinf->hash_oid = NULL;
} else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
goto err;
} else {
OPENSSL_free(sinf->hash_oid);
sinf->hash_oid = OPENSSL_strdup(p->data);
if (sinf->hash_oid == NULL)
goto err;
}
p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_KEYTYPE);
if (p == NULL) {
sinf->keytype = NULL;
} else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
goto err;
} else {
OPENSSL_free(sinf->keytype);
sinf->keytype = OPENSSL_strdup(p->data);
if (sinf->keytype == NULL)
goto err;
}
p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_KEYTYPE_OID);
if (p == NULL) {
sinf->keytype_oid = NULL;
} else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
goto err;
} else {
OPENSSL_free(sinf->keytype_oid);
sinf->keytype_oid = OPENSSL_strdup(p->data);
if (sinf->keytype_oid == NULL)
goto err;
}
/* Optional, not documented prior to 3.5 */
sinf->mindtls = sinf->maxdtls = -1;
p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MIN_DTLS);
if (p != NULL && !OSSL_PARAM_get_int(p, &sinf->mindtls)) {
ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
goto err;
}
p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MAX_DTLS);
if (p != NULL && !OSSL_PARAM_get_int(p, &sinf->maxdtls)) {
ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
goto err;
}
/* DTLS version numbers grow downward */
if ((sinf->maxdtls != 0) && (sinf->maxdtls != -1) &&
((sinf->maxdtls > sinf->mindtls))) {
ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
goto err;
}
/* No provider sigalgs are supported in DTLS, reset after checking. */
sinf->mindtls = sinf->maxdtls = -1;
/* The remaining parameters below are mandatory again */
p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MIN_TLS);
if (p == NULL || !OSSL_PARAM_get_int(p, &sinf->mintls)) {
ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
goto err;
}
p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MAX_TLS);
if (p == NULL || !OSSL_PARAM_get_int(p, &sinf->maxtls)) {
ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
goto err;
}
if ((sinf->maxtls != 0) && (sinf->maxtls != -1) &&
((sinf->maxtls < sinf->mintls))) {
ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
goto err;
}
if ((sinf->mintls != 0) && (sinf->mintls != -1) &&
((sinf->mintls > TLS1_3_VERSION)))
sinf->mintls = sinf->maxtls = -1;
if ((sinf->maxtls != 0) && (sinf->maxtls != -1) &&
((sinf->maxtls < TLS1_3_VERSION)))
sinf->mintls = sinf->maxtls = -1;
/* Ignore unusable sigalgs */
if (sinf->mintls == -1 && sinf->mindtls == -1) {
ret = 1;
goto err;
}
/*
* Now check that the algorithm is actually usable for our property query
* string. Regardless of the result we still return success because we have
* successfully processed this signature, even though we may decide not to
* use it.
*/
ret = 1;
ERR_set_mark();
keytype = (sinf->keytype != NULL
? sinf->keytype
: (sinf->sig_name != NULL
? sinf->sig_name
: sinf->sigalg_name));
keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, keytype, ctx->propq);
if (keymgmt != NULL) {
/*
* We have successfully fetched the algorithm - however if the provider
* doesn't match this one then we ignore it.
*
* Note: We're cheating a little here. Technically if the same algorithm
* is available from more than one provider then it is undefined which
* implementation you will get back. Theoretically this could be
* different every time...we assume here that you'll always get the
* same one back if you repeat the exact same fetch. Is this a reasonable
* assumption to make (in which case perhaps we should document this
* behaviour)?
*/
if (EVP_KEYMGMT_get0_provider(keymgmt) == provider) {
/*
* We have a match - so we could use this signature;
* Check proper object registration first, though.
* Don't care about return value as this may have been
* done within providers or previous calls to
* add_provider_sigalgs.
*/
OBJ_create(sinf->sigalg_oid, sinf->sigalg_name, NULL);
/* sanity check: Without successful registration don't use alg */
if ((OBJ_txt2nid(sinf->sigalg_name) == NID_undef) ||
(OBJ_nid2obj(OBJ_txt2nid(sinf->sigalg_name)) == NULL)) {
ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
goto err;
}
if (sinf->sig_name != NULL)
OBJ_create(sinf->sig_oid, sinf->sig_name, NULL);
if (sinf->keytype != NULL)
OBJ_create(sinf->keytype_oid, sinf->keytype, NULL);
if (sinf->hash_name != NULL)
OBJ_create(sinf->hash_oid, sinf->hash_name, NULL);
OBJ_add_sigid(OBJ_txt2nid(sinf->sigalg_name),
(sinf->hash_name != NULL
? OBJ_txt2nid(sinf->hash_name)
: NID_undef),
OBJ_txt2nid(keytype));
ctx->sigalg_list_len++;
sinf = NULL;
}
EVP_KEYMGMT_free(keymgmt);
}
ERR_pop_to_mark();
err:
if (sinf != NULL) {
OPENSSL_free(sinf->name);
sinf->name = NULL;
OPENSSL_free(sinf->sigalg_name);
sinf->sigalg_name = NULL;
OPENSSL_free(sinf->sigalg_oid);
sinf->sigalg_oid = NULL;
OPENSSL_free(sinf->sig_name);
sinf->sig_name = NULL;
OPENSSL_free(sinf->sig_oid);
sinf->sig_oid = NULL;
OPENSSL_free(sinf->hash_name);
sinf->hash_name = NULL;
OPENSSL_free(sinf->hash_oid);
sinf->hash_oid = NULL;
OPENSSL_free(sinf->keytype);
sinf->keytype = NULL;
OPENSSL_free(sinf->keytype_oid);
sinf->keytype_oid = NULL;
}
return ret;
}
static int discover_provider_sigalgs(OSSL_PROVIDER *provider, void *vctx)
{
struct provider_ctx_data_st pgd;
pgd.ctx = vctx;
pgd.provider = provider;
OSSL_PROVIDER_get_capabilities(provider, "TLS-SIGALG",
add_provider_sigalgs, &pgd);
/*
* Always OK, even if provider doesn't support the capability:
* Reconsider testing retval when legacy sigalgs are also loaded this way.
*/
return 1;
}
int ssl_load_sigalgs(SSL_CTX *ctx)
{
size_t i;
SSL_CERT_LOOKUP lu;
if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_sigalgs, ctx))
return 0;
/* now populate ctx->ssl_cert_info */
if (ctx->sigalg_list_len > 0) {
OPENSSL_free(ctx->ssl_cert_info);
ctx->ssl_cert_info = OPENSSL_calloc(ctx->sigalg_list_len, sizeof(lu));
if (ctx->ssl_cert_info == NULL)
return 0;
for(i = 0; i < ctx->sigalg_list_len; i++) {
ctx->ssl_cert_info[i].nid = OBJ_txt2nid(ctx->sigalg_list[i].sigalg_name);
ctx->ssl_cert_info[i].amask = SSL_aANY;
}
}
/*
* For now, leave it at this: legacy sigalgs stay in their own
* data structures until "legacy cleanup" occurs.
*/
return 1;
}
static uint16_t tls1_group_name2id(SSL_CTX *ctx, const char *name)
{
size_t i;
for (i = 0; i < ctx->group_list_len; i++) {
if (OPENSSL_strcasecmp(ctx->group_list[i].tlsname, name) == 0
|| OPENSSL_strcasecmp(ctx->group_list[i].realname, name) == 0)
return ctx->group_list[i].group_id;
}
return 0;
}
const TLS_GROUP_INFO *tls1_group_id_lookup(SSL_CTX *ctx, uint16_t group_id)
{
size_t i;
for (i = 0; i < ctx->group_list_len; i++) {
if (ctx->group_list[i].group_id == group_id)
return &ctx->group_list[i];
}
return NULL;
}
const char *tls1_group_id2name(SSL_CTX *ctx, uint16_t group_id)
{
const TLS_GROUP_INFO *tls_group_info = tls1_group_id_lookup(ctx, group_id);
if (tls_group_info == NULL)
return NULL;
return tls_group_info->tlsname;
}
int tls1_group_id2nid(uint16_t group_id, int include_unknown)
{
size_t i;
if (group_id == 0)
return NID_undef;
/*
* Return well known Group NIDs - for backwards compatibility. This won't
* work for groups we don't know about.
*/
for (i = 0; i < OSSL_NELEM(nid_to_group); i++)
{
if (nid_to_group[i].group_id == group_id)
return nid_to_group[i].nid;
}
if (!include_unknown)
return NID_undef;
return TLSEXT_nid_unknown | (int)group_id;
}
uint16_t tls1_nid2group_id(int nid)
{
size_t i;
/*
* Return well known Group ids - for backwards compatibility. This won't
* work for groups we don't know about.
*/
for (i = 0; i < OSSL_NELEM(nid_to_group); i++)
{
if (nid_to_group[i].nid == nid)
return nid_to_group[i].group_id;
}
return 0;
}
/*
* Set *pgroups to the supported groups list and *pgroupslen to
* the number of groups supported.
*/
void tls1_get_supported_groups(SSL_CONNECTION *s, const uint16_t **pgroups,
size_t *pgroupslen)
{
SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
/* For Suite B mode only include P-256, P-384 */
switch (tls1_suiteb(s)) {
case SSL_CERT_FLAG_SUITEB_128_LOS:
*pgroups = suiteb_curves;
*pgroupslen = OSSL_NELEM(suiteb_curves);
break;
case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
*pgroups = suiteb_curves;
*pgroupslen = 1;
break;
case SSL_CERT_FLAG_SUITEB_192_LOS:
*pgroups = suiteb_curves + 1;
*pgroupslen = 1;
break;
default:
if (s->ext.supportedgroups == NULL) {
*pgroups = sctx->ext.supportedgroups;
*pgroupslen = sctx->ext.supportedgroups_len;
} else {
*pgroups = s->ext.supportedgroups;
*pgroupslen = s->ext.supportedgroups_len;
}
break;
}
}
/*
* Some comments for the function below:
* s->ext.supportedgroups == NULL means legacy syntax (no [*,/,-]) from built-in group array.
* In this case, we need to send exactly one key share, which MUST be the first (leftmost)
* eligible group from the legacy list. Therefore, we provide the entire list of supported
* groups in this case.
*
* A 'flag' to indicate legacy syntax is created by setting the number of key shares to 1,
* but the groupID to 0.
* The 'flag' is checked right at the beginning in tls_construct_ctos_key_share and either
* the "list of requested key share groups" is used, or the "list of supported groups" in
* combination with setting add_only_one = 1 is applied.
*/
void tls1_get_requested_keyshare_groups(SSL_CONNECTION *s, const uint16_t **pgroups,
size_t *pgroupslen)
{
SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
if (s->ext.supportedgroups == NULL) {
*pgroups = sctx->ext.supportedgroups;
*pgroupslen = sctx->ext.supportedgroups_len;
} else {
*pgroups = s->ext.keyshares;
*pgroupslen = s->ext.keyshares_len;
}
}
void tls1_get_group_tuples(SSL_CONNECTION *s, const size_t **ptuples,
size_t *ptupleslen)
{
SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
if (s->ext.supportedgroups == NULL) {
*ptuples = sctx->ext.tuples;
*ptupleslen = sctx->ext.tuples_len;
} else {
*ptuples = s->ext.tuples;
*ptupleslen = s->ext.tuples_len;
}
}
int tls_valid_group(SSL_CONNECTION *s, uint16_t group_id,
int minversion, int maxversion,
int isec, int *okfortls13)
{
const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(SSL_CONNECTION_GET_CTX(s),
group_id);
int ret;
int group_minversion, group_maxversion;
if (okfortls13 != NULL)
*okfortls13 = 0;
if (ginfo == NULL)
return 0;
group_minversion = SSL_CONNECTION_IS_DTLS(s) ? ginfo->mindtls : ginfo->mintls;
group_maxversion = SSL_CONNECTION_IS_DTLS(s) ? ginfo->maxdtls : ginfo->maxtls;
if (group_minversion < 0 || group_maxversion < 0)
return 0;
if (group_maxversion == 0)
ret = 1;
else
ret = (ssl_version_cmp(s, minversion, group_maxversion) <= 0);
if (group_minversion > 0)
ret &= (ssl_version_cmp(s, maxversion, group_minversion) >= 0);
if (!SSL_CONNECTION_IS_DTLS(s)) {
if (ret && okfortls13 != NULL && maxversion == TLS1_3_VERSION)
*okfortls13 = (group_maxversion == 0)
|| (group_maxversion >= TLS1_3_VERSION);
}
ret &= !isec
|| strcmp(ginfo->algorithm, "EC") == 0
|| strcmp(ginfo->algorithm, "X25519") == 0
|| strcmp(ginfo->algorithm, "X448") == 0;
return ret;
}
/* See if group is allowed by security callback */
int tls_group_allowed(SSL_CONNECTION *s, uint16_t group, int op)
{
const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(SSL_CONNECTION_GET_CTX(s),
group);
unsigned char gtmp[2];
if (ginfo == NULL)
return 0;
gtmp[0] = group >> 8;
gtmp[1] = group & 0xff;
return ssl_security(s, op, ginfo->secbits,
tls1_group_id2nid(ginfo->group_id, 0), (void *)gtmp);
}
/* Return 1 if "id" is in "list" */
static int tls1_in_list(uint16_t id, const uint16_t *list, size_t listlen)
{
size_t i;
for (i = 0; i < listlen; i++)
if (list[i] == id)
return 1;
return 0;
}
typedef struct {
TLS_GROUP_INFO *grp;
size_t ix;
} TLS_GROUP_IX;
DEFINE_STACK_OF(TLS_GROUP_IX)
static void free_wrapper(TLS_GROUP_IX *a)
{
OPENSSL_free(a);
}
static int tls_group_ix_cmp(const TLS_GROUP_IX *const *a,
const TLS_GROUP_IX *const *b)
{
int idcmpab = (*a)->grp->group_id < (*b)->grp->group_id;
int idcmpba = (*b)->grp->group_id < (*a)->grp->group_id;
int ixcmpab = (*a)->ix < (*b)->ix;
int ixcmpba = (*b)->ix < (*a)->ix;
/* Ascending by group id */
if (idcmpab != idcmpba)
return (idcmpba - idcmpab);
/* Ascending by original appearance index */
return ixcmpba - ixcmpab;
}
int tls1_get0_implemented_groups(int min_proto_version, int max_proto_version,
TLS_GROUP_INFO *grps, size_t num, long all,
STACK_OF(OPENSSL_CSTRING) *out)
{
STACK_OF(TLS_GROUP_IX) *collect = NULL;
TLS_GROUP_IX *gix;
uint16_t id = 0;
int ret = 0;
int ix;
if (grps == NULL || out == NULL || num > INT_MAX)
return 0;
if ((collect = sk_TLS_GROUP_IX_new(tls_group_ix_cmp)) == NULL)
return 0;
for (ix = 0; ix < (int)num; ++ix, ++grps) {
if (grps->mintls > 0 && max_proto_version > 0
&& grps->mintls > max_proto_version)
continue;
if (grps->maxtls > 0 && min_proto_version > 0
&& grps->maxtls < min_proto_version)
continue;
if ((gix = OPENSSL_malloc(sizeof(*gix))) == NULL)
goto end;
gix->grp = grps;
gix->ix = ix;
if (sk_TLS_GROUP_IX_push(collect, gix) <= 0) {
OPENSSL_free(gix);
goto end;
}
}
sk_TLS_GROUP_IX_sort(collect);
num = sk_TLS_GROUP_IX_num(collect);
for (ix = 0; ix < (int)num; ++ix) {
gix = sk_TLS_GROUP_IX_value(collect, ix);
if (!all && gix->grp->group_id == id)
continue;
id = gix->grp->group_id;
if (sk_OPENSSL_CSTRING_push(out, gix->grp->tlsname) <= 0)
goto end;
}
ret = 1;
end:
sk_TLS_GROUP_IX_pop_free(collect, free_wrapper);
return ret;
}
/*-
* For nmatch >= 0, return the id of the |nmatch|th shared group or 0
* if there is no match.
* For nmatch == -1, return number of matches
* For nmatch == -2, return the id of the group to use for
* a tmp key, or 0 if there is no match.
*/
uint16_t tls1_shared_group(SSL_CONNECTION *s, int nmatch)
{
const uint16_t *pref, *supp;
size_t num_pref, num_supp, i;
int k;
SSL_CTX *ctx = SSL_CONNECTION_GET_CTX(s);
/* Can't do anything on client side */
if (s->server == 0)
return 0;
if (nmatch == -2) {
if (tls1_suiteb(s)) {
/*
* For Suite B ciphersuite determines curve: we already know
* these are acceptable due to previous checks.
*/
unsigned long cid = s->s3.tmp.new_cipher->id;
if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
return OSSL_TLS_GROUP_ID_secp256r1;
if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
return OSSL_TLS_GROUP_ID_secp384r1;
/* Should never happen */
return 0;
}
/* If not Suite B just return first preference shared curve */
nmatch = 0;
}
/*
* If server preference set, our groups are the preference order
* otherwise peer decides.
*/
if (s->options & SSL_OP_SERVER_PREFERENCE) {
tls1_get_supported_groups(s, &pref, &num_pref);
tls1_get_peer_groups(s, &supp, &num_supp);
} else {
tls1_get_peer_groups(s, &pref, &num_pref);
tls1_get_supported_groups(s, &supp, &num_supp);
}
for (k = 0, i = 0; i < num_pref; i++) {
uint16_t id = pref[i];
const TLS_GROUP_INFO *inf;
int minversion, maxversion;
if (!tls1_in_list(id, supp, num_supp)
|| !tls_group_allowed(s, id, SSL_SECOP_CURVE_SHARED))
continue;
inf = tls1_group_id_lookup(ctx, id);
if (!ossl_assert(inf != NULL))
return 0;
minversion = SSL_CONNECTION_IS_DTLS(s)
? inf->mindtls : inf->mintls;
maxversion = SSL_CONNECTION_IS_DTLS(s)
? inf->maxdtls : inf->maxtls;
if (maxversion == -1)
continue;
if ((minversion != 0 && ssl_version_cmp(s, s->version, minversion) < 0)
|| (maxversion != 0
&& ssl_version_cmp(s, s->version, maxversion) > 0))
continue;
if (nmatch == k)
return id;
k++;
}
if (nmatch == -1)
return k;
/* Out of range (nmatch > k). */
return 0;
}
int tls1_set_groups(uint16_t **grpext, size_t *grpextlen,
uint16_t **ksext, size_t *ksextlen,
size_t **tplext, size_t *tplextlen,
int *groups, size_t ngroups)
{
uint16_t *glist = NULL, *kslist = NULL;
size_t *tpllist = NULL;
size_t i;
/*
* Bitmap of groups included to detect duplicates: two variables are added
* to detect duplicates as some values are more than 32.
*/
unsigned long *dup_list = NULL;
unsigned long dup_list_egrp = 0;
unsigned long dup_list_dhgrp = 0;
if (ngroups == 0) {
ERR_raise(ERR_LIB_SSL, SSL_R_BAD_LENGTH);
return 0;
}
if ((glist = OPENSSL_malloc_array(ngroups, sizeof(*glist))) == NULL)
goto err;
if ((kslist = OPENSSL_malloc_array(1, sizeof(*kslist))) == NULL)
goto err;
if ((tpllist = OPENSSL_malloc_array(1, sizeof(*tpllist))) == NULL)
goto err;
for (i = 0; i < ngroups; i++) {
unsigned long idmask;
uint16_t id;
id = tls1_nid2group_id(groups[i]);
if ((id & 0x00FF) >= (sizeof(unsigned long) * 8))
goto err;
idmask = 1L << (id & 0x00FF);
dup_list = (id < 0x100) ? &dup_list_egrp : &dup_list_dhgrp;
if (!id || ((*dup_list) & idmask))
goto err;
*dup_list |= idmask;
glist[i] = id;
}
OPENSSL_free(*grpext);
OPENSSL_free(*ksext);
OPENSSL_free(*tplext);
*grpext = glist;
*grpextlen = ngroups;
kslist[0] = glist[0];
*ksext = kslist;
*ksextlen = 1;
tpllist[0] = ngroups;
*tplext = tpllist;
*tplextlen = 1;
return 1;
err:
OPENSSL_free(glist);
OPENSSL_free(kslist);
OPENSSL_free(tpllist);
return 0;
}
/*
* Definition of DEFAULT[_XYZ] pseudo group names.
* A pseudo group name is actually a full list of groups, including prefixes
* and or tuple delimiters. It can be hierarchically defined (for potential future use).
* IMPORTANT REMARK: For ease of use, in the built-in lists of groups, unknown groups or
* groups not backed by a provider will always silently be ignored, even without '?' prefix
*/
typedef struct {
const char *list_name; /* The name of this pseudo group */
const char *group_string; /* The group string of this pseudo group */
} default_group_string_st; /* (can include '?', '*'. '-', '/' as needed) */
/* Built-in pseudo group-names must start with a (D or d) */
static const char *DEFAULT_GROUPNAME_FIRST_CHARACTER = "D";
/* The list of all built-in pseudo-group-name structures */
static const default_group_string_st default_group_strings[] = {
{DEFAULT_GROUP_NAME, TLS_DEFAULT_GROUP_LIST},
{SUITE_B_GROUP_NAME, SUITE_B_GROUP_LIST}
};
/*
* Some GOST names are not resolved by tls1_group_name2id,
* hence we'll check for those manually
*/
typedef struct {
const char *group_name;
uint16_t groupID;
} name2id_st;
static const name2id_st name2id_arr[] = {
{"GC256A", OSSL_TLS_GROUP_ID_gc256A },
{"GC256B", OSSL_TLS_GROUP_ID_gc256B },
{"GC256C", OSSL_TLS_GROUP_ID_gc256C },
{"GC256D", OSSL_TLS_GROUP_ID_gc256D },
{"GC512A", OSSL_TLS_GROUP_ID_gc512A },
{"GC512B", OSSL_TLS_GROUP_ID_gc512B },
{"GC512C", OSSL_TLS_GROUP_ID_gc512C },
};
/*
* Group list management:
* We establish three lists along with their related size counters:
* 1) List of (unique) groups
* 2) List of number of groups per group-priority-tuple
* 3) List of (unique) key share groups
*/
#define GROUPLIST_INCREMENT 32 /* Memory allocation chunk size (64 Bytes chunks ~= cache line) */
#define GROUP_NAME_BUFFER_LENGTH 64 /* Max length of a group name */
/*
* Preparation of the prefix used to indicate the desire to send a key share,
* the characters used as separators between groups or tuples of groups, the
* character to indicate that an unknown group should be ignored, and the
* character to indicate that a group should be deleted from a list
*/
#ifndef TUPLE_DELIMITER_CHARACTER
/* The prefix characters to indicate group tuple boundaries */
# define TUPLE_DELIMITER_CHARACTER '/'
#endif
#ifndef GROUP_DELIMITER_CHARACTER
/* The prefix characters to indicate group tuple boundaries */
# define GROUP_DELIMITER_CHARACTER ':'
#endif
#ifndef IGNORE_UNKNOWN_GROUP_CHARACTER
/* The prefix character to ignore unknown groups */
# define IGNORE_UNKNOWN_GROUP_CHARACTER '?'
#endif
#ifndef KEY_SHARE_INDICATOR_CHARACTER
/* The prefix character to trigger a key share addition */
# define KEY_SHARE_INDICATOR_CHARACTER '*'
#endif
#ifndef REMOVE_GROUP_INDICATOR_CHARACTER
/* The prefix character to trigger a key share removal */
# define REMOVE_GROUP_INDICATOR_CHARACTER '-'
#endif
static const char prefixes[] = {TUPLE_DELIMITER_CHARACTER,
GROUP_DELIMITER_CHARACTER,
IGNORE_UNKNOWN_GROUP_CHARACTER,
KEY_SHARE_INDICATOR_CHARACTER,
REMOVE_GROUP_INDICATOR_CHARACTER,
'\0'};
/*
* High-level description of how group strings are analyzed:
* A first call back function (tuple_cb) is used to process group tuples, and a
* second callback function (gid_cb) is used to process the groups inside a tuple.
* Those callback functions are (indirectly) called by CONF_parse_list with
* different separators (nominally ':' or '/'), a variable based on gid_cb_st
* is used to keep track of the parsing results between the various calls
*/
typedef struct {
SSL_CTX *ctx;
/* Variables to hold the three lists (groups, requested keyshares, tuple structure) */
size_t gidmax; /* The memory allocation chunk size for the group IDs */
size_t gidcnt; /* Number of groups */
uint16_t *gid_arr; /* The IDs of the supported groups (flat list) */
size_t tplmax; /* The memory allocation chunk size for the tuple counters */
size_t tplcnt; /* Number of tuples */
size_t *tuplcnt_arr; /* The number of groups inside a tuple */
size_t ksidmax; /* The memory allocation chunk size */
size_t ksidcnt; /* Number of key shares */
uint16_t *ksid_arr; /* The IDs of the key share groups (flat list) */
/* Variable to keep state between execution of callback or helper functions */
size_t tuple_mode; /* Keeps track whether tuple_cb called from 'the top' or from gid_cb */
int ignore_unknown_default; /* Flag such that unknown groups for DEFAULT[_XYZ] are ignored */
} gid_cb_st;
/* Forward declaration of tuple callback function */
static int tuple_cb(const char *tuple, int len, void *arg);
/*
* Extract and process the individual groups (and their prefixes if present)
* present in a tuple. Note: The argument 'elem' is a NON-\0-terminated string
* and must be appended by a \0 if used as \0-terminated string
*/
static int gid_cb(const char *elem, int len, void *arg)
{
gid_cb_st *garg = arg;
size_t i, j, k;
uint16_t gid = 0;
int found_group = 0;
char etmp[GROUP_NAME_BUFFER_LENGTH];
int retval = 1; /* We assume success */
char *current_prefix;
int ignore_unknown = 0;
int add_keyshare = 0;
int remove_group = 0;
size_t restored_prefix_index = 0;
char *restored_default_group_string;
int continue_while_loop = 1;
/* Sanity checks */
if (garg == NULL || elem == NULL || len <= 0) {
ERR_raise(ERR_LIB_SSL, SSL_R_UNSUPPORTED_CONFIG_VALUE);
return 0;
}
/* Check the possible prefixes (remark: Leading and trailing spaces already cleared) */
while (continue_while_loop && len > 0
&& ((current_prefix = strchr(prefixes, elem[0])) != NULL
|| OPENSSL_strncasecmp(current_prefix = (char *)DEFAULT_GROUPNAME_FIRST_CHARACTER, elem, 1) == 0)) {
switch (*current_prefix) {
case TUPLE_DELIMITER_CHARACTER:
/* tuple delimiter not allowed here -> syntax error */
return -1;
break;
case GROUP_DELIMITER_CHARACTER:
return -1; /* Not a valid prefix for a single group name-> syntax error */
break;
case KEY_SHARE_INDICATOR_CHARACTER:
if (add_keyshare)
return -1; /* Only single key share prefix allowed -> syntax error */
add_keyshare = 1;
++elem;
--len;
break;
case REMOVE_GROUP_INDICATOR_CHARACTER:
if (remove_group)
return -1; /* Only single remove group prefix allowed -> syntax error */
remove_group = 1;
++elem;
--len;
break;
case IGNORE_UNKNOWN_GROUP_CHARACTER:
if (ignore_unknown)
return -1; /* Only single ? allowed -> syntax error */
ignore_unknown = 1;
++elem;
--len;
break;
default:
/*
* Check whether a DEFAULT[_XYZ] 'pseudo group' (= a built-in
* list of groups) should be added
*/
for (i = 0; i < OSSL_NELEM(default_group_strings); i++) {
if ((size_t)len == (strlen(default_group_strings[i].list_name))
&& OPENSSL_strncasecmp(default_group_strings[i].list_name, elem, len) == 0) {
/*
* We're asked to insert an entire list of groups from a
* DEFAULT[_XYZ] 'pseudo group' which we do by
* recursively calling this function (indirectly via
* CONF_parse_list and tuple_cb); essentially, we treat a DEFAULT
* group string like a tuple which is appended to the current tuple
* rather then starting a new tuple. Variable tuple_mode is the flag which
* controls append tuple vs start new tuple.
*/
if (ignore_unknown || remove_group)
return -1; /* removal or ignore not allowed here -> syntax error */
/*
* First, we restore any keyshare prefix in a new zero-terminated string
* (if not already present)
*/
restored_default_group_string =
OPENSSL_malloc(1 /* max prefix length */ +
strlen(default_group_strings[i].group_string) +
1 /* \0 */);
if (restored_default_group_string == NULL)
return 0;
if (add_keyshare
/* Remark: we tolerate a duplicated keyshare indicator here */
&& default_group_strings[i].group_string[0]
!= KEY_SHARE_INDICATOR_CHARACTER)
restored_default_group_string[restored_prefix_index++] =
KEY_SHARE_INDICATOR_CHARACTER;
memcpy(restored_default_group_string + restored_prefix_index,
default_group_strings[i].group_string,
strlen(default_group_strings[i].group_string));
restored_default_group_string[strlen(default_group_strings[i].group_string) +
restored_prefix_index] = '\0';
/* We execute the recursive call */
garg->ignore_unknown_default = 1; /* We ignore unknown groups for DEFAULT_XYZ */
/* we enforce group mode (= append tuple) for DEFAULT_XYZ group lists */
garg->tuple_mode = 0;
/* We use the tuple_cb callback to process the pseudo group tuple */
retval = CONF_parse_list(restored_default_group_string,
TUPLE_DELIMITER_CHARACTER, 1, tuple_cb, garg);
garg->tuple_mode = 1; /* next call to tuple_cb will again start new tuple */
garg->ignore_unknown_default = 0; /* reset to original value */
/* We don't need the \0-terminated string anymore */
OPENSSL_free(restored_default_group_string);
return retval;
}
}
/*
* If we reached this point, a group name started with a 'd' or 'D', but no request
* for a DEFAULT[_XYZ] 'pseudo group' was detected, hence processing of the group
* name can continue as usual (= the while loop checking prefixes can end)
*/
continue_while_loop = 0;
break;
}
}
if (len == 0)
return -1; /* Seems we have prefxes without a group name -> syntax error */
if (garg->ignore_unknown_default == 1) /* Always ignore unknown groups for DEFAULT[_XYZ] */
ignore_unknown = 1;
/* Memory management in case more groups are present compared to initial allocation */
if (garg->gidcnt == garg->gidmax) {
uint16_t *tmp =
OPENSSL_realloc_array(garg->gid_arr,
garg->gidmax + GROUPLIST_INCREMENT,
sizeof(*garg->gid_arr));
if (tmp == NULL)
return 0;
garg->gidmax += GROUPLIST_INCREMENT;
garg->gid_arr = tmp;
}
/* Memory management for key share groups */
if (garg->ksidcnt == garg->ksidmax) {
uint16_t *tmp =
OPENSSL_realloc_array(garg->ksid_arr,
garg->ksidmax + GROUPLIST_INCREMENT,
sizeof(*garg->ksid_arr));
if (tmp == NULL)
return 0;
garg->ksidmax += GROUPLIST_INCREMENT;
garg->ksid_arr = tmp;
}
if (len > (int)(sizeof(etmp) - 1))
return -1; /* group name to long -> syntax error */
/*
* Prepare addition or removal of a single group by converting
* a group name into its groupID equivalent
*/
/* Create a \0-terminated string and get the gid for this group if possible */
memcpy(etmp, elem, len);
etmp[len] = 0;
/* Get the groupID */
gid = tls1_group_name2id(garg->ctx, etmp);
/*
* Handle the case where no valid groupID was returned
* e.g. for an unknown group, which we'd ignore (only) if relevant prefix was set
*/
if (gid == 0) {
/* Is it one of the GOST groups ? */
for (i = 0; i < OSSL_NELEM(name2id_arr); i++) {
if (OPENSSL_strcasecmp(etmp, name2id_arr[i].group_name) == 0) {
gid = name2id_arr[i].groupID;
break;
}
}
if (gid == 0) { /* still not found */
/* Unknown group - ignore if ignore_unknown; trigger error otherwise */
retval = ignore_unknown;
goto done;
}
}
/* Make sure that at least one provider is supporting this groupID */
found_group = 0;
for (j = 0; j < garg->ctx->group_list_len; j++)
if (garg->ctx->group_list[j].group_id == gid) {
found_group = 1;
break;
}
/*
* No provider supports this group - ignore if
* ignore_unknown; trigger error otherwise
*/
if (found_group == 0) {
retval = ignore_unknown;
goto done;
}
/* Remove group (and keyshare) from anywhere in the list if present, ignore if not present */
if (remove_group) {
/* Is the current group specified anywhere in the entire list so far? */
found_group = 0;
for (i = 0; i < garg->gidcnt; i++)
if (garg->gid_arr[i] == gid) {
found_group = 1;
break;
}
/* The group to remove is at position i in the list of (zero indexed) groups */
if (found_group) {
/* We remove that group from its position (which is at i)... */
for (j = i; j < (garg->gidcnt - 1); j++)
garg->gid_arr[j] = garg->gid_arr[j + 1]; /* ...shift remaining groups left ... */
garg->gidcnt--; /* ..and update the book keeping for the number of groups */
/*
* We also must update the number of groups either in a previous tuple (which we
* must identify and check whether it becomes empty due to the deletion) or in
* the current tuple, pending where the deleted group resides
*/
k = 0;
for (j = 0; j < garg->tplcnt; j++) {
k += garg->tuplcnt_arr[j];
/* Remark: i is zero-indexed, k is one-indexed */
if (k > i) { /* remove from one of the previous tuples */
garg->tuplcnt_arr[j]--;
break; /* We took care not to have group duplicates, hence we can stop here */
}
}
if (k <= i) /* remove from current tuple */
garg->tuplcnt_arr[j]--;
/* We also remove the group from the list of keyshares (if present) */
found_group = 0;
for (i = 0; i < garg->ksidcnt; i++)
if (garg->ksid_arr[i] == gid) {
found_group = 1;
break;
}
if (found_group) {
/* Found, hence we remove that keyshare from its position (which is at i)... */
for (j = i; j < (garg->ksidcnt - 1); j++)
garg->ksid_arr[j] = garg->ksid_arr[j + 1]; /* shift remaining key shares */
/* ... and update the book keeping */
garg->ksidcnt--;
}
}
} else { /* Processing addition of a single new group */
/* Check for duplicates */
for (i = 0; i < garg->gidcnt; i++)
if (garg->gid_arr[i] == gid) {
/* Duplicate group anywhere in the list of groups - ignore */
goto done;
}
/* Add the current group to the 'flat' list of groups */
garg->gid_arr[garg->gidcnt++] = gid;
/* and update the book keeping for the number of groups in current tuple */
garg->tuplcnt_arr[garg->tplcnt]++;
/* We memorize if needed that we want to add a key share for the current group */
if (add_keyshare)
garg->ksid_arr[garg->ksidcnt++] = gid;
}
done:
return retval;
}
/* Extract and process a tuple of groups */
static int tuple_cb(const char *tuple, int len, void *arg)
{
gid_cb_st *garg = arg;
int retval = 1; /* We assume success */
char *restored_tuple_string;
/* Sanity checks */
if (garg == NULL || tuple == NULL || len <= 0) {
ERR_raise(ERR_LIB_SSL, SSL_R_UNSUPPORTED_CONFIG_VALUE);
return 0;
}
/* Memory management for tuples */
if (garg->tplcnt == garg->tplmax) {
size_t *tmp =
OPENSSL_realloc_array(garg->tuplcnt_arr,
garg->tplmax + GROUPLIST_INCREMENT,
sizeof(*garg->tuplcnt_arr));
if (tmp == NULL)
return 0;
garg->tplmax += GROUPLIST_INCREMENT;
garg->tuplcnt_arr = tmp;
}
/* Convert to \0-terminated string */
restored_tuple_string = OPENSSL_malloc(len + 1 /* \0 */);
if (restored_tuple_string == NULL)
return 0;
memcpy(restored_tuple_string, tuple, len);
restored_tuple_string[len] = '\0';
/* Analyze group list of this tuple */
retval = CONF_parse_list(restored_tuple_string, GROUP_DELIMITER_CHARACTER, 1, gid_cb, arg);
/* We don't need the \o-terminated string anymore */
OPENSSL_free(restored_tuple_string);
if (garg->tuplcnt_arr[garg->tplcnt] > 0) { /* Some valid groups are present in current tuple... */
if (garg->tuple_mode) {
/* We 'close' the tuple */
garg->tplcnt++;
garg->tuplcnt_arr[garg->tplcnt] = 0; /* Next tuple is initialized to be empty */
garg->tuple_mode = 1; /* next call will start a tuple (unless overridden in gid_cb) */
}
}
return retval;
}
/*
* Set groups and prepare generation of keyshares based on a string of groupnames,
* names separated by the group or the tuple delimiter, with per-group prefixes to
* (1) add a key share for this group, (2) ignore the group if unkown to the current
* context, (3) delete a previous occurrence of the group in the current tuple.
*
* The list parsing is done in two hierachical steps: The top-level step extracts the
* string of a tuple using tuple_cb, while the next lower step uses gid_cb to
* parse and process the groups inside a tuple
*/
int tls1_set_groups_list(SSL_CTX *ctx,
uint16_t **grpext, size_t *grpextlen,
uint16_t **ksext, size_t *ksextlen,
size_t **tplext, size_t *tplextlen,
const char *str)
{
size_t i = 0, j;
int ret = 0, parse_ret = 0;
gid_cb_st gcb;
/* Sanity check */
if (ctx == NULL) {
ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_NULL_PARAMETER);
return 0;
}
memset(&gcb, 0, sizeof(gcb));
gcb.tuple_mode = 1; /* We prepare to collect the first tuple */
gcb.ignore_unknown_default = 0;
gcb.gidmax = GROUPLIST_INCREMENT;
gcb.tplmax = GROUPLIST_INCREMENT;
gcb.ksidmax = GROUPLIST_INCREMENT;
gcb.ctx = ctx;
/* Prepare initial chunks of memory for groups, tuples and keyshares groupIDs */
gcb.gid_arr = OPENSSL_malloc_array(gcb.gidmax, sizeof(*gcb.gid_arr));
if (gcb.gid_arr == NULL)
goto end;
gcb.tuplcnt_arr = OPENSSL_malloc_array(gcb.tplmax, sizeof(*gcb.tuplcnt_arr));
if (gcb.tuplcnt_arr == NULL)
goto end;
gcb.tuplcnt_arr[0] = 0;
gcb.ksid_arr = OPENSSL_malloc_array(gcb.ksidmax, sizeof(*gcb.ksid_arr));
if (gcb.ksid_arr == NULL)
goto end;
while (str[0] != '\0' && isspace((unsigned char)*str))
str++;
if (str[0] == '\0')
goto empty_list;
/*
* Start the (potentially recursive) tuple processing by calling CONF_parse_list
* with the TUPLE_DELIMITER_CHARACTER (which will call tuple_cb after cleaning spaces)
*/
parse_ret = CONF_parse_list(str, TUPLE_DELIMITER_CHARACTER, 1, tuple_cb, &gcb);
if (parse_ret == 0)
goto end;
if (parse_ret == -1) {
ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
"Syntax error in '%s'", str);
goto end;
}
/*
* We check whether a tuple was completly emptied by using "-" prefix
* excessively, in which case we remove the tuple
*/
for (i = j = 0; j < gcb.tplcnt; j++) {
if (gcb.tuplcnt_arr[j] == 0)
continue;
/* If there's a gap, move to first unfilled slot */
if (j == i)
++i;
else
gcb.tuplcnt_arr[i++] = gcb.tuplcnt_arr[j];
}
gcb.tplcnt = i;
if (gcb.ksidcnt > OPENSSL_CLIENT_MAX_KEY_SHARES) {
ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
"To many keyshares requested in '%s' (max = %d)",
str, OPENSSL_CLIENT_MAX_KEY_SHARES);
goto end;
}
/*
* For backward compatibility we let the rest of the code know that a key share
* for the first valid group should be added if no "*" prefix was used anywhere
*/
if (gcb.gidcnt > 0 && gcb.ksidcnt == 0) {
/*
* No key share group prefix character was used, hence we indicate that a single
* key share should be sent and flag that it should come from the supported_groups list
*/
gcb.ksidcnt = 1;
gcb.ksid_arr[0] = 0;
}
empty_list:
/*
* A call to tls1_set_groups_list with any of the args (other than ctx) set
* to NULL only does a syntax check, hence we're done here and report success
*/
if (grpext == NULL || ksext == NULL || tplext == NULL ||
grpextlen == NULL || ksextlen == NULL || tplextlen == NULL) {
ret = 1;
goto end;
}
/*
* tuple_cb and gid_cb combo ensures there are no duplicates or unknown groups so we
* can just go ahead and set the results (after diposing the existing)
*/
OPENSSL_free(*grpext);
*grpext = gcb.gid_arr;
*grpextlen = gcb.gidcnt;
OPENSSL_free(*ksext);
*ksext = gcb.ksid_arr;
*ksextlen = gcb.ksidcnt;
OPENSSL_free(*tplext);
*tplext = gcb.tuplcnt_arr;
*tplextlen = gcb.tplcnt;
return 1;
end:
OPENSSL_free(gcb.gid_arr);
OPENSSL_free(gcb.tuplcnt_arr);
OPENSSL_free(gcb.ksid_arr);
return ret;
}
/* Check a group id matches preferences */
int tls1_check_group_id(SSL_CONNECTION *s, uint16_t group_id,
int check_own_groups)
{
const uint16_t *groups;
size_t groups_len;
if (group_id == 0)
return 0;
/* Check for Suite B compliance */
if (tls1_suiteb(s) && s->s3.tmp.new_cipher != NULL) {
unsigned long cid = s->s3.tmp.new_cipher->id;
if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) {
if (group_id != OSSL_TLS_GROUP_ID_secp256r1)
return 0;
} else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) {
if (group_id != OSSL_TLS_GROUP_ID_secp384r1)
return 0;
} else {
/* Should never happen */
return 0;
}
}
if (check_own_groups) {
/* Check group is one of our preferences */
tls1_get_supported_groups(s, &groups, &groups_len);
if (!tls1_in_list(group_id, groups, groups_len))
return 0;
}
if (!tls_group_allowed(s, group_id, SSL_SECOP_CURVE_CHECK))
return 0;
/* For clients, nothing more to check */
if (!s->server)
return 1;
/* Check group is one of peers preferences */
tls1_get_peer_groups(s, &groups, &groups_len);
/*
* RFC 4492 does not require the supported elliptic curves extension
* so if it is not sent we can just choose any curve.
* It is invalid to send an empty list in the supported groups
* extension, so groups_len == 0 always means no extension.
*/
if (groups_len == 0)
return 1;
return tls1_in_list(group_id, groups, groups_len);
}
void tls1_get_formatlist(SSL_CONNECTION *s, const unsigned char **pformats,
size_t *num_formats)
{
/*
* If we have a custom point format list use it otherwise use default
*/
if (s->ext.ecpointformats) {
*pformats = s->ext.ecpointformats;
*num_formats = s->ext.ecpointformats_len;
} else if ((s->options & SSL_OP_LEGACY_EC_POINT_FORMATS) != 0) {
*pformats = ecformats_all;
/* For Suite B we don't support char2 fields */
if (tls1_suiteb(s))
*num_formats = sizeof(ecformats_all) - 1;
else
*num_formats = sizeof(ecformats_all);
} else {
*pformats = ecformats_default;
*num_formats = sizeof(ecformats_default);
}
}
/* Check a key is compatible with compression extension */
static int tls1_check_pkey_comp(SSL_CONNECTION *s, EVP_PKEY *pkey)
{
unsigned char comp_id;
size_t i;
int point_conv;
/* If not an EC key nothing to check */
if (!EVP_PKEY_is_a(pkey, "EC"))
return 1;
/* Get required compression id */
point_conv = EVP_PKEY_get_ec_point_conv_form(pkey);
if (point_conv == 0)
return 0;
if (point_conv == POINT_CONVERSION_UNCOMPRESSED) {
comp_id = TLSEXT_ECPOINTFORMAT_uncompressed;
} else if (SSL_CONNECTION_IS_TLS13(s)) {
/*
* ec_point_formats extension is not used in TLSv1.3 so we ignore
* this check.
*/
return 1;
} else {
int field_type = EVP_PKEY_get_field_type(pkey);
if (field_type == NID_X9_62_prime_field)
comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime;
else if (field_type == NID_X9_62_characteristic_two_field)
comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2;
else
return 0;
}
/*
* If point formats extension present check it, otherwise everything is
* supported (see RFC4492).
*/
if (s->ext.peer_ecpointformats == NULL)
return 1;
for (i = 0; i < s->ext.peer_ecpointformats_len; i++) {
if (s->ext.peer_ecpointformats[i] == comp_id)
return 1;
}
return 0;
}
/* Return group id of a key */
static uint16_t tls1_get_group_id(EVP_PKEY *pkey)
{
int curve_nid = ssl_get_EC_curve_nid(pkey);
if (curve_nid == NID_undef)
return 0;
return tls1_nid2group_id(curve_nid);
}
/*
* Check cert parameters compatible with extensions: currently just checks EC
* certificates have compatible curves and compression.
*/
static int tls1_check_cert_param(SSL_CONNECTION *s, X509 *x, int check_ee_md)
{
uint16_t group_id;
EVP_PKEY *pkey;
pkey = X509_get0_pubkey(x);
if (pkey == NULL)
return 0;
/* If not EC nothing to do */
if (!EVP_PKEY_is_a(pkey, "EC"))
return 1;
/* Check compression */
if (!tls1_check_pkey_comp(s, pkey))
return 0;
group_id = tls1_get_group_id(pkey);
/*
* For a server we allow the certificate to not be in our list of supported
* groups.
*/
if (!tls1_check_group_id(s, group_id, !s->server))
return 0;
/*
* Special case for suite B. We *MUST* sign using SHA256+P-256 or
* SHA384+P-384.
*/
if (check_ee_md && tls1_suiteb(s)) {
int check_md;
size_t i;
/* Check to see we have necessary signing algorithm */
if (group_id == OSSL_TLS_GROUP_ID_secp256r1)
check_md = NID_ecdsa_with_SHA256;
else if (group_id == OSSL_TLS_GROUP_ID_secp384r1)
check_md = NID_ecdsa_with_SHA384;
else
return 0; /* Should never happen */
for (i = 0; i < s->shared_sigalgslen; i++) {
if (check_md == s->shared_sigalgs[i]->sigandhash)
return 1;
}
return 0;
}
return 1;
}
/*
* tls1_check_ec_tmp_key - Check EC temporary key compatibility
* @s: SSL connection
* @cid: Cipher ID we're considering using
*
* Checks that the kECDHE cipher suite we're considering using
* is compatible with the client extensions.
*
* Returns 0 when the cipher can't be used or 1 when it can.
*/
int tls1_check_ec_tmp_key(SSL_CONNECTION *s, unsigned long cid)
{
/* If not Suite B just need a shared group */
if (!tls1_suiteb(s))
return tls1_shared_group(s, 0) != 0;
/*
* If Suite B, AES128 MUST use P-256 and AES256 MUST use P-384, no other
* curves permitted.
*/
if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
return tls1_check_group_id(s, OSSL_TLS_GROUP_ID_secp256r1, 1);
if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
return tls1_check_group_id(s, OSSL_TLS_GROUP_ID_secp384r1, 1);
return 0;
}
/* Default sigalg schemes */
static const uint16_t tls12_sigalgs[] = {
TLSEXT_SIGALG_mldsa65,
TLSEXT_SIGALG_mldsa87,
TLSEXT_SIGALG_mldsa44,
TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
TLSEXT_SIGALG_ed25519,
TLSEXT_SIGALG_ed448,
TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256,
TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384,
TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512,
TLSEXT_SIGALG_rsa_pss_pss_sha256,
TLSEXT_SIGALG_rsa_pss_pss_sha384,
TLSEXT_SIGALG_rsa_pss_pss_sha512,
TLSEXT_SIGALG_rsa_pss_rsae_sha256,
TLSEXT_SIGALG_rsa_pss_rsae_sha384,
TLSEXT_SIGALG_rsa_pss_rsae_sha512,
TLSEXT_SIGALG_rsa_pkcs1_sha256,
TLSEXT_SIGALG_rsa_pkcs1_sha384,
TLSEXT_SIGALG_rsa_pkcs1_sha512,
TLSEXT_SIGALG_ecdsa_sha224,
TLSEXT_SIGALG_ecdsa_sha1,
TLSEXT_SIGALG_rsa_pkcs1_sha224,
TLSEXT_SIGALG_rsa_pkcs1_sha1,
TLSEXT_SIGALG_dsa_sha224,
TLSEXT_SIGALG_dsa_sha1,
TLSEXT_SIGALG_dsa_sha256,
TLSEXT_SIGALG_dsa_sha384,
TLSEXT_SIGALG_dsa_sha512,
#ifndef OPENSSL_NO_GOST
TLSEXT_SIGALG_gostr34102012_256_intrinsic,
TLSEXT_SIGALG_gostr34102012_512_intrinsic,
TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
TLSEXT_SIGALG_gostr34102001_gostr3411,
#endif
};
static const uint16_t suiteb_sigalgs[] = {
TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
TLSEXT_SIGALG_ecdsa_secp384r1_sha384
};
static const SIGALG_LOOKUP sigalg_lookup_tbl[] = {
{TLSEXT_SIGALG_ecdsa_secp256r1_sha256_name,
"ECDSA+SHA256", TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
NID_ecdsa_with_SHA256, NID_X9_62_prime256v1, 1, 0,
TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
{TLSEXT_SIGALG_ecdsa_secp384r1_sha384_name,
"ECDSA+SHA384", TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
NID_ecdsa_with_SHA384, NID_secp384r1, 1, 0,
TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
{TLSEXT_SIGALG_ecdsa_secp521r1_sha512_name,
"ECDSA+SHA512", TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
NID_ecdsa_with_SHA512, NID_secp521r1, 1, 0,
TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
{TLSEXT_SIGALG_ed25519_name,
NULL, TLSEXT_SIGALG_ed25519,
NID_undef, -1, EVP_PKEY_ED25519, SSL_PKEY_ED25519,
NID_undef, NID_undef, 1, 0,
TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
{TLSEXT_SIGALG_ed448_name,
NULL, TLSEXT_SIGALG_ed448,
NID_undef, -1, EVP_PKEY_ED448, SSL_PKEY_ED448,
NID_undef, NID_undef, 1, 0,
TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
{TLSEXT_SIGALG_ecdsa_sha224_name,
"ECDSA+SHA224", TLSEXT_SIGALG_ecdsa_sha224,
NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
NID_ecdsa_with_SHA224, NID_undef, 1, 0,
TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
{TLSEXT_SIGALG_ecdsa_sha1_name,
"ECDSA+SHA1", TLSEXT_SIGALG_ecdsa_sha1,
NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
NID_ecdsa_with_SHA1, NID_undef, 1, 0,
TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
{TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256_name,
TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256_alias,
TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256,
NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
NID_ecdsa_with_SHA256, NID_brainpoolP256r1, 1, 0,
TLS1_3_VERSION, 0, -1, -1},
{TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384_name,
TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384_alias,
TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384,
NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
NID_ecdsa_with_SHA384, NID_brainpoolP384r1, 1, 0,
TLS1_3_VERSION, 0, -1, -1},
{TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512_name,
TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512_alias,
TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512,
NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
NID_ecdsa_with_SHA512, NID_brainpoolP512r1, 1, 0,
TLS1_3_VERSION, 0, -1, -1},
{TLSEXT_SIGALG_rsa_pss_rsae_sha256_name,
"PSS+SHA256", TLSEXT_SIGALG_rsa_pss_rsae_sha256,
NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
NID_undef, NID_undef, 1, 0,
TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
{TLSEXT_SIGALG_rsa_pss_rsae_sha384_name,
"PSS+SHA384", TLSEXT_SIGALG_rsa_pss_rsae_sha384,
NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
NID_undef, NID_undef, 1, 0,
TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
{TLSEXT_SIGALG_rsa_pss_rsae_sha512_name,
"PSS+SHA512", TLSEXT_SIGALG_rsa_pss_rsae_sha512,
NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
NID_undef, NID_undef, 1, 0,
TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
{TLSEXT_SIGALG_rsa_pss_pss_sha256_name,
NULL, TLSEXT_SIGALG_rsa_pss_pss_sha256,
NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
NID_undef, NID_undef, 1, 0,
TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
{TLSEXT_SIGALG_rsa_pss_pss_sha384_name,
NULL, TLSEXT_SIGALG_rsa_pss_pss_sha384,
NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
NID_undef, NID_undef, 1, 0,
TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
{TLSEXT_SIGALG_rsa_pss_pss_sha512_name,
NULL, TLSEXT_SIGALG_rsa_pss_pss_sha512,
NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
NID_undef, NID_undef, 1, 0,
TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
{TLSEXT_SIGALG_rsa_pkcs1_sha256_name,
"RSA+SHA256", TLSEXT_SIGALG_rsa_pkcs1_sha256,
NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
NID_sha256WithRSAEncryption, NID_undef, 1, 0,
TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
{TLSEXT_SIGALG_rsa_pkcs1_sha384_name,
"RSA+SHA384", TLSEXT_SIGALG_rsa_pkcs1_sha384,
NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
NID_sha384WithRSAEncryption, NID_undef, 1, 0,
TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
{TLSEXT_SIGALG_rsa_pkcs1_sha512_name,
"RSA+SHA512", TLSEXT_SIGALG_rsa_pkcs1_sha512,
NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
NID_sha512WithRSAEncryption, NID_undef, 1, 0,
TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
{TLSEXT_SIGALG_rsa_pkcs1_sha224_name,
"RSA+SHA224", TLSEXT_SIGALG_rsa_pkcs1_sha224,
NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
NID_sha224WithRSAEncryption, NID_undef, 1, 0,
TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
{TLSEXT_SIGALG_rsa_pkcs1_sha1_name,
"RSA+SHA1", TLSEXT_SIGALG_rsa_pkcs1_sha1,
NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
NID_sha1WithRSAEncryption, NID_undef, 1, 0,
TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
{TLSEXT_SIGALG_dsa_sha256_name,
"DSA+SHA256", TLSEXT_SIGALG_dsa_sha256,
NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
NID_dsa_with_SHA256, NID_undef, 1, 0,
TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
{TLSEXT_SIGALG_dsa_sha384_name,
"DSA+SHA384", TLSEXT_SIGALG_dsa_sha384,
NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
NID_undef, NID_undef, 1, 0,
TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
{TLSEXT_SIGALG_dsa_sha512_name,
"DSA+SHA512", TLSEXT_SIGALG_dsa_sha512,
NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
NID_undef, NID_undef, 1, 0,
TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
{TLSEXT_SIGALG_dsa_sha224_name,
"DSA+SHA224", TLSEXT_SIGALG_dsa_sha224,
NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
NID_undef, NID_undef, 1, 0,
TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
{TLSEXT_SIGALG_dsa_sha1_name,
"DSA+SHA1", TLSEXT_SIGALG_dsa_sha1,
NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
NID_dsaWithSHA1, NID_undef, 1, 0,
TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
#ifndef OPENSSL_NO_GOST
{TLSEXT_SIGALG_gostr34102012_256_intrinsic_alias, /* RFC9189 */
TLSEXT_SIGALG_gostr34102012_256_intrinsic_name,
TLSEXT_SIGALG_gostr34102012_256_intrinsic,
NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
NID_undef, NID_undef, 1, 0,
TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
{TLSEXT_SIGALG_gostr34102012_256_intrinsic_alias, /* RFC9189 */
TLSEXT_SIGALG_gostr34102012_256_intrinsic_name,
TLSEXT_SIGALG_gostr34102012_512_intrinsic,
NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
NID_undef, NID_undef, 1, 0,
TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
{TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256_name,
NULL, TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
NID_undef, NID_undef, 1, 0,
TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
{TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512_name,
NULL, TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
NID_undef, NID_undef, 1, 0,
TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
{TLSEXT_SIGALG_gostr34102001_gostr3411_name,
NULL, TLSEXT_SIGALG_gostr34102001_gostr3411,
NID_id_GostR3411_94, SSL_MD_GOST94_IDX,
NID_id_GostR3410_2001, SSL_PKEY_GOST01,
NID_undef, NID_undef, 1, 0,
TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
#endif
};
/* Legacy sigalgs for TLS < 1.2 RSA TLS signatures */
static const SIGALG_LOOKUP legacy_rsa_sigalg = {
"rsa_pkcs1_md5_sha1", NULL, 0,
NID_md5_sha1, SSL_MD_MD5_SHA1_IDX,
EVP_PKEY_RSA, SSL_PKEY_RSA,
NID_undef, NID_undef, 1, 0,
TLS1_VERSION, TLS1_2_VERSION, DTLS1_VERSION, DTLS1_2_VERSION
};
/*
* Default signature algorithm values used if signature algorithms not present.
* From RFC5246. Note: order must match certificate index order.
*/
static const uint16_t tls_default_sigalg[] = {
TLSEXT_SIGALG_rsa_pkcs1_sha1, /* SSL_PKEY_RSA */
0, /* SSL_PKEY_RSA_PSS_SIGN */
TLSEXT_SIGALG_dsa_sha1, /* SSL_PKEY_DSA_SIGN */
TLSEXT_SIGALG_ecdsa_sha1, /* SSL_PKEY_ECC */
TLSEXT_SIGALG_gostr34102001_gostr3411, /* SSL_PKEY_GOST01 */
TLSEXT_SIGALG_gostr34102012_256_intrinsic, /* SSL_PKEY_GOST12_256 */
TLSEXT_SIGALG_gostr34102012_512_intrinsic, /* SSL_PKEY_GOST12_512 */
0, /* SSL_PKEY_ED25519 */
0, /* SSL_PKEY_ED448 */
};
int ssl_setup_sigalgs(SSL_CTX *ctx)
{
size_t i, cache_idx, sigalgs_len, enabled;
const SIGALG_LOOKUP *lu;
SIGALG_LOOKUP *cache = NULL;
uint16_t *tls12_sigalgs_list = NULL;
EVP_PKEY *tmpkey = EVP_PKEY_new();
int istls;
int ret = 0;
if (ctx == NULL)
goto err;
istls = !SSL_CTX_IS_DTLS(ctx);
sigalgs_len = OSSL_NELEM(sigalg_lookup_tbl) + ctx->sigalg_list_len;
cache = OPENSSL_calloc(sigalgs_len, sizeof(const SIGALG_LOOKUP));
if (cache == NULL || tmpkey == NULL)
goto err;
tls12_sigalgs_list = OPENSSL_calloc(sigalgs_len, sizeof(uint16_t));
if (tls12_sigalgs_list == NULL)
goto err;
ERR_set_mark();
/* First fill cache and tls12_sigalgs list from legacy algorithm list */
for (i = 0, lu = sigalg_lookup_tbl;
i < OSSL_NELEM(sigalg_lookup_tbl); lu++, i++) {
EVP_PKEY_CTX *pctx;
cache[i] = *lu;
/*
* Check hash is available.
* This test is not perfect. A provider could have support
* for a signature scheme, but not a particular hash. However the hash
* could be available from some other loaded provider. In that case it
* could be that the signature is available, and the hash is available
* independently - but not as a combination. We ignore this for now.
*/
if (lu->hash != NID_undef
&& ctx->ssl_digest_methods[lu->hash_idx] == NULL) {
cache[i].available = 0;
continue;
}
if (!EVP_PKEY_set_type(tmpkey, lu->sig)) {
cache[i].available = 0;
continue;
}
pctx = EVP_PKEY_CTX_new_from_pkey(ctx->libctx, tmpkey, ctx->propq);
/* If unable to create pctx we assume the sig algorithm is unavailable */
if (pctx == NULL)
cache[i].available = 0;
EVP_PKEY_CTX_free(pctx);
}
/* Now complete cache and tls12_sigalgs list with provider sig information */
cache_idx = OSSL_NELEM(sigalg_lookup_tbl);
for (i = 0; i < ctx->sigalg_list_len; i++) {
TLS_SIGALG_INFO si = ctx->sigalg_list[i];
cache[cache_idx].name = si.name;
cache[cache_idx].name12 = si.sigalg_name;
cache[cache_idx].sigalg = si.code_point;
tls12_sigalgs_list[cache_idx] = si.code_point;
cache[cache_idx].hash = si.hash_name?OBJ_txt2nid(si.hash_name):NID_undef;
cache[cache_idx].hash_idx = ssl_get_md_idx(cache[cache_idx].hash);
cache[cache_idx].sig = OBJ_txt2nid(si.sigalg_name);
cache[cache_idx].sig_idx = (int)(i + SSL_PKEY_NUM);
cache[cache_idx].sigandhash = OBJ_txt2nid(si.sigalg_name);
cache[cache_idx].curve = NID_undef;
cache[cache_idx].mintls = TLS1_3_VERSION;
cache[cache_idx].maxtls = TLS1_3_VERSION;
cache[cache_idx].mindtls = -1;
cache[cache_idx].maxdtls = -1;
/* Compatibility with TLS 1.3 is checked on load */
cache[cache_idx].available = istls;
cache[cache_idx].advertise = 0;
cache_idx++;
}
ERR_pop_to_mark();
enabled = 0;
for (i = 0; i < OSSL_NELEM(tls12_sigalgs); ++i) {
SIGALG_LOOKUP *ent = cache;
size_t j;
for (j = 0; j < sigalgs_len; ent++, j++) {
if (ent->sigalg != tls12_sigalgs[i])
continue;
/* Dedup by marking cache entry as default enabled. */
if (ent->available && !ent->advertise) {
ent->advertise = 1;
tls12_sigalgs_list[enabled++] = tls12_sigalgs[i];
}
break;
}
}
/* Append any provider sigalgs not yet handled */
for (i = OSSL_NELEM(sigalg_lookup_tbl); i < sigalgs_len; ++i) {
SIGALG_LOOKUP *ent = &cache[i];
if (ent->available && !ent->advertise)
tls12_sigalgs_list[enabled++] = ent->sigalg;
}
ctx->sigalg_lookup_cache = cache;
ctx->sigalg_lookup_cache_len = sigalgs_len;
ctx->tls12_sigalgs = tls12_sigalgs_list;
ctx->tls12_sigalgs_len = enabled;
cache = NULL;
tls12_sigalgs_list = NULL;
ret = 1;
err:
OPENSSL_free(cache);
OPENSSL_free(tls12_sigalgs_list);
EVP_PKEY_free(tmpkey);
return ret;
}
#define SIGLEN_BUF_INCREMENT 100
char *SSL_get1_builtin_sigalgs(OSSL_LIB_CTX *libctx)
{
size_t i, maxretlen = SIGLEN_BUF_INCREMENT;
const SIGALG_LOOKUP *lu;
EVP_PKEY *tmpkey = EVP_PKEY_new();
char *retval = OPENSSL_malloc(maxretlen);
if (retval == NULL)
return NULL;
/* ensure retval string is NUL terminated */
retval[0] = (char)0;
for (i = 0, lu = sigalg_lookup_tbl;
i < OSSL_NELEM(sigalg_lookup_tbl); lu++, i++) {
EVP_PKEY_CTX *pctx;
int enabled = 1;
ERR_set_mark();
/* Check hash is available in some provider. */
if (lu->hash != NID_undef) {
EVP_MD *hash = EVP_MD_fetch(libctx, OBJ_nid2ln(lu->hash), NULL);
/* If unable to create we assume the hash algorithm is unavailable */
if (hash == NULL) {
enabled = 0;
ERR_pop_to_mark();
continue;
}
EVP_MD_free(hash);
}
if (!EVP_PKEY_set_type(tmpkey, lu->sig)) {
enabled = 0;
ERR_pop_to_mark();
continue;
}
pctx = EVP_PKEY_CTX_new_from_pkey(libctx, tmpkey, NULL);
/* If unable to create pctx we assume the sig algorithm is unavailable */
if (pctx == NULL)
enabled = 0;
ERR_pop_to_mark();
EVP_PKEY_CTX_free(pctx);
if (enabled) {
const char *sa = lu->name;
if (sa != NULL) {
if (strlen(sa) + strlen(retval) + 1 >= maxretlen) {
char *tmp;
maxretlen += SIGLEN_BUF_INCREMENT;
tmp = OPENSSL_realloc(retval, maxretlen);
if (tmp == NULL) {
OPENSSL_free(retval);
return NULL;
}
retval = tmp;
}
if (strlen(retval) > 0)
OPENSSL_strlcat(retval, ":", maxretlen);
OPENSSL_strlcat(retval, sa, maxretlen);
} else {
/* lu->name must not be NULL */
ERR_raise(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR);
}
}
}
EVP_PKEY_free(tmpkey);
return retval;
}
/* Lookup TLS signature algorithm */
static const SIGALG_LOOKUP *tls1_lookup_sigalg(const SSL_CTX *ctx,
uint16_t sigalg)
{
size_t i;
const SIGALG_LOOKUP *lu = ctx->sigalg_lookup_cache;
for (i = 0; i < ctx->sigalg_lookup_cache_len; lu++, i++) {
if (lu->sigalg == sigalg) {
if (!lu->available)
return NULL;
return lu;
}
}
return NULL;
}
/* Lookup hash: return 0 if invalid or not enabled */
int tls1_lookup_md(SSL_CTX *ctx, const SIGALG_LOOKUP *lu, const EVP_MD **pmd)
{
const EVP_MD *md;
if (lu == NULL)
return 0;
/* lu->hash == NID_undef means no associated digest */
if (lu->hash == NID_undef) {
md = NULL;
} else {
md = ssl_md(ctx, lu->hash_idx);
if (md == NULL)
return 0;
}
if (pmd)
*pmd = md;
return 1;
}
/*
* Check if key is large enough to generate RSA-PSS signature.
*
* The key must greater than or equal to 2 * hash length + 2.
* SHA512 has a hash length of 64 bytes, which is incompatible
* with a 128 byte (1024 bit) key.
*/
#define RSA_PSS_MINIMUM_KEY_SIZE(md) (2 * EVP_MD_get_size(md) + 2)
static int rsa_pss_check_min_key_size(SSL_CTX *ctx, const EVP_PKEY *pkey,
const SIGALG_LOOKUP *lu)
{
const EVP_MD *md;
if (pkey == NULL)
return 0;
if (!tls1_lookup_md(ctx, lu, &md) || md == NULL)
return 0;
if (EVP_MD_get_size(md) <= 0)
return 0;
if (EVP_PKEY_get_size(pkey) < RSA_PSS_MINIMUM_KEY_SIZE(md))
return 0;
return 1;
}
/*
* Returns a signature algorithm when the peer did not send a list of supported
* signature algorithms. The signature algorithm is fixed for the certificate
* type. |idx| is a certificate type index (SSL_PKEY_*). When |idx| is -1 the
* certificate type from |s| will be used.
* Returns the signature algorithm to use, or NULL on error.
*/
static const SIGALG_LOOKUP *tls1_get_legacy_sigalg(const SSL_CONNECTION *s,
int idx)
{
if (idx == -1) {
if (s->server) {
size_t i;
/* Work out index corresponding to ciphersuite */
for (i = 0; i < s->ssl_pkey_num; i++) {
const SSL_CERT_LOOKUP *clu
= ssl_cert_lookup_by_idx(i, SSL_CONNECTION_GET_CTX(s));
if (clu == NULL)
continue;
if (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) {
idx = (int)i;
break;
}
}
/*
* Some GOST ciphersuites allow more than one signature algorithms
* */
if (idx == SSL_PKEY_GOST01 && s->s3.tmp.new_cipher->algorithm_auth != SSL_aGOST01) {
int real_idx;
for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST01;
real_idx--) {
if (s->cert->pkeys[real_idx].privatekey != NULL) {
idx = real_idx;
break;
}
}
}
/*
* As both SSL_PKEY_GOST12_512 and SSL_PKEY_GOST12_256 indices can be used
* with new (aGOST12-only) ciphersuites, we should find out which one is available really.
*/
else if (idx == SSL_PKEY_GOST12_256) {
int real_idx;
for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST12_256;
real_idx--) {
if (s->cert->pkeys[real_idx].privatekey != NULL) {
idx = real_idx;
break;
}
}
}
} else {
idx = (int)(s->cert->key - s->cert->pkeys);
}
}
if (idx < 0 || idx >= (int)OSSL_NELEM(tls_default_sigalg))
return NULL;
if (SSL_USE_SIGALGS(s) || idx != SSL_PKEY_RSA) {
const SIGALG_LOOKUP *lu =
tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s),
tls_default_sigalg[idx]);
if (lu == NULL)
return NULL;
if (!tls1_lookup_md(SSL_CONNECTION_GET_CTX(s), lu, NULL))
return NULL;
if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
return NULL;
return lu;
}
if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, &legacy_rsa_sigalg))
return NULL;
return &legacy_rsa_sigalg;
}
/* Set peer sigalg based key type */
int tls1_set_peer_legacy_sigalg(SSL_CONNECTION *s, const EVP_PKEY *pkey)
{
size_t idx;
const SIGALG_LOOKUP *lu;
if (ssl_cert_lookup_by_pkey(pkey, &idx, SSL_CONNECTION_GET_CTX(s)) == NULL)
return 0;
lu = tls1_get_legacy_sigalg(s, (int)idx);
if (lu == NULL)
return 0;
s->s3.tmp.peer_sigalg = lu;
return 1;
}
size_t tls12_get_psigalgs(SSL_CONNECTION *s, int sent, const uint16_t **psigs)
{
/*
* If Suite B mode use Suite B sigalgs only, ignore any other
* preferences.
*/
switch (tls1_suiteb(s)) {
case SSL_CERT_FLAG_SUITEB_128_LOS:
*psigs = suiteb_sigalgs;
return OSSL_NELEM(suiteb_sigalgs);
case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
*psigs = suiteb_sigalgs;
return 1;
case SSL_CERT_FLAG_SUITEB_192_LOS:
*psigs = suiteb_sigalgs + 1;
return 1;
}
/*
* We use client_sigalgs (if not NULL) if we're a server
* and sending a certificate request or if we're a client and
* determining which shared algorithm to use.
*/
if ((s->server == sent) && s->cert->client_sigalgs != NULL) {
*psigs = s->cert->client_sigalgs;
return s->cert->client_sigalgslen;
} else if (s->cert->conf_sigalgs) {
*psigs = s->cert->conf_sigalgs;
return s->cert->conf_sigalgslen;
} else {
*psigs = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs;
return SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len;
}
}
/*
* Called by servers only. Checks that we have a sig alg that supports the
* specified EC curve.
*/
int tls_check_sigalg_curve(const SSL_CONNECTION *s, int curve)
{
const uint16_t *sigs;
size_t siglen, i;
if (s->cert->conf_sigalgs) {
sigs = s->cert->conf_sigalgs;
siglen = s->cert->conf_sigalgslen;
} else {
sigs = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs;
siglen = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len;
}
for (i = 0; i < siglen; i++) {
const SIGALG_LOOKUP *lu =
tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), sigs[i]);
if (lu == NULL)
continue;
if (lu->sig == EVP_PKEY_EC
&& lu->curve != NID_undef
&& curve == lu->curve)
return 1;
}
return 0;
}
/*
* Return the number of security bits for the signature algorithm, or 0 on
* error.
*/
static int sigalg_security_bits(SSL_CTX *ctx, const SIGALG_LOOKUP *lu)
{
const EVP_MD *md = NULL;
int secbits = 0;
if (!tls1_lookup_md(ctx, lu, &md))
return 0;
if (md != NULL)
{
int md_type = EVP_MD_get_type(md);
/* Security bits: half digest bits */
secbits = EVP_MD_get_size(md) * 4;
if (secbits <= 0)
return 0;
/*
* SHA1 and MD5 are known to be broken. Reduce security bits so that
* they're no longer accepted at security level 1. The real values don't
* really matter as long as they're lower than 80, which is our
* security level 1.
* https://eprint.iacr.org/2020/014 puts a chosen-prefix attack for
* SHA1 at 2^63.4 and MD5+SHA1 at 2^67.2
* https://documents.epfl.ch/users/l/le/lenstra/public/papers/lat.pdf
* puts a chosen-prefix attack for MD5 at 2^39.
*/
if (md_type == NID_sha1)
secbits = 64;
else if (md_type == NID_md5_sha1)
secbits = 67;
else if (md_type == NID_md5)
secbits = 39;
} else {
/* Values from https://tools.ietf.org/html/rfc8032#section-8.5 */
if (lu->sigalg == TLSEXT_SIGALG_ed25519)
secbits = 128;
else if (lu->sigalg == TLSEXT_SIGALG_ed448)
secbits = 224;
}
/*
* For provider-based sigalgs we have secbits information available
* in the (provider-loaded) sigalg_list structure
*/
if ((secbits == 0) && (lu->sig_idx >= SSL_PKEY_NUM)
&& ((lu->sig_idx - SSL_PKEY_NUM) < (int)ctx->sigalg_list_len)) {
secbits = ctx->sigalg_list[lu->sig_idx - SSL_PKEY_NUM].secbits;
}
return secbits;
}
static int tls_sigalg_compat(SSL_CONNECTION *sc, const SIGALG_LOOKUP *lu)
{
int minversion, maxversion;
int minproto, maxproto;
if (!lu->available)
return 0;
if (SSL_CONNECTION_IS_DTLS(sc)) {
if (sc->ssl.method->version == DTLS_ANY_VERSION) {
minproto = sc->min_proto_version;
maxproto = sc->max_proto_version;
} else {
maxproto = minproto = sc->version;
}
minversion = lu->mindtls;
maxversion = lu->maxdtls;
} else {
if (sc->ssl.method->version == TLS_ANY_VERSION) {
minproto = sc->min_proto_version;
maxproto = sc->max_proto_version;
} else {
maxproto = minproto = sc->version;
}
minversion = lu->mintls;
maxversion = lu->maxtls;
}
if (minversion == -1 || maxversion == -1
|| (minversion != 0 && maxproto != 0
&& ssl_version_cmp(sc, minversion, maxproto) > 0)
|| (maxversion != 0 && minproto != 0
&& ssl_version_cmp(sc, maxversion, minproto) < 0)
|| !tls12_sigalg_allowed(sc, SSL_SECOP_SIGALG_SUPPORTED, lu))
return 0;
return 1;
}
/*
* Check signature algorithm is consistent with sent supported signature
* algorithms and if so set relevant digest and signature scheme in
* s.
*/
int tls12_check_peer_sigalg(SSL_CONNECTION *s, uint16_t sig, EVP_PKEY *pkey)
{
const uint16_t *sent_sigs;
const EVP_MD *md = NULL;
char sigalgstr[2];
size_t sent_sigslen, i, cidx;
int pkeyid = -1;
const SIGALG_LOOKUP *lu;
int secbits = 0;
pkeyid = EVP_PKEY_get_id(pkey);
if (SSL_CONNECTION_IS_TLS13(s)) {
/* Disallow DSA for TLS 1.3 */
if (pkeyid == EVP_PKEY_DSA) {
SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
return 0;
}
/* Only allow PSS for TLS 1.3 */
if (pkeyid == EVP_PKEY_RSA)
pkeyid = EVP_PKEY_RSA_PSS;
}
/* Is this code point available and compatible with the protocol */
lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), sig);
if (lu == NULL || !tls_sigalg_compat(s, lu)) {
SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
return 0;
}
/* if this sigalg is loaded, set so far unknown pkeyid to its sig NID */
if (pkeyid == EVP_PKEY_KEYMGMT)
pkeyid = lu->sig;
/* Should never happen */
if (pkeyid == -1) {
SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
return -1;
}
/*
* Check sigalgs is known. Disallow SHA1/SHA224 with TLS 1.3. Check key type
* is consistent with signature: RSA keys can be used for RSA-PSS
*/
if ((SSL_CONNECTION_IS_TLS13(s)
&& (lu->hash == NID_sha1 || lu->hash == NID_sha224))
|| (pkeyid != lu->sig
&& (lu->sig != EVP_PKEY_RSA_PSS || pkeyid != EVP_PKEY_RSA))) {
SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
return 0;
}
/* Check the sigalg is consistent with the key OID */
if (!ssl_cert_lookup_by_nid(
(pkeyid == EVP_PKEY_RSA_PSS) ? EVP_PKEY_get_id(pkey) : pkeyid,
&cidx, SSL_CONNECTION_GET_CTX(s))
|| lu->sig_idx != (int)cidx) {
SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
return 0;
}
if (pkeyid == EVP_PKEY_EC) {
/* Check point compression is permitted */
if (!tls1_check_pkey_comp(s, pkey)) {
SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
SSL_R_ILLEGAL_POINT_COMPRESSION);
return 0;
}
/* For TLS 1.3 or Suite B check curve matches signature algorithm */
if (SSL_CONNECTION_IS_TLS13(s) || tls1_suiteb(s)) {
int curve = ssl_get_EC_curve_nid(pkey);
if (lu->curve != NID_undef && curve != lu->curve) {
SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
return 0;
}
}
if (!SSL_CONNECTION_IS_TLS13(s)) {
/* Check curve matches extensions */
if (!tls1_check_group_id(s, tls1_get_group_id(pkey), 1)) {
SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
return 0;
}
if (tls1_suiteb(s)) {
/* Check sigalg matches a permissible Suite B value */
if (sig != TLSEXT_SIGALG_ecdsa_secp256r1_sha256
&& sig != TLSEXT_SIGALG_ecdsa_secp384r1_sha384) {
SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
SSL_R_WRONG_SIGNATURE_TYPE);
return 0;
}
}
}
} else if (tls1_suiteb(s)) {
SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
return 0;
}
/* Check signature matches a type we sent */
sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
if (sig == *sent_sigs)
break;
}
/* Allow fallback to SHA1 if not strict mode */
if (i == sent_sigslen && (lu->hash != NID_sha1
|| s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) {
SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
return 0;
}
if (!tls1_lookup_md(SSL_CONNECTION_GET_CTX(s), lu, &md)) {
SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_UNKNOWN_DIGEST);
return 0;
}
/*
* Make sure security callback allows algorithm. For historical
* reasons we have to pass the sigalg as a two byte char array.
*/
sigalgstr[0] = (sig >> 8) & 0xff;
sigalgstr[1] = sig & 0xff;
secbits = sigalg_security_bits(SSL_CONNECTION_GET_CTX(s), lu);
if (secbits == 0 ||
!ssl_security(s, SSL_SECOP_SIGALG_CHECK, secbits,
md != NULL ? EVP_MD_get_type(md) : NID_undef,
(void *)sigalgstr)) {
SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
return 0;
}
/* Store the sigalg the peer uses */
s->s3.tmp.peer_sigalg = lu;
return 1;
}
int SSL_get_peer_signature_type_nid(const SSL *s, int *pnid)
{
const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s);
if (sc == NULL)
return 0;
if (sc->s3.tmp.peer_sigalg == NULL)
return 0;
*pnid = sc->s3.tmp.peer_sigalg->sig;
return 1;
}
int SSL_get_signature_type_nid(const SSL *s, int *pnid)
{
const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s);
if (sc == NULL)
return 0;
if (sc->s3.tmp.sigalg == NULL)
return 0;
*pnid = sc->s3.tmp.sigalg->sig;
return 1;
}
/*
* Set a mask of disabled algorithms: an algorithm is disabled if it isn't
* supported, doesn't appear in supported signature algorithms, isn't supported
* by the enabled protocol versions or by the security level.
*
* This function should only be used for checking which ciphers are supported
* by the client.
*
* Call ssl_cipher_disabled() to check that it's enabled or not.
*/
int ssl_set_client_disabled(SSL_CONNECTION *s)
{
s->s3.tmp.mask_a = 0;
s->s3.tmp.mask_k = 0;
ssl_set_sig_mask(&s->s3.tmp.mask_a, s, SSL_SECOP_SIGALG_MASK);
if (ssl_get_min_max_version(s, &s->s3.tmp.min_ver,
&s->s3.tmp.max_ver, NULL) != 0)
return 0;
#ifndef OPENSSL_NO_PSK
/* with PSK there must be client callback set */
if (!s->psk_client_callback) {
s->s3.tmp.mask_a |= SSL_aPSK;
s->s3.tmp.mask_k |= SSL_PSK;
}
#endif /* OPENSSL_NO_PSK */
#ifndef OPENSSL_NO_SRP
if (!(s->srp_ctx.srp_Mask & SSL_kSRP)) {
s->s3.tmp.mask_a |= SSL_aSRP;
s->s3.tmp.mask_k |= SSL_kSRP;
}
#endif
return 1;
}
/*
* ssl_cipher_disabled - check that a cipher is disabled or not
* @s: SSL connection that you want to use the cipher on
* @c: cipher to check
* @op: Security check that you want to do
* @ecdhe: If set to 1 then TLSv1 ECDHE ciphers are also allowed in SSLv3
*
* Returns 1 when it's disabled, 0 when enabled.
*/
int ssl_cipher_disabled(const SSL_CONNECTION *s, const SSL_CIPHER *c,
int op, int ecdhe)
{
int minversion = SSL_CONNECTION_IS_DTLS(s) ? c->min_dtls : c->min_tls;
int maxversion = SSL_CONNECTION_IS_DTLS(s) ? c->max_dtls : c->max_tls;
if (c->algorithm_mkey & s->s3.tmp.mask_k
|| c->algorithm_auth & s->s3.tmp.mask_a)
return 1;
if (s->s3.tmp.max_ver == 0)
return 1;
if (SSL_IS_QUIC_INT_HANDSHAKE(s))
/* For QUIC, only allow these ciphersuites. */
switch (SSL_CIPHER_get_id(c)) {
case TLS1_3_CK_AES_128_GCM_SHA256:
case TLS1_3_CK_AES_256_GCM_SHA384:
case TLS1_3_CK_CHACHA20_POLY1305_SHA256:
break;
default:
return 1;
}
/*
* For historical reasons we will allow ECHDE to be selected by a server
* in SSLv3 if we are a client
*/
if (minversion == TLS1_VERSION
&& ecdhe
&& (c->algorithm_mkey & (SSL_kECDHE | SSL_kECDHEPSK)) != 0)
minversion = SSL3_VERSION;
if (ssl_version_cmp(s, minversion, s->s3.tmp.max_ver) > 0
|| ssl_version_cmp(s, maxversion, s->s3.tmp.min_ver) < 0)
return 1;
return !ssl_security(s, op, c->strength_bits, 0, (void *)c);
}
int tls_use_ticket(SSL_CONNECTION *s)
{
if ((s->options & SSL_OP_NO_TICKET))
return 0;
return ssl_security(s, SSL_SECOP_TICKET, 0, 0, NULL);
}
int tls1_set_server_sigalgs(SSL_CONNECTION *s)
{
size_t i;
/* Clear any shared signature algorithms */
OPENSSL_free(s->shared_sigalgs);
s->shared_sigalgs = NULL;
s->shared_sigalgslen = 0;
/* Clear certificate validity flags */
if (s->s3.tmp.valid_flags)
memset(s->s3.tmp.valid_flags, 0, s->ssl_pkey_num * sizeof(uint32_t));
else
s->s3.tmp.valid_flags = OPENSSL_calloc(s->ssl_pkey_num, sizeof(uint32_t));
if (s->s3.tmp.valid_flags == NULL) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
return 0;
}
/*
* If peer sent no signature algorithms check to see if we support
* the default algorithm for each certificate type
*/
if (s->s3.tmp.peer_cert_sigalgs == NULL
&& s->s3.tmp.peer_sigalgs == NULL) {
const uint16_t *sent_sigs;
size_t sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
for (i = 0; i < s->ssl_pkey_num; i++) {
const SIGALG_LOOKUP *lu = tls1_get_legacy_sigalg(s, (int)i);
size_t j;
if (lu == NULL)
continue;
/* Check default matches a type we sent */
for (j = 0; j < sent_sigslen; j++) {
if (lu->sigalg == sent_sigs[j]) {
s->s3.tmp.valid_flags[i] = CERT_PKEY_SIGN;
break;
}
}
}
return 1;
}
if (!tls1_process_sigalgs(s)) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
return 0;
}
if (s->shared_sigalgs != NULL)
return 1;
/* Fatal error if no shared signature algorithms */
SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
SSL_R_NO_SHARED_SIGNATURE_ALGORITHMS);
return 0;
}
/*-
* Gets the ticket information supplied by the client if any.
*
* hello: The parsed ClientHello data
* ret: (output) on return, if a ticket was decrypted, then this is set to
* point to the resulting session.
*/
SSL_TICKET_STATUS tls_get_ticket_from_client(SSL_CONNECTION *s,
CLIENTHELLO_MSG *hello,
SSL_SESSION **ret)
{
size_t size;
RAW_EXTENSION *ticketext;
*ret = NULL;
s->ext.ticket_expected = 0;
/*
* If tickets disabled or not supported by the protocol version
* (e.g. TLSv1.3) behave as if no ticket present to permit stateful
* resumption.
*/
if (s->version <= SSL3_VERSION || !tls_use_ticket(s))
return SSL_TICKET_NONE;
ticketext = &hello->pre_proc_exts[TLSEXT_IDX_session_ticket];
if (!ticketext->present)
return SSL_TICKET_NONE;
size = PACKET_remaining(&ticketext->data);
return tls_decrypt_ticket(s, PACKET_data(&ticketext->data), size,
hello->session_id, hello->session_id_len, ret);
}
/*-
* tls_decrypt_ticket attempts to decrypt a session ticket.
*
* If s->tls_session_secret_cb is set and we're not doing TLSv1.3 then we are
* expecting a pre-shared key ciphersuite, in which case we have no use for
* session tickets and one will never be decrypted, nor will
* s->ext.ticket_expected be set to 1.
*
* Side effects:
* Sets s->ext.ticket_expected to 1 if the server will have to issue
* a new session ticket to the client because the client indicated support
* (and s->tls_session_secret_cb is NULL) but the client either doesn't have
* a session ticket or we couldn't use the one it gave us, or if
* s->ctx->ext.ticket_key_cb asked to renew the client's ticket.
* Otherwise, s->ext.ticket_expected is set to 0.
*
* etick: points to the body of the session ticket extension.
* eticklen: the length of the session tickets extension.
* sess_id: points at the session ID.
* sesslen: the length of the session ID.
* psess: (output) on return, if a ticket was decrypted, then this is set to
* point to the resulting session.
*/
SSL_TICKET_STATUS tls_decrypt_ticket(SSL_CONNECTION *s,
const unsigned char *etick,
size_t eticklen,
const unsigned char *sess_id,
size_t sesslen, SSL_SESSION **psess)
{
SSL_SESSION *sess = NULL;
unsigned char *sdec;
const unsigned char *p;
int slen, ivlen, renew_ticket = 0, declen;
SSL_TICKET_STATUS ret = SSL_TICKET_FATAL_ERR_OTHER;
size_t mlen;
unsigned char tick_hmac[EVP_MAX_MD_SIZE];
SSL_HMAC *hctx = NULL;
EVP_CIPHER_CTX *ctx = NULL;
SSL_CTX *tctx = s->session_ctx;
SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
if (eticklen == 0) {
/*
* The client will accept a ticket but doesn't currently have
* one (TLSv1.2 and below), or treated as a fatal error in TLSv1.3
*/
ret = SSL_TICKET_EMPTY;
goto end;
}
if (!SSL_CONNECTION_IS_TLS13(s) && s->ext.session_secret_cb) {
/*
* Indicate that the ticket couldn't be decrypted rather than
* generating the session from ticket now, trigger
* abbreviated handshake based on external mechanism to
* calculate the master secret later.
*/
ret = SSL_TICKET_NO_DECRYPT;
goto end;
}
/* Need at least keyname + iv */
if (eticklen < TLSEXT_KEYNAME_LENGTH + EVP_MAX_IV_LENGTH) {
ret = SSL_TICKET_NO_DECRYPT;
goto end;
}
/* Initialize session ticket encryption and HMAC contexts */
hctx = ssl_hmac_new(tctx);
if (hctx == NULL) {
ret = SSL_TICKET_FATAL_ERR_MALLOC;
goto end;
}
ctx = EVP_CIPHER_CTX_new();
if (ctx == NULL) {
ret = SSL_TICKET_FATAL_ERR_MALLOC;
goto end;
}
#ifndef OPENSSL_NO_DEPRECATED_3_0
if (tctx->ext.ticket_key_evp_cb != NULL || tctx->ext.ticket_key_cb != NULL)
#else
if (tctx->ext.ticket_key_evp_cb != NULL)
#endif
{
unsigned char *nctick = (unsigned char *)etick;
int rv = 0;
if (tctx->ext.ticket_key_evp_cb != NULL)
rv = tctx->ext.ticket_key_evp_cb(SSL_CONNECTION_GET_USER_SSL(s),
nctick,
nctick + TLSEXT_KEYNAME_LENGTH,
ctx,
ssl_hmac_get0_EVP_MAC_CTX(hctx),
0);
#ifndef OPENSSL_NO_DEPRECATED_3_0
else if (tctx->ext.ticket_key_cb != NULL)
/* if 0 is returned, write an empty ticket */
rv = tctx->ext.ticket_key_cb(SSL_CONNECTION_GET_USER_SSL(s), nctick,
nctick + TLSEXT_KEYNAME_LENGTH,
ctx, ssl_hmac_get0_HMAC_CTX(hctx), 0);
#endif
if (rv < 0) {
ret = SSL_TICKET_FATAL_ERR_OTHER;
goto end;
}
if (rv == 0) {
ret = SSL_TICKET_NO_DECRYPT;
goto end;
}
if (rv == 2)
renew_ticket = 1;
} else {
EVP_CIPHER *aes256cbc = NULL;
/* Check key name matches */
if (memcmp(etick, tctx->ext.tick_key_name,
TLSEXT_KEYNAME_LENGTH) != 0) {
ret = SSL_TICKET_NO_DECRYPT;
goto end;
}
aes256cbc = EVP_CIPHER_fetch(sctx->libctx, "AES-256-CBC",
sctx->propq);
if (aes256cbc == NULL
|| ssl_hmac_init(hctx, tctx->ext.secure->tick_hmac_key,
sizeof(tctx->ext.secure->tick_hmac_key),
"SHA256") <= 0
|| EVP_DecryptInit_ex(ctx, aes256cbc, NULL,
tctx->ext.secure->tick_aes_key,
etick + TLSEXT_KEYNAME_LENGTH) <= 0) {
EVP_CIPHER_free(aes256cbc);
ret = SSL_TICKET_FATAL_ERR_OTHER;
goto end;
}
EVP_CIPHER_free(aes256cbc);
if (SSL_CONNECTION_IS_TLS13(s))
renew_ticket = 1;
}
/*
* Attempt to process session ticket, first conduct sanity and integrity
* checks on ticket.
*/
mlen = ssl_hmac_size(hctx);
if (mlen == 0) {
ret = SSL_TICKET_FATAL_ERR_OTHER;
goto end;
}
ivlen = EVP_CIPHER_CTX_get_iv_length(ctx);
if (ivlen < 0) {
ret = SSL_TICKET_FATAL_ERR_OTHER;
goto end;
}
/* Sanity check ticket length: must exceed keyname + IV + HMAC */
if (eticklen <= TLSEXT_KEYNAME_LENGTH + ivlen + mlen) {
ret = SSL_TICKET_NO_DECRYPT;
goto end;
}
eticklen -= mlen;
/* Check HMAC of encrypted ticket */
if (ssl_hmac_update(hctx, etick, eticklen) <= 0
|| ssl_hmac_final(hctx, tick_hmac, NULL, sizeof(tick_hmac)) <= 0) {
ret = SSL_TICKET_FATAL_ERR_OTHER;
goto end;
}
if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) {
ret = SSL_TICKET_NO_DECRYPT;
goto end;
}
/* Attempt to decrypt session data */
/* Move p after IV to start of encrypted ticket, update length */
p = etick + TLSEXT_KEYNAME_LENGTH + ivlen;
eticklen -= TLSEXT_KEYNAME_LENGTH + ivlen;
sdec = OPENSSL_malloc(eticklen);
if (sdec == NULL || EVP_DecryptUpdate(ctx, sdec, &slen, p,
(int)eticklen) <= 0) {
OPENSSL_free(sdec);
ret = SSL_TICKET_FATAL_ERR_OTHER;
goto end;
}
if (EVP_DecryptFinal(ctx, sdec + slen, &declen) <= 0) {
OPENSSL_free(sdec);
ret = SSL_TICKET_NO_DECRYPT;
goto end;
}
slen += declen;
p = sdec;
sess = d2i_SSL_SESSION_ex(NULL, &p, slen, sctx->libctx, sctx->propq);
slen -= (int)(p - sdec);
OPENSSL_free(sdec);
if (sess) {
/* Some additional consistency checks */
if (slen != 0) {
SSL_SESSION_free(sess);
sess = NULL;
ret = SSL_TICKET_NO_DECRYPT;
goto end;
}
/*
* The session ID, if non-empty, is used by some clients to detect
* that the ticket has been accepted. So we copy it to the session
* structure. If it is empty set length to zero as required by
* standard.
*/
if (sesslen) {
memcpy(sess->session_id, sess_id, sesslen);
sess->session_id_length = sesslen;
}
if (renew_ticket)
ret = SSL_TICKET_SUCCESS_RENEW;
else
ret = SSL_TICKET_SUCCESS;
goto end;
}
ERR_clear_error();
/*
* For session parse failure, indicate that we need to send a new ticket.
*/
ret = SSL_TICKET_NO_DECRYPT;
end:
EVP_CIPHER_CTX_free(ctx);
ssl_hmac_free(hctx);
/*
* If set, the decrypt_ticket_cb() is called unless a fatal error was
* detected above. The callback is responsible for checking |ret| before it
* performs any action
*/
if (s->session_ctx->decrypt_ticket_cb != NULL
&& (ret == SSL_TICKET_EMPTY
|| ret == SSL_TICKET_NO_DECRYPT
|| ret == SSL_TICKET_SUCCESS
|| ret == SSL_TICKET_SUCCESS_RENEW)) {
size_t keyname_len = eticklen;
int retcb;
if (keyname_len > TLSEXT_KEYNAME_LENGTH)
keyname_len = TLSEXT_KEYNAME_LENGTH;
retcb = s->session_ctx->decrypt_ticket_cb(SSL_CONNECTION_GET_SSL(s),
sess, etick, keyname_len,
ret,
s->session_ctx->ticket_cb_data);
switch (retcb) {
case SSL_TICKET_RETURN_ABORT:
ret = SSL_TICKET_FATAL_ERR_OTHER;
break;
case SSL_TICKET_RETURN_IGNORE:
ret = SSL_TICKET_NONE;
SSL_SESSION_free(sess);
sess = NULL;
break;
case SSL_TICKET_RETURN_IGNORE_RENEW:
if (ret != SSL_TICKET_EMPTY && ret != SSL_TICKET_NO_DECRYPT)
ret = SSL_TICKET_NO_DECRYPT;
/* else the value of |ret| will already do the right thing */
SSL_SESSION_free(sess);
sess = NULL;
break;
case SSL_TICKET_RETURN_USE:
case SSL_TICKET_RETURN_USE_RENEW:
if (ret != SSL_TICKET_SUCCESS
&& ret != SSL_TICKET_SUCCESS_RENEW)
ret = SSL_TICKET_FATAL_ERR_OTHER;
else if (retcb == SSL_TICKET_RETURN_USE)
ret = SSL_TICKET_SUCCESS;
else
ret = SSL_TICKET_SUCCESS_RENEW;
break;
default:
ret = SSL_TICKET_FATAL_ERR_OTHER;
}
}
if (s->ext.session_secret_cb == NULL || SSL_CONNECTION_IS_TLS13(s)) {
switch (ret) {
case SSL_TICKET_NO_DECRYPT:
case SSL_TICKET_SUCCESS_RENEW:
case SSL_TICKET_EMPTY:
s->ext.ticket_expected = 1;
}
}
*psess = sess;
return ret;
}
/* Check to see if a signature algorithm is allowed */
static int tls12_sigalg_allowed(const SSL_CONNECTION *s, int op,
const SIGALG_LOOKUP *lu)
{
unsigned char sigalgstr[2];
int secbits;
if (lu == NULL || !lu->available)
return 0;
/* DSA is not allowed in TLS 1.3 */
if (SSL_CONNECTION_IS_TLS13(s) && lu->sig == EVP_PKEY_DSA)
return 0;
/*
* At some point we should fully axe DSA/etc. in ClientHello as per TLS 1.3
* spec
*/
if (!s->server && !SSL_CONNECTION_IS_DTLS(s)
&& s->s3.tmp.min_ver >= TLS1_3_VERSION
&& (lu->sig == EVP_PKEY_DSA || lu->hash_idx == SSL_MD_SHA1_IDX
|| lu->hash_idx == SSL_MD_MD5_IDX
|| lu->hash_idx == SSL_MD_SHA224_IDX))
return 0;
/* See if public key algorithm allowed */
if (ssl_cert_is_disabled(SSL_CONNECTION_GET_CTX(s), lu->sig_idx))
return 0;
if (lu->sig == NID_id_GostR3410_2012_256
|| lu->sig == NID_id_GostR3410_2012_512
|| lu->sig == NID_id_GostR3410_2001) {
/* We never allow GOST sig algs on the server with TLSv1.3 */
if (s->server && SSL_CONNECTION_IS_TLS13(s))
return 0;
if (!s->server
&& SSL_CONNECTION_GET_SSL(s)->method->version == TLS_ANY_VERSION
&& s->s3.tmp.max_ver >= TLS1_3_VERSION) {
int i, num;
STACK_OF(SSL_CIPHER) *sk;
/*
* We're a client that could negotiate TLSv1.3. We only allow GOST
* sig algs if we could negotiate TLSv1.2 or below and we have GOST
* ciphersuites enabled.
*/
if (s->s3.tmp.min_ver >= TLS1_3_VERSION)
return 0;
sk = SSL_get_ciphers(SSL_CONNECTION_GET_SSL(s));
num = sk != NULL ? sk_SSL_CIPHER_num(sk) : 0;
for (i = 0; i < num; i++) {
const SSL_CIPHER *c;
c = sk_SSL_CIPHER_value(sk, i);
/* Skip disabled ciphers */
if (ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0))
continue;
if ((c->algorithm_mkey & (SSL_kGOST | SSL_kGOST18)) != 0)
break;
}
if (i == num)
return 0;
}
}
/* Finally see if security callback allows it */
secbits = sigalg_security_bits(SSL_CONNECTION_GET_CTX(s), lu);
sigalgstr[0] = (lu->sigalg >> 8) & 0xff;
sigalgstr[1] = lu->sigalg & 0xff;
return ssl_security(s, op, secbits, lu->hash, (void *)sigalgstr);
}
/*
* Get a mask of disabled public key algorithms based on supported signature
* algorithms. For example if no signature algorithm supports RSA then RSA is
* disabled.
*/
void ssl_set_sig_mask(uint32_t *pmask_a, SSL_CONNECTION *s, int op)
{
const uint16_t *sigalgs;
size_t i, sigalgslen;
uint32_t disabled_mask = SSL_aRSA | SSL_aDSS | SSL_aECDSA;
/*
* Go through all signature algorithms seeing if we support any
* in disabled_mask.
*/
sigalgslen = tls12_get_psigalgs(s, 1, &sigalgs);
for (i = 0; i < sigalgslen; i++, sigalgs++) {
const SIGALG_LOOKUP *lu =
tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), *sigalgs);
const SSL_CERT_LOOKUP *clu;
if (lu == NULL)
continue;
clu = ssl_cert_lookup_by_idx(lu->sig_idx,
SSL_CONNECTION_GET_CTX(s));
if (clu == NULL)
continue;
/* If algorithm is disabled see if we can enable it */
if ((clu->amask & disabled_mask) != 0
&& tls12_sigalg_allowed(s, op, lu))
disabled_mask &= ~clu->amask;
}
*pmask_a |= disabled_mask;
}
int tls12_copy_sigalgs(SSL_CONNECTION *s, WPACKET *pkt,
const uint16_t *psig, size_t psiglen)
{
size_t i;
int rv = 0;
for (i = 0; i < psiglen; i++, psig++) {
const SIGALG_LOOKUP *lu =
tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), *psig);
if (lu == NULL || !tls_sigalg_compat(s, lu))
continue;
if (!WPACKET_put_bytes_u16(pkt, *psig))
return 0;
/*
* If TLS 1.3 must have at least one valid TLS 1.3 message
* signing algorithm: i.e. neither RSA nor SHA1/SHA224
*/
if (rv == 0 && (!SSL_CONNECTION_IS_TLS13(s)
|| (lu->sig != EVP_PKEY_RSA
&& lu->hash != NID_sha1
&& lu->hash != NID_sha224)))
rv = 1;
}
if (rv == 0)
ERR_raise(ERR_LIB_SSL, SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
return rv;
}
/* Given preference and allowed sigalgs set shared sigalgs */
static size_t tls12_shared_sigalgs(SSL_CONNECTION *s,
const SIGALG_LOOKUP **shsig,
const uint16_t *pref, size_t preflen,
const uint16_t *allow, size_t allowlen)
{
const uint16_t *ptmp, *atmp;
size_t i, j, nmatch = 0;
for (i = 0, ptmp = pref; i < preflen; i++, ptmp++) {
const SIGALG_LOOKUP *lu =
tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), *ptmp);
/* Skip disabled hashes or signature algorithms */
if (lu == NULL
|| !tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SHARED, lu))
continue;
for (j = 0, atmp = allow; j < allowlen; j++, atmp++) {
if (*ptmp == *atmp) {
nmatch++;
if (shsig)
*shsig++ = lu;
break;
}
}
}
return nmatch;
}
/* Set shared signature algorithms for SSL structures */
static int tls1_set_shared_sigalgs(SSL_CONNECTION *s)
{
const uint16_t *pref, *allow, *conf;
size_t preflen, allowlen, conflen;
size_t nmatch;
const SIGALG_LOOKUP **salgs = NULL;
CERT *c = s->cert;
unsigned int is_suiteb = tls1_suiteb(s);
OPENSSL_free(s->shared_sigalgs);
s->shared_sigalgs = NULL;
s->shared_sigalgslen = 0;
/* If client use client signature algorithms if not NULL */
if (!s->server && c->client_sigalgs && !is_suiteb) {
conf = c->client_sigalgs;
conflen = c->client_sigalgslen;
} else if (c->conf_sigalgs && !is_suiteb) {
conf = c->conf_sigalgs;
conflen = c->conf_sigalgslen;
} else
conflen = tls12_get_psigalgs(s, 0, &conf);
if (s->options & SSL_OP_SERVER_PREFERENCE || is_suiteb) {
pref = conf;
preflen = conflen;
allow = s->s3.tmp.peer_sigalgs;
allowlen = s->s3.tmp.peer_sigalgslen;
} else {
allow = conf;
allowlen = conflen;
pref = s->s3.tmp.peer_sigalgs;
preflen = s->s3.tmp.peer_sigalgslen;
}
nmatch = tls12_shared_sigalgs(s, NULL, pref, preflen, allow, allowlen);
if (nmatch) {
if ((salgs = OPENSSL_malloc_array(nmatch, sizeof(*salgs))) == NULL)
return 0;
nmatch = tls12_shared_sigalgs(s, salgs, pref, preflen, allow, allowlen);
} else {
salgs = NULL;
}
s->shared_sigalgs = salgs;
s->shared_sigalgslen = nmatch;
return 1;
}
int tls1_save_u16(PACKET *pkt, uint16_t **pdest, size_t *pdestlen)
{
unsigned int stmp;
size_t size, i;
uint16_t *buf;
size = PACKET_remaining(pkt);
/* Invalid data length */
if (size == 0 || (size & 1) != 0)
return 0;
size >>= 1;
if ((buf = OPENSSL_malloc_array(size, sizeof(*buf))) == NULL)
return 0;
for (i = 0; i < size && PACKET_get_net_2(pkt, &stmp); i++)
buf[i] = stmp;
if (i != size) {
OPENSSL_free(buf);
return 0;
}
OPENSSL_free(*pdest);
*pdest = buf;
*pdestlen = size;
return 1;
}
int tls1_save_sigalgs(SSL_CONNECTION *s, PACKET *pkt, int cert)
{
/* Extension ignored for inappropriate versions */
if (!SSL_USE_SIGALGS(s))
return 1;
/* Should never happen */
if (s->cert == NULL)
return 0;
if (cert)
return tls1_save_u16(pkt, &s->s3.tmp.peer_cert_sigalgs,
&s->s3.tmp.peer_cert_sigalgslen);
else
return tls1_save_u16(pkt, &s->s3.tmp.peer_sigalgs,
&s->s3.tmp.peer_sigalgslen);
}
/* Set preferred digest for each key type */
int tls1_process_sigalgs(SSL_CONNECTION *s)
{
size_t i;
uint32_t *pvalid = s->s3.tmp.valid_flags;
if (!tls1_set_shared_sigalgs(s))
return 0;
for (i = 0; i < s->ssl_pkey_num; i++)
pvalid[i] = 0;
for (i = 0; i < s->shared_sigalgslen; i++) {
const SIGALG_LOOKUP *sigptr = s->shared_sigalgs[i];
int idx = sigptr->sig_idx;
/* Ignore PKCS1 based sig algs in TLSv1.3 */
if (SSL_CONNECTION_IS_TLS13(s) && sigptr->sig == EVP_PKEY_RSA)
continue;
/* If not disabled indicate we can explicitly sign */
if (pvalid[idx] == 0
&& !ssl_cert_is_disabled(SSL_CONNECTION_GET_CTX(s), idx))
pvalid[idx] = CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
}
return 1;
}
int SSL_get_sigalgs(SSL *s, int idx,
int *psign, int *phash, int *psignhash,
unsigned char *rsig, unsigned char *rhash)
{
uint16_t *psig;
size_t numsigalgs;
SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
if (sc == NULL)
return 0;
psig = sc->s3.tmp.peer_sigalgs;
numsigalgs = sc->s3.tmp.peer_sigalgslen;
if (psig == NULL || numsigalgs > INT_MAX)
return 0;
if (idx >= 0) {
const SIGALG_LOOKUP *lu;
if (idx >= (int)numsigalgs)
return 0;
psig += idx;
if (rhash != NULL)
*rhash = (unsigned char)((*psig >> 8) & 0xff);
if (rsig != NULL)
*rsig = (unsigned char)(*psig & 0xff);
lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(sc), *psig);
if (psign != NULL)
*psign = lu != NULL ? lu->sig : NID_undef;
if (phash != NULL)
*phash = lu != NULL ? lu->hash : NID_undef;
if (psignhash != NULL)
*psignhash = lu != NULL ? lu->sigandhash : NID_undef;
}
return (int)numsigalgs;
}
int SSL_get_shared_sigalgs(SSL *s, int idx,
int *psign, int *phash, int *psignhash,
unsigned char *rsig, unsigned char *rhash)
{
const SIGALG_LOOKUP *shsigalgs;
SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
if (sc == NULL)
return 0;
if (sc->shared_sigalgs == NULL
|| idx < 0
|| idx >= (int)sc->shared_sigalgslen
|| sc->shared_sigalgslen > INT_MAX)
return 0;
shsigalgs = sc->shared_sigalgs[idx];
if (phash != NULL)
*phash = shsigalgs->hash;
if (psign != NULL)
*psign = shsigalgs->sig;
if (psignhash != NULL)
*psignhash = shsigalgs->sigandhash;
if (rsig != NULL)
*rsig = (unsigned char)(shsigalgs->sigalg & 0xff);
if (rhash != NULL)
*rhash = (unsigned char)((shsigalgs->sigalg >> 8) & 0xff);
return (int)sc->shared_sigalgslen;
}
/* Maximum possible number of unique entries in sigalgs array */
#define TLS_MAX_SIGALGCNT (OSSL_NELEM(sigalg_lookup_tbl) * 2)
typedef struct {
size_t sigalgcnt;
/* TLSEXT_SIGALG_XXX values */
uint16_t sigalgs[TLS_MAX_SIGALGCNT];
SSL_CTX *ctx;
} sig_cb_st;
static void get_sigorhash(int *psig, int *phash, const char *str)
{
if (OPENSSL_strcasecmp(str, "RSA") == 0) {
*psig = EVP_PKEY_RSA;
} else if (OPENSSL_strcasecmp(str, "RSA-PSS") == 0
|| OPENSSL_strcasecmp(str, "PSS") == 0) {
*psig = EVP_PKEY_RSA_PSS;
} else if (OPENSSL_strcasecmp(str, "DSA") == 0) {
*psig = EVP_PKEY_DSA;
} else if (OPENSSL_strcasecmp(str, "ECDSA") == 0) {
*psig = EVP_PKEY_EC;
} else {
*phash = OBJ_sn2nid(str);
if (*phash == NID_undef)
*phash = OBJ_ln2nid(str);
}
}
/* Maximum length of a signature algorithm string component */
#define TLS_MAX_SIGSTRING_LEN 40
static int sig_cb(const char *elem, int len, void *arg)
{
sig_cb_st *sarg = arg;
size_t i = 0;
const SIGALG_LOOKUP *s;
char etmp[TLS_MAX_SIGSTRING_LEN], *p;
const char *iana, *alias;
int sig_alg = NID_undef, hash_alg = NID_undef;
int ignore_unknown = 0;
if (elem == NULL)
return 0;
if (elem[0] == '?') {
ignore_unknown = 1;
++elem;
--len;
}
if (sarg->sigalgcnt == TLS_MAX_SIGALGCNT)
return 0;
if (len > (int)(sizeof(etmp) - 1))
return 0;
memcpy(etmp, elem, len);
etmp[len] = 0;
p = strchr(etmp, '+');
/*
* We only allow SignatureSchemes listed in the sigalg_lookup_tbl;
* if there's no '+' in the provided name, look for the new-style combined
* name. If not, match both sig+hash to find the needed SIGALG_LOOKUP.
* Just sig+hash is not unique since TLS 1.3 adds rsa_pss_pss_* and
* rsa_pss_rsae_* that differ only by public key OID; in such cases
* we will pick the _rsae_ variant, by virtue of them appearing earlier
* in the table.
*/
if (p == NULL) {
if (sarg->ctx != NULL) {
for (i = 0; i < sarg->ctx->sigalg_lookup_cache_len; i++) {
iana = sarg->ctx->sigalg_lookup_cache[i].name;
alias = sarg->ctx->sigalg_lookup_cache[i].name12;
if ((alias != NULL && OPENSSL_strcasecmp(etmp, alias) == 0)
|| OPENSSL_strcasecmp(etmp, iana) == 0) {
/* Ignore known, but unavailable sigalgs. */
if (!sarg->ctx->sigalg_lookup_cache[i].available)
return 1;
sarg->sigalgs[sarg->sigalgcnt++] =
sarg->ctx->sigalg_lookup_cache[i].sigalg;
goto found;
}
}
} else {
/* Syntax checks use the built-in sigalgs */
for (i = 0, s = sigalg_lookup_tbl;
i < OSSL_NELEM(sigalg_lookup_tbl); i++, s++) {
iana = s->name;
alias = s->name12;
if ((alias != NULL && OPENSSL_strcasecmp(etmp, alias) == 0)
|| OPENSSL_strcasecmp(etmp, iana) == 0) {
sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
goto found;
}
}
}
} else {
*p = 0;
p++;
if (*p == 0)
return 0;
get_sigorhash(&sig_alg, &hash_alg, etmp);
get_sigorhash(&sig_alg, &hash_alg, p);
if (sig_alg != NID_undef && hash_alg != NID_undef) {
if (sarg->ctx != NULL) {
for (i = 0; i < sarg->ctx->sigalg_lookup_cache_len; i++) {
s = &sarg->ctx->sigalg_lookup_cache[i];
if (s->hash == hash_alg && s->sig == sig_alg) {
/* Ignore known, but unavailable sigalgs. */
if (!sarg->ctx->sigalg_lookup_cache[i].available)
return 1;
sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
goto found;
}
}
} else {
for (i = 0; i < OSSL_NELEM(sigalg_lookup_tbl); i++) {
s = &sigalg_lookup_tbl[i];
if (s->hash == hash_alg && s->sig == sig_alg) {
sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
goto found;
}
}
}
}
}
/* Ignore unknown algorithms if ignore_unknown */
return ignore_unknown;
found:
/* Ignore duplicates */
for (i = 0; i < sarg->sigalgcnt - 1; i++) {
if (sarg->sigalgs[i] == sarg->sigalgs[sarg->sigalgcnt - 1]) {
sarg->sigalgcnt--;
return 1;
}
}
return 1;
}
/*
* Set supported signature algorithms based on a colon separated list of the
* form sig+hash e.g. RSA+SHA512:DSA+SHA512
*/
int tls1_set_sigalgs_list(SSL_CTX *ctx, CERT *c, const char *str, int client)
{
sig_cb_st sig;
sig.sigalgcnt = 0;
if (ctx != NULL)
sig.ctx = ctx;
if (!CONF_parse_list(str, ':', 1, sig_cb, &sig))
return 0;
if (sig.sigalgcnt == 0) {
ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
"No valid signature algorithms in '%s'", str);
return 0;
}
if (c == NULL)
return 1;
return tls1_set_raw_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client);
}
int tls1_set_raw_sigalgs(CERT *c, const uint16_t *psigs, size_t salglen,
int client)
{
uint16_t *sigalgs;
if ((sigalgs = OPENSSL_malloc_array(salglen, sizeof(*sigalgs))) == NULL)
return 0;
memcpy(sigalgs, psigs, salglen * sizeof(*sigalgs));
if (client) {
OPENSSL_free(c->client_sigalgs);
c->client_sigalgs = sigalgs;
c->client_sigalgslen = salglen;
} else {
OPENSSL_free(c->conf_sigalgs);
c->conf_sigalgs = sigalgs;
c->conf_sigalgslen = salglen;
}
return 1;
}
int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, int client)
{
uint16_t *sigalgs, *sptr;
size_t i;
if (salglen & 1)
return 0;
if ((sigalgs = OPENSSL_malloc_array(salglen / 2, sizeof(*sigalgs))) == NULL)
return 0;
for (i = 0, sptr = sigalgs; i < salglen; i += 2) {
size_t j;
const SIGALG_LOOKUP *curr;
int md_id = *psig_nids++;
int sig_id = *psig_nids++;
for (j = 0, curr = sigalg_lookup_tbl; j < OSSL_NELEM(sigalg_lookup_tbl);
j++, curr++) {
if (curr->hash == md_id && curr->sig == sig_id) {
*sptr++ = curr->sigalg;
break;
}
}
if (j == OSSL_NELEM(sigalg_lookup_tbl))
goto err;
}
if (client) {
OPENSSL_free(c->client_sigalgs);
c->client_sigalgs = sigalgs;
c->client_sigalgslen = salglen / 2;
} else {
OPENSSL_free(c->conf_sigalgs);
c->conf_sigalgs = sigalgs;
c->conf_sigalgslen = salglen / 2;
}
return 1;
err:
OPENSSL_free(sigalgs);
return 0;
}
static int tls1_check_sig_alg(SSL_CONNECTION *s, X509 *x, int default_nid)
{
int sig_nid, use_pc_sigalgs = 0;
size_t i;
const SIGALG_LOOKUP *sigalg;
size_t sigalgslen;
/*-
* RFC 8446, section 4.2.3:
*
* The signatures on certificates that are self-signed or certificates
* that are trust anchors are not validated, since they begin a
* certification path (see [RFC5280], Section 3.2). A certificate that
* begins a certification path MAY use a signature algorithm that is not
* advertised as being supported in the "signature_algorithms"
* extension.
*/
if (default_nid == -1 || X509_self_signed(x, 0))
return 1;
sig_nid = X509_get_signature_nid(x);
if (default_nid)
return sig_nid == default_nid ? 1 : 0;
if (SSL_CONNECTION_IS_TLS13(s) && s->s3.tmp.peer_cert_sigalgs != NULL) {
/*
* If we're in TLSv1.3 then we only get here if we're checking the
* chain. If the peer has specified peer_cert_sigalgs then we use them
* otherwise we default to normal sigalgs.
*/
sigalgslen = s->s3.tmp.peer_cert_sigalgslen;
use_pc_sigalgs = 1;
} else {
sigalgslen = s->shared_sigalgslen;
}
for (i = 0; i < sigalgslen; i++) {
int mdnid, pknid;
sigalg = use_pc_sigalgs
? tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s),
s->s3.tmp.peer_cert_sigalgs[i])
: s->shared_sigalgs[i];
if (sigalg == NULL)
continue;
if (sig_nid == sigalg->sigandhash)
return 1;
if (sigalg->sig != EVP_PKEY_RSA_PSS)
continue;
/*
* Accept RSA PKCS#1 signatures in certificates when the signature
* algorithms include RSA-PSS with a matching digest algorithm.
*
* When a TLS 1.3 peer inadvertently omits the legacy RSA PKCS#1 code
* points, and we're doing strict checking of the certificate chain (in
* a cert_cb via SSL_check_chain()) we may then reject RSA signed
* certificates in the chain, but the TLS requirement on PSS should not
* extend to certificates. Though the peer can in fact list the legacy
* sigalgs for just this purpose, it is not likely that a better chain
* signed with RSA-PSS is available.
*/
if (!OBJ_find_sigid_algs(sig_nid, &mdnid, &pknid))
continue;
if (pknid == EVP_PKEY_RSA && mdnid == sigalg->hash)
return 1;
}
return 0;
}
/* Check to see if a certificate issuer name matches list of CA names */
static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x)
{
const X509_NAME *nm;
int i;
nm = X509_get_issuer_name(x);
for (i = 0; i < sk_X509_NAME_num(names); i++) {
if (!X509_NAME_cmp(nm, sk_X509_NAME_value(names, i)))
return 1;
}
return 0;
}
/*
* Check certificate chain is consistent with TLS extensions and is usable by
* server. This servers two purposes: it allows users to check chains before
* passing them to the server and it allows the server to check chains before
* attempting to use them.
*/
/* Flags which need to be set for a certificate when strict mode not set */
#define CERT_PKEY_VALID_FLAGS \
(CERT_PKEY_EE_SIGNATURE|CERT_PKEY_EE_PARAM)
/* Strict mode flags */
#define CERT_PKEY_STRICT_FLAGS \
(CERT_PKEY_VALID_FLAGS|CERT_PKEY_CA_SIGNATURE|CERT_PKEY_CA_PARAM \
| CERT_PKEY_ISSUER_NAME|CERT_PKEY_CERT_TYPE)
int tls1_check_chain(SSL_CONNECTION *s, X509 *x, EVP_PKEY *pk,
STACK_OF(X509) *chain, int idx)
{
int i;
int rv = 0;
int check_flags = 0, strict_mode;
CERT_PKEY *cpk = NULL;
CERT *c = s->cert;
uint32_t *pvalid;
unsigned int suiteb_flags = tls1_suiteb(s);
/*
* Meaning of idx:
* idx == -1 means SSL_check_chain() invocation
* idx == -2 means checking client certificate chains
* idx >= 0 means checking SSL_PKEY index
*
* For RPK, where there may be no cert, we ignore -1
*/
if (idx != -1) {
if (idx == -2) {
cpk = c->key;
idx = (int)(cpk - c->pkeys);
} else
cpk = c->pkeys + idx;
pvalid = s->s3.tmp.valid_flags + idx;
x = cpk->x509;
pk = cpk->privatekey;
chain = cpk->chain;
strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT;
if (tls12_rpk_and_privkey(s, idx)) {
if (EVP_PKEY_is_a(pk, "EC") && !tls1_check_pkey_comp(s, pk))
return 0;
*pvalid = rv = CERT_PKEY_RPK;
return rv;
}
/* If no cert or key, forget it */
if (x == NULL || pk == NULL)
goto end;
} else {
size_t certidx;
if (x == NULL || pk == NULL)
return 0;
if (ssl_cert_lookup_by_pkey(pk, &certidx,
SSL_CONNECTION_GET_CTX(s)) == NULL)
return 0;
idx = (int)certidx;
pvalid = s->s3.tmp.valid_flags + idx;
if (c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)
check_flags = CERT_PKEY_STRICT_FLAGS;
else
check_flags = CERT_PKEY_VALID_FLAGS;
strict_mode = 1;
}
if (suiteb_flags) {
int ok;
if (check_flags)
check_flags |= CERT_PKEY_SUITEB;
ok = X509_chain_check_suiteb(NULL, x, chain, suiteb_flags);
if (ok == X509_V_OK)
rv |= CERT_PKEY_SUITEB;
else if (!check_flags)
goto end;
}
/*
* Check all signature algorithms are consistent with signature
* algorithms extension if TLS 1.2 or later and strict mode.
*/
if (TLS1_get_version(SSL_CONNECTION_GET_SSL(s)) >= TLS1_2_VERSION
&& strict_mode) {
int default_nid;
int rsign = 0;
if (s->s3.tmp.peer_cert_sigalgs != NULL
|| s->s3.tmp.peer_sigalgs != NULL) {
default_nid = 0;
/* If no sigalgs extension use defaults from RFC5246 */
} else {
switch (idx) {
case SSL_PKEY_RSA:
rsign = EVP_PKEY_RSA;
default_nid = NID_sha1WithRSAEncryption;
break;
case SSL_PKEY_DSA_SIGN:
rsign = EVP_PKEY_DSA;
default_nid = NID_dsaWithSHA1;
break;
case SSL_PKEY_ECC:
rsign = EVP_PKEY_EC;
default_nid = NID_ecdsa_with_SHA1;
break;
case SSL_PKEY_GOST01:
rsign = NID_id_GostR3410_2001;
default_nid = NID_id_GostR3411_94_with_GostR3410_2001;
break;
case SSL_PKEY_GOST12_256:
rsign = NID_id_GostR3410_2012_256;
default_nid = NID_id_tc26_signwithdigest_gost3410_2012_256;
break;
case SSL_PKEY_GOST12_512:
rsign = NID_id_GostR3410_2012_512;
default_nid = NID_id_tc26_signwithdigest_gost3410_2012_512;
break;
default:
default_nid = -1;
break;
}
}
/*
* If peer sent no signature algorithms extension and we have set
* preferred signature algorithms check we support sha1.
*/
if (default_nid > 0 && c->conf_sigalgs) {
size_t j;
const uint16_t *p = c->conf_sigalgs;
for (j = 0; j < c->conf_sigalgslen; j++, p++) {
const SIGALG_LOOKUP *lu =
tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), *p);
if (lu != NULL && lu->hash == NID_sha1 && lu->sig == rsign)
break;
}
if (j == c->conf_sigalgslen) {
if (check_flags)
goto skip_sigs;
else
goto end;
}
}
/* Check signature algorithm of each cert in chain */
if (SSL_CONNECTION_IS_TLS13(s)) {
/*
* We only get here if the application has called SSL_check_chain(),
* so check_flags is always set.
*/
if (find_sig_alg(s, x, pk) != NULL)
rv |= CERT_PKEY_EE_SIGNATURE;
} else if (!tls1_check_sig_alg(s, x, default_nid)) {
if (!check_flags)
goto end;
} else
rv |= CERT_PKEY_EE_SIGNATURE;
rv |= CERT_PKEY_CA_SIGNATURE;
for (i = 0; i < sk_X509_num(chain); i++) {
if (!tls1_check_sig_alg(s, sk_X509_value(chain, i), default_nid)) {
if (check_flags) {
rv &= ~CERT_PKEY_CA_SIGNATURE;
break;
} else
goto end;
}
}
}
/* Else not TLS 1.2, so mark EE and CA signing algorithms OK */
else if (check_flags)
rv |= CERT_PKEY_EE_SIGNATURE | CERT_PKEY_CA_SIGNATURE;
skip_sigs:
/* Check cert parameters are consistent */
if (tls1_check_cert_param(s, x, 1))
rv |= CERT_PKEY_EE_PARAM;
else if (!check_flags)
goto end;
if (!s->server)
rv |= CERT_PKEY_CA_PARAM;
/* In strict mode check rest of chain too */
else if (strict_mode) {
rv |= CERT_PKEY_CA_PARAM;
for (i = 0; i < sk_X509_num(chain); i++) {
X509 *ca = sk_X509_value(chain, i);
if (!tls1_check_cert_param(s, ca, 0)) {
if (check_flags) {
rv &= ~CERT_PKEY_CA_PARAM;
break;
} else
goto end;
}
}
}
if (!s->server && strict_mode) {
STACK_OF(X509_NAME) *ca_dn;
int check_type = 0;
if (EVP_PKEY_is_a(pk, "RSA"))
check_type = TLS_CT_RSA_SIGN;
else if (EVP_PKEY_is_a(pk, "DSA"))
check_type = TLS_CT_DSS_SIGN;
else if (EVP_PKEY_is_a(pk, "EC"))
check_type = TLS_CT_ECDSA_SIGN;
if (check_type) {
const uint8_t *ctypes = s->s3.tmp.ctype;
size_t j;
for (j = 0; j < s->s3.tmp.ctype_len; j++, ctypes++) {
if (*ctypes == check_type) {
rv |= CERT_PKEY_CERT_TYPE;
break;
}
}
if (!(rv & CERT_PKEY_CERT_TYPE) && !check_flags)
goto end;
} else {
rv |= CERT_PKEY_CERT_TYPE;
}
ca_dn = s->s3.tmp.peer_ca_names;
if (ca_dn == NULL
|| sk_X509_NAME_num(ca_dn) == 0
|| ssl_check_ca_name(ca_dn, x))
rv |= CERT_PKEY_ISSUER_NAME;
else
for (i = 0; i < sk_X509_num(chain); i++) {
X509 *xtmp = sk_X509_value(chain, i);
if (ssl_check_ca_name(ca_dn, xtmp)) {
rv |= CERT_PKEY_ISSUER_NAME;
break;
}
}
if (!check_flags && !(rv & CERT_PKEY_ISSUER_NAME))
goto end;
} else
rv |= CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE;
if (!check_flags || (rv & check_flags) == check_flags)
rv |= CERT_PKEY_VALID;
end:
if (TLS1_get_version(SSL_CONNECTION_GET_SSL(s)) >= TLS1_2_VERSION)
rv |= *pvalid & (CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN);
else
rv |= CERT_PKEY_SIGN | CERT_PKEY_EXPLICIT_SIGN;
/*
* When checking a CERT_PKEY structure all flags are irrelevant if the
* chain is invalid.
*/
if (!check_flags) {
if (rv & CERT_PKEY_VALID) {
*pvalid = rv;
} else {
/* Preserve sign and explicit sign flag, clear rest */
*pvalid &= CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
return 0;
}
}
return rv;
}
/* Set validity of certificates in an SSL structure */
void tls1_set_cert_validity(SSL_CONNECTION *s)
{
tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA);
tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_PSS_SIGN);
tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DSA_SIGN);
tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ECC);
tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST01);
tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_256);
tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_512);
tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED25519);
tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED448);
}
/* User level utility function to check a chain is suitable */
int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain)
{
SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
if (sc == NULL)
return 0;
return tls1_check_chain(sc, x, pk, chain, -1);
}
EVP_PKEY *ssl_get_auto_dh(SSL_CONNECTION *s)
{
EVP_PKEY *dhp = NULL;
BIGNUM *p;
int dh_secbits = 80, sec_level_bits;
EVP_PKEY_CTX *pctx = NULL;
OSSL_PARAM_BLD *tmpl = NULL;
OSSL_PARAM *params = NULL;
SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
if (s->cert->dh_tmp_auto != 2) {
if (s->s3.tmp.new_cipher->algorithm_auth & (SSL_aNULL | SSL_aPSK)) {
if (s->s3.tmp.new_cipher->strength_bits == 256)
dh_secbits = 128;
else
dh_secbits = 80;
} else {
if (s->s3.tmp.cert == NULL)
return NULL;
dh_secbits = EVP_PKEY_get_security_bits(s->s3.tmp.cert->privatekey);
}
}
/* Do not pick a prime that is too weak for the current security level */
sec_level_bits = ssl_get_security_level_bits(SSL_CONNECTION_GET_SSL(s),
NULL, NULL);
if (dh_secbits < sec_level_bits)
dh_secbits = sec_level_bits;
if (dh_secbits >= 192)
p = BN_get_rfc3526_prime_8192(NULL);
else if (dh_secbits >= 152)
p = BN_get_rfc3526_prime_4096(NULL);
else if (dh_secbits >= 128)
p = BN_get_rfc3526_prime_3072(NULL);
else if (dh_secbits >= 112)
p = BN_get_rfc3526_prime_2048(NULL);
else
p = BN_get_rfc2409_prime_1024(NULL);
if (p == NULL)
goto err;
pctx = EVP_PKEY_CTX_new_from_name(sctx->libctx, "DH", sctx->propq);
if (pctx == NULL
|| EVP_PKEY_fromdata_init(pctx) != 1)
goto err;
tmpl = OSSL_PARAM_BLD_new();
if (tmpl == NULL
|| !OSSL_PARAM_BLD_push_BN(tmpl, OSSL_PKEY_PARAM_FFC_P, p)
|| !OSSL_PARAM_BLD_push_uint(tmpl, OSSL_PKEY_PARAM_FFC_G, 2))
goto err;
params = OSSL_PARAM_BLD_to_param(tmpl);
if (params == NULL
|| EVP_PKEY_fromdata(pctx, &dhp, EVP_PKEY_KEY_PARAMETERS, params) != 1)
goto err;
err:
OSSL_PARAM_free(params);
OSSL_PARAM_BLD_free(tmpl);
EVP_PKEY_CTX_free(pctx);
BN_free(p);
return dhp;
}
static int ssl_security_cert_key(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x,
int op)
{
int secbits = -1;
EVP_PKEY *pkey = X509_get0_pubkey(x);
if (pkey) {
/*
* If no parameters this will return -1 and fail using the default
* security callback for any non-zero security level. This will
* reject keys which omit parameters but this only affects DSA and
* omission of parameters is never (?) done in practice.
*/
secbits = EVP_PKEY_get_security_bits(pkey);
}
if (s != NULL)
return ssl_security(s, op, secbits, 0, x);
else
return ssl_ctx_security(ctx, op, secbits, 0, x);
}
static int ssl_security_cert_sig(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x,
int op)
{
/* Lookup signature algorithm digest */
int secbits, nid, pknid;
/* Don't check signature if self signed */
if ((X509_get_extension_flags(x) & EXFLAG_SS) != 0)
return 1;
if (!X509_get_signature_info(x, &nid, &pknid, &secbits, NULL))
secbits = -1;
/* If digest NID not defined use signature NID */
if (nid == NID_undef)
nid = pknid;
if (s != NULL)
return ssl_security(s, op, secbits, nid, x);
else
return ssl_ctx_security(ctx, op, secbits, nid, x);
}
int ssl_security_cert(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x, int vfy,
int is_ee)
{
if (vfy)
vfy = SSL_SECOP_PEER;
if (is_ee) {
if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_EE_KEY | vfy))
return SSL_R_EE_KEY_TOO_SMALL;
} else {
if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_CA_KEY | vfy))
return SSL_R_CA_KEY_TOO_SMALL;
}
if (!ssl_security_cert_sig(s, ctx, x, SSL_SECOP_CA_MD | vfy))
return SSL_R_CA_MD_TOO_WEAK;
return 1;
}
/*
* Check security of a chain, if |sk| includes the end entity certificate then
* |x| is NULL. If |vfy| is 1 then we are verifying a peer chain and not sending
* one to the peer. Return values: 1 if ok otherwise error code to use
*/
int ssl_security_cert_chain(SSL_CONNECTION *s, STACK_OF(X509) *sk,
X509 *x, int vfy)
{
int rv, start_idx, i;
if (x == NULL) {
x = sk_X509_value(sk, 0);
if (x == NULL)
return ERR_R_INTERNAL_ERROR;
start_idx = 1;
} else
start_idx = 0;
rv = ssl_security_cert(s, NULL, x, vfy, 1);
if (rv != 1)
return rv;
for (i = start_idx; i < sk_X509_num(sk); i++) {
x = sk_X509_value(sk, i);
rv = ssl_security_cert(s, NULL, x, vfy, 0);
if (rv != 1)
return rv;
}
return 1;
}
/*
* For TLS 1.2 servers check if we have a certificate which can be used
* with the signature algorithm "lu" and return index of certificate.
*/
static int tls12_get_cert_sigalg_idx(const SSL_CONNECTION *s,
const SIGALG_LOOKUP *lu)
{
int sig_idx = lu->sig_idx;
const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(sig_idx,
SSL_CONNECTION_GET_CTX(s));
/* If not recognised or not supported by cipher mask it is not suitable */
if (clu == NULL
|| (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) == 0
|| (clu->nid == EVP_PKEY_RSA_PSS
&& (s->s3.tmp.new_cipher->algorithm_mkey & SSL_kRSA) != 0))
return -1;
/* If doing RPK, the CERT_PKEY won't be "valid" */
if (tls12_rpk_and_privkey(s, sig_idx))
return s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_RPK ? sig_idx : -1;
return s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_VALID ? sig_idx : -1;
}
/*
* Checks the given cert against signature_algorithm_cert restrictions sent by
* the peer (if any) as well as whether the hash from the sigalg is usable with
* the key.
* Returns true if the cert is usable and false otherwise.
*/
static int check_cert_usable(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig,
X509 *x, EVP_PKEY *pkey)
{
const SIGALG_LOOKUP *lu;
int mdnid, pknid, supported;
size_t i;
const char *mdname = NULL;
SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
/*
* If the given EVP_PKEY cannot support signing with this digest,
* the answer is simply 'no'.
*/
if (sig->hash != NID_undef)
mdname = OBJ_nid2sn(sig->hash);
supported = EVP_PKEY_digestsign_supports_digest(pkey, sctx->libctx,
mdname,
sctx->propq);
if (supported <= 0)
return 0;
/*
* The TLS 1.3 signature_algorithms_cert extension places restrictions
* on the sigalg with which the certificate was signed (by its issuer).
*/
if (s->s3.tmp.peer_cert_sigalgs != NULL) {
if (!X509_get_signature_info(x, &mdnid, &pknid, NULL, NULL))
return 0;
for (i = 0; i < s->s3.tmp.peer_cert_sigalgslen; i++) {
lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s),
s->s3.tmp.peer_cert_sigalgs[i]);
if (lu == NULL)
continue;
/*
* This does not differentiate between the
* rsa_pss_pss_* and rsa_pss_rsae_* schemes since we do not
* have a chain here that lets us look at the key OID in the
* signing certificate.
*/
if (mdnid == lu->hash && pknid == lu->sig)
return 1;
}
return 0;
}
/*
* Without signat_algorithms_cert, any certificate for which we have
* a viable public key is permitted.
*/
return 1;
}
/*
* Returns true if |s| has a usable certificate configured for use
* with signature scheme |sig|.
* "Usable" includes a check for presence as well as applying
* the signature_algorithm_cert restrictions sent by the peer (if any).
* Returns false if no usable certificate is found.
*/
static int has_usable_cert(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig, int idx)
{
/* TLS 1.2 callers can override sig->sig_idx, but not TLS 1.3 callers. */
if (idx == -1)
idx = sig->sig_idx;
if (!ssl_has_cert(s, idx))
return 0;
return check_cert_usable(s, sig, s->cert->pkeys[idx].x509,
s->cert->pkeys[idx].privatekey);
}
/*
* Returns true if the supplied cert |x| and key |pkey| is usable with the
* specified signature scheme |sig|, or false otherwise.
*/
static int is_cert_usable(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig, X509 *x,
EVP_PKEY *pkey)
{
size_t idx;
if (ssl_cert_lookup_by_pkey(pkey, &idx, SSL_CONNECTION_GET_CTX(s)) == NULL)
return 0;
/* Check the key is consistent with the sig alg */
if ((int)idx != sig->sig_idx)
return 0;
return check_cert_usable(s, sig, x, pkey);
}
/*
* Find a signature scheme that works with the supplied certificate |x| and key
* |pkey|. |x| and |pkey| may be NULL in which case we additionally look at our
* available certs/keys to find one that works.
*/
static const SIGALG_LOOKUP *find_sig_alg(SSL_CONNECTION *s, X509 *x,
EVP_PKEY *pkey)
{
const SIGALG_LOOKUP *lu = NULL;
size_t i;
int curve = -1;
EVP_PKEY *tmppkey;
SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
/* Look for a shared sigalgs matching possible certificates */
for (i = 0; i < s->shared_sigalgslen; i++) {
/* Skip SHA1, SHA224, DSA and RSA if not PSS */
lu = s->shared_sigalgs[i];
if (lu->hash == NID_sha1
|| lu->hash == NID_sha224
|| lu->sig == EVP_PKEY_DSA
|| lu->sig == EVP_PKEY_RSA
|| !tls_sigalg_compat(s, lu))
continue;
/* Check that we have a cert, and signature_algorithms_cert */
if (!tls1_lookup_md(sctx, lu, NULL))
continue;
if ((pkey == NULL && !has_usable_cert(s, lu, -1))
|| (pkey != NULL && !is_cert_usable(s, lu, x, pkey)))
continue;
tmppkey = (pkey != NULL) ? pkey
: s->cert->pkeys[lu->sig_idx].privatekey;
if (lu->sig == EVP_PKEY_EC) {
if (curve == -1)
curve = ssl_get_EC_curve_nid(tmppkey);
if (lu->curve != NID_undef && curve != lu->curve)
continue;
} else if (lu->sig == EVP_PKEY_RSA_PSS) {
/* validate that key is large enough for the signature algorithm */
if (!rsa_pss_check_min_key_size(sctx, tmppkey, lu))
continue;
}
break;
}
if (i == s->shared_sigalgslen)
return NULL;
return lu;
}
/*
* Choose an appropriate signature algorithm based on available certificates
* Sets chosen certificate and signature algorithm.
*
* For servers if we fail to find a required certificate it is a fatal error,
* an appropriate error code is set and a TLS alert is sent.
*
* For clients fatalerrs is set to 0. If a certificate is not suitable it is not
* a fatal error: we will either try another certificate or not present one
* to the server. In this case no error is set.
*/
int tls_choose_sigalg(SSL_CONNECTION *s, int fatalerrs)
{
const SIGALG_LOOKUP *lu = NULL;
int sig_idx = -1;
s->s3.tmp.cert = NULL;
s->s3.tmp.sigalg = NULL;
if (SSL_CONNECTION_IS_TLS13(s)) {
lu = find_sig_alg(s, NULL, NULL);
if (lu == NULL) {
if (!fatalerrs)
return 1;
SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
return 0;
}
} else {
/* If ciphersuite doesn't require a cert nothing to do */
if (!(s->s3.tmp.new_cipher->algorithm_auth & SSL_aCERT))
return 1;
if (!s->server && !ssl_has_cert(s, (int)(s->cert->key - s->cert->pkeys)))
return 1;
if (SSL_USE_SIGALGS(s)) {
size_t i;
if (s->s3.tmp.peer_sigalgs != NULL) {
int curve = -1;
SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
/* For Suite B need to match signature algorithm to curve */
if (tls1_suiteb(s))
curve = ssl_get_EC_curve_nid(s->cert->pkeys[SSL_PKEY_ECC]
.privatekey);
/*
* Find highest preference signature algorithm matching
* cert type
*/
for (i = 0; i < s->shared_sigalgslen; i++) {
/* Check the sigalg version bounds */
lu = s->shared_sigalgs[i];
if (!tls_sigalg_compat(s, lu))
continue;
if (s->server) {
if ((sig_idx = tls12_get_cert_sigalg_idx(s, lu)) == -1)
continue;
} else {
int cc_idx = (int)(s->cert->key - s->cert->pkeys);
sig_idx = lu->sig_idx;
if (cc_idx != sig_idx)
continue;
}
/* Check that we have a cert, and sig_algs_cert */
if (!has_usable_cert(s, lu, sig_idx))
continue;
if (lu->sig == EVP_PKEY_RSA_PSS) {
/* validate that key is large enough for the signature algorithm */
EVP_PKEY *pkey = s->cert->pkeys[sig_idx].privatekey;
if (!rsa_pss_check_min_key_size(sctx, pkey, lu))
continue;
}
if (curve == -1 || lu->curve == curve)
break;
}
#ifndef OPENSSL_NO_GOST
/*
* Some Windows-based implementations do not send GOST algorithms indication
* in supported_algorithms extension, so when we have GOST-based ciphersuite,
* we have to assume GOST support.
*/
if (i == s->shared_sigalgslen
&& (s->s3.tmp.new_cipher->algorithm_auth
& (SSL_aGOST01 | SSL_aGOST12)) != 0) {
if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
if (!fatalerrs)
return 1;
SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
return 0;
} else {
i = 0;
sig_idx = lu->sig_idx;
}
}
#endif
if (i == s->shared_sigalgslen) {
if (!fatalerrs)
return 1;
SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
return 0;
}
} else {
/*
* If we have no sigalg use defaults
*/
const uint16_t *sent_sigs;
size_t sent_sigslen;
if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
if (!fatalerrs)
return 1;
SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
return 0;
}
/* Check signature matches a type we sent */
sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
if (lu->sigalg == *sent_sigs
&& has_usable_cert(s, lu, lu->sig_idx))
break;
}
if (i == sent_sigslen) {
if (!fatalerrs)
return 1;
SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
SSL_R_WRONG_SIGNATURE_TYPE);
return 0;
}
}
} else {
if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
if (!fatalerrs)
return 1;
SSLfatal(s, SSL_AD_INTERNAL_ERROR,
SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
return 0;
}
}
}
if (sig_idx == -1)
sig_idx = lu->sig_idx;
s->s3.tmp.cert = &s->cert->pkeys[sig_idx];
s->cert->key = s->s3.tmp.cert;
s->s3.tmp.sigalg = lu;
return 1;
}
int SSL_CTX_set_tlsext_max_fragment_length(SSL_CTX *ctx, uint8_t mode)
{
if (mode != TLSEXT_max_fragment_length_DISABLED
&& !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
return 0;
}
ctx->ext.max_fragment_len_mode = mode;
return 1;
}
int SSL_set_tlsext_max_fragment_length(SSL *ssl, uint8_t mode)
{
SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(ssl);
if (sc == NULL
|| (IS_QUIC(ssl) && mode != TLSEXT_max_fragment_length_DISABLED))
return 0;
if (mode != TLSEXT_max_fragment_length_DISABLED
&& !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
return 0;
}
sc->ext.max_fragment_len_mode = mode;
return 1;
}
uint8_t SSL_SESSION_get_max_fragment_length(const SSL_SESSION *session)
{
if (session->ext.max_fragment_len_mode == TLSEXT_max_fragment_length_UNSPECIFIED)
return TLSEXT_max_fragment_length_DISABLED;
return session->ext.max_fragment_len_mode;
}
/*
* Helper functions for HMAC access with legacy support included.
*/
SSL_HMAC *ssl_hmac_new(const SSL_CTX *ctx)
{
SSL_HMAC *ret = OPENSSL_zalloc(sizeof(*ret));
EVP_MAC *mac = NULL;
if (ret == NULL)
return NULL;
#ifndef OPENSSL_NO_DEPRECATED_3_0
if (ctx->ext.ticket_key_evp_cb == NULL
&& ctx->ext.ticket_key_cb != NULL) {
if (!ssl_hmac_old_new(ret))
goto err;
return ret;
}
#endif
mac = EVP_MAC_fetch(ctx->libctx, "HMAC", ctx->propq);
if (mac == NULL || (ret->ctx = EVP_MAC_CTX_new(mac)) == NULL)
goto err;
EVP_MAC_free(mac);
return ret;
err:
EVP_MAC_CTX_free(ret->ctx);
EVP_MAC_free(mac);
OPENSSL_free(ret);
return NULL;
}
void ssl_hmac_free(SSL_HMAC *ctx)
{
if (ctx != NULL) {
EVP_MAC_CTX_free(ctx->ctx);
#ifndef OPENSSL_NO_DEPRECATED_3_0
ssl_hmac_old_free(ctx);
#endif
OPENSSL_free(ctx);
}
}
EVP_MAC_CTX *ssl_hmac_get0_EVP_MAC_CTX(SSL_HMAC *ctx)
{
return ctx->ctx;
}
int ssl_hmac_init(SSL_HMAC *ctx, void *key, size_t len, char *md)
{
OSSL_PARAM params[2], *p = params;
if (ctx->ctx != NULL) {
*p++ = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST, md, 0);
*p = OSSL_PARAM_construct_end();
if (EVP_MAC_init(ctx->ctx, key, len, params))
return 1;
}
#ifndef OPENSSL_NO_DEPRECATED_3_0
if (ctx->old_ctx != NULL)
return ssl_hmac_old_init(ctx, key, len, md);
#endif
return 0;
}
int ssl_hmac_update(SSL_HMAC *ctx, const unsigned char *data, size_t len)
{
if (ctx->ctx != NULL)
return EVP_MAC_update(ctx->ctx, data, len);
#ifndef OPENSSL_NO_DEPRECATED_3_0
if (ctx->old_ctx != NULL)
return ssl_hmac_old_update(ctx, data, len);
#endif
return 0;
}
int ssl_hmac_final(SSL_HMAC *ctx, unsigned char *md, size_t *len,
size_t max_size)
{
if (ctx->ctx != NULL)
return EVP_MAC_final(ctx->ctx, md, len, max_size);
#ifndef OPENSSL_NO_DEPRECATED_3_0
if (ctx->old_ctx != NULL)
return ssl_hmac_old_final(ctx, md, len);
#endif
return 0;
}
size_t ssl_hmac_size(const SSL_HMAC *ctx)
{
if (ctx->ctx != NULL)
return EVP_MAC_CTX_get_mac_size(ctx->ctx);
#ifndef OPENSSL_NO_DEPRECATED_3_0
if (ctx->old_ctx != NULL)
return ssl_hmac_old_size(ctx);
#endif
return 0;
}
int ssl_get_EC_curve_nid(const EVP_PKEY *pkey)
{
char gname[OSSL_MAX_NAME_SIZE];
if (EVP_PKEY_get_group_name(pkey, gname, sizeof(gname), NULL) > 0)
return OBJ_txt2nid(gname);
return NID_undef;
}
__owur int tls13_set_encoded_pub_key(EVP_PKEY *pkey,
const unsigned char *enckey,
size_t enckeylen)
{
if (EVP_PKEY_is_a(pkey, "DH")) {
int bits = EVP_PKEY_get_bits(pkey);
if (bits <= 0 || enckeylen != (size_t)bits / 8)
/* the encoded key must be padded to the length of the p */
return 0;
} else if (EVP_PKEY_is_a(pkey, "EC")) {
if (enckeylen < 3 /* point format and at least 1 byte for x and y */
|| enckey[0] != 0x04)
return 0;
}
return EVP_PKEY_set1_encoded_public_key(pkey, enckey, enckeylen);
}
|