File: table.py

package info (click to toggle)
openstructure 2.11.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 206,240 kB
  • sloc: cpp: 188,571; python: 36,686; ansic: 34,298; fortran: 3,275; sh: 312; xml: 146; makefile: 29
file content (3235 lines) | stat: -rw-r--r-- 100,114 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
import csv
import re
import math
from ost import stutil
import itertools
import operator
import pickle
import weakref
from ost import LogError, LogWarning, LogInfo, LogVerbose

def MakeTitle(col_name):
  return col_name.replace('_', ' ')

def IsStringLike(value):
  if isinstance(value, TableCol) or isinstance(value, BinaryColExpr):
    return False
  try:
    value+''
    return True
  except:
    return False

def IsNullString(value):
  value=value.strip().upper()
  return value in ('', 'NULL', 'NONE', 'NA')

def IsScalar(value):
  if IsStringLike(value):
    return True
  try:
    if isinstance(value, TableCol) or isinstance(value, BinaryColExpr):
      return False
    iter(value)
    return False
  except:
    return True

def GuessColumnType(iterator):
  empty=True
  possibilities=set(['bool', 'int', 'float'])
  for ele in iterator:
    str_ele=str(ele).upper()
    if IsNullString(str_ele):
      continue
    empty=False
    if 'int' in possibilities:
      try:
        int(str_ele)
      except ValueError:
        possibilities.remove('int')

    if 'float' in possibilities:
      try:
        float(str_ele)
      except ValueError:
        possibilities.remove('float')
    if 'bool' in possibilities:
      if str_ele not in set(['YES', 'NO', 'TRUE', 'FALSE']):
        possibilities.remove('bool')

    if len(possibilities)==0:
      return 'string'
  if len(possibilities)==2:
    return 'int'
  if empty:
    return 'string'
  # return the last element available
  return possibilities.pop()

class BinaryColExpr:
  def __init__(self, op, lhs, rhs):
    self.op=op
    self.lhs=lhs
    self.rhs=rhs
    if IsScalar(lhs):
      self.lhs=itertools.cyle([self.lhs])
    if IsScalar(rhs):
      self.rhs=itertools.cycle([self.rhs])
  def __iter__(self):
    for l, r in zip(self.lhs, self.rhs):
      if l!=None and r!=None:
        yield self.op(l, r)
      else:
        yield None
  def __add__(self, rhs):
    return BinaryColExpr(operator.add, self, rhs)

  def __sub__(self, rhs):
    return BinaryColExpr(operator.sub, self, rhs)

  def __mul__(self, rhs):
    return BinaryColExpr(operator.mul, self, rhs)

  def __div__(self, rhs):
    return BinaryColExpr(operator.div, self, rhs)

class TableCol:
  def __init__(self, table, col):
    self._table=table
    if type(col)==str:
      self.col_index=self._table.GetColIndex(col)
    else:
      self.col_index=col

  def __iter__(self):
    for row in self._table.rows:
      yield row[self.col_index]

  def __len__(self):
    return len(self._table.rows)

  def __getitem__(self, index):
    return self._table.rows[index][self.col_index]

  def __setitem__(self, index, value):
    self._table.rows[index][self.col_index]=value
  
  def __add__(self, rhs):
    return BinaryColExpr(operator.add, self, rhs)

  def __sub__(self, rhs):
    return BinaryColExpr(operator.sub, self, rhs)

  def __mul__(self, rhs):
    return BinaryColExpr(operator.mul, self, rhs)

  def __div__(self, rhs):
    return BinaryColExpr(operator.div, self, rhs)

class TableRow:
  """
  Essentially a named tuple, but allows column names that are not valid 
  python variable names.
  """
  def __init__(self, row_data, tab):
    self.__dict__['tab'] = weakref.proxy(tab)
    self.__dict__['row_data'] = row_data

  def __getitem__(self, col_name):
    if type(col_name)==int:
      return self.row_data[col_name]
    return self.row_data[self.tab.GetColIndex(col_name)]

  def __str__(self):
    s = []
    for k, v in zip(self.__dict__['tab'].col_names, self.__dict__['row_data']):
      s.append('%s=%s' % (k, str(v)))
    return ', '.join(s)
      
      
  def __len__(self):
    return len(self.row_data)

  def __setitem__(self, col_name, val):
    if type(col_name)==int:
      self.row_data[col_name] = val
    else:
      self.row_data[self.tab.GetColIndex(col_name)] = val

  def __getattr__(self, col_name):
    if 'col_names' not in self.tab.__dict__ or col_name not in self.tab.col_names:
      raise AttributeError(col_name)
    return self.row_data[self.tab.GetColIndex(col_name)]

  def __setattr__(self, col_name, val):
    if 'col_names' not in self.tab.__dict__ or col_name not in self.tab.col_names:
      raise AttributeError(col_name)
    self.row_data[self.tab.GetColIndex(col_name)] = val

class Table(object):
  """
  
  The table class provides convenient access to data in tabular form. An empty 
  table can be easily constructed as follows
  
  .. code-block:: python
  
    tab = Table()
    
  If you want to add columns directly when creating the table, column names
  and *column types* can be specified as follows
  
  .. code-block:: python
  
    tab = Table(['nameX','nameY','nameZ'], 'sfb')
    
  this will create three columns called nameX, nameY and nameZ of type string,
  float and bool, respectively. There will be no data in the table and thus,
  the table will not contain any rows.
  
  The following *column types* are supported:
  
  ======= ========
  name     abbrev
  ======= ========
  string     s
  float      f
  int        i
  bool       b
  ======= ========
  
  If you want to add data to the table in addition, use the following:
  
  .. code-block:: python
  
    tab=Table(['nameX','nameY','nameZ'],
              'sfb',
              nameX = ['a','b','c'],
              nameY = [0.1, 1.2, 3.414],
              nameZ = [True, False, False])
              
  if values for one column is left out, they will be filled with NA, but if
  values are specified, all values must be specified (i.e. same number of
  values per column)
    
  """

  SUPPORTED_TYPES=('int', 'float', 'bool', 'string',)
  
  
  def __init__(self, col_names=[], col_types=None, **kwargs):

    self.col_names=list(col_names)
    self.comment=''
    self.name=''
    
    self.col_types = self._ParseColTypes(col_types)
    self.rows=[]    
    if len(kwargs)>=0:
      if not col_names:
        self.col_names=[v for v in list(kwargs.keys())]
      if not self.col_types:
        self.col_types=['string' for u in range(len(self.col_names))]
      if len(kwargs)>0:
        self._AddRowsFromDict(kwargs)

  def __getattr__(self, col_name):
    # pickling doesn't call the standard __init__ defined above and thus
    # col_names might not be defined. This leads to infinite recursions.
    # Protect against it by checking that col_names is contained in 
    # __dict__
    if 'col_names' not in self.__dict__ or col_name not in self.col_names:
      raise AttributeError(col_name)
    return TableCol(self, col_name)

  @staticmethod
  def _ParseColTypes(types, exp_num=None):
    if types==None:
      return None
    
    short2long = {'s' : 'string', 'i': 'int', 'b' : 'bool', 'f' : 'float'}
    allowed_short = list(short2long.keys())
    allowed_long = list(short2long.values())
    
    type_list = []
    
    # string type
    if IsScalar(types):
      if type(types)==str:
        types = types.lower()
        
        # single value
        if types in allowed_long:
          type_list.append(types)
        elif types in allowed_short:
          type_list.append(short2long[types])
        
        # comma separated list of long or short types
        elif types.find(',')!=-1:
          for t in types.split(','):
            if t in allowed_long:
              type_list.append(t)
            elif t in allowed_short:
              type_list.append(short2long[t])
            else:
              raise ValueError('Unknown type %s in types %s'%(t,types))
        
        # string of short types
        else:
          for t in types:
            if t in allowed_short:
              type_list.append(short2long[t])
            else:
              raise ValueError('Unknown type %s in types %s'%(t,types))
      
      # non-string type
      else:
        raise ValueError('Col type %s must be string or list'%types)
    
    # list type
    else:
      for t in types:
        # must be string type
        if type(t)==str:
          t = t.lower()
          if t in allowed_long:
            type_list.append(t)
          elif t in allowed_short:
            type_list.append(short2long[t])
          else:
            raise ValueError('Unknown type %s in types %s'%(t,types))
        
        # non-string type
        else:
          raise ValueError('Col type %s must be string or list'%types)
    
    if exp_num:
      if len(type_list)!=exp_num:
        raise ValueError('Parsed number of col types (%i) differs from ' + \
                         'expected (%i) in types %s'%(len(type_list),exp_num,types))
      
    return type_list

  def SetName(self, name):
    '''
    Set name of the table

    :param name: name
    :type name: :class:`str`
    '''
    self.name = name
    
  def GetName(self):
    '''
    Get name of table
    '''
    return self.name

  def RenameCol(self, old_name, new_name):
    """
    Rename column *old_name* to *new_name*.

    :param old_name: Name of the old column
    :param new_name: Name of the new column
    :raises: :exc:`ValueError` when *old_name* is not a valid column
    """
    if old_name==new_name:
      return
    self.AddCol(new_name, self.col_types[self.GetColIndex(old_name)],
                self[old_name])
    self.RemoveCol(old_name)
  def _Coerce(self, value, ty):
    '''
    Try to convert values (e.g. from :class:`str` type) to the specified type

    :param value: the value
    :type value: any type

    :param ty: name of type to convert it to (i.e. *int*, *float*, *string*,
               *bool*)
    :type ty: :class:`str`
    '''
    if value=='NA' or value==None:
      return None
    if ty=='int':
      return int(value)
    if ty=='float':
      return float(value)
    if ty=='string':
      return str(value)
    if ty=='bool':
      if isinstance(value, str) or isinstance(value, str):
        if value.upper() in ('FALSE', 'NO',):
          return False
        return True
      return bool(value)
    raise ValueError('Unknown type %s' % ty)

  def GetColIndex(self, col):
    '''
    Returns the column index for the column with the given name.

    :raises: ValueError if no column with the name is found.
    '''
    if col not in self.col_names:
      raise ValueError('Table has no column named "%s"' % col)
    return self.col_names.index(col)
  
  def GetColNames(self):
    '''
    Returns a list containing all column names.
    '''
    return self.col_names
  
  def SearchColNames(self, regex):
    '''
    Returns a list of column names matching the regex.

    :param regex: regex pattern
    :type regex: :class:`str`

    :returns: :class:`list` of column names (:class:`str`)
    '''
    matching_names = []
    for name in self.col_names:
      matches = re.search(regex, name)
      if matches:
        matching_names.append(name)
    return matching_names

  def HasCol(self, col):
    '''
    Checks if the column with a given name is present in the table.
    '''
    return col in self.col_names
  
  def __getitem__(self, k):
    if type(k)==int:
      return TableCol(self, self.col_names[k])
    else:
      return TableCol(self, k)

  def __setitem__(self, k, value):
    col_index=k
    if type(k)!=int:
      col_index=self.GetColIndex(k)
    if IsScalar(value):
      value=itertools.cycle([value])
    for r, v in zip(self.rows, value):
      r[col_index]=v

  def ToString(self, float_format='%.3f', int_format='%d', rows=None):
    '''
    Convert the table into a string representation.

    The output format can be modified for int and float type columns by
    specifying a formatting string for the parameters *float_format* and
    *int_format*.

    The option *rows* specify the range of rows to be printed. The parameter
    must be a type that supports indexing (e.g. a :class:`list`) containing the 
    start and end row *index*, e.g. [start_row_idx, end_row_idx].

    :param float_format: formatting string for float columns
    :type float_format: :class:`str`

    :param int_format: formatting string for int columns
    :type int_format: :class:`str`

    :param rows: iterable containing start and end row *index*
    :type rows: iterable containing :class:`ints <int>`
    '''
    widths=[len(cn) for cn in self.col_names]
    sel_rows=self.rows
    if rows:
      sel_rows=self.rows[rows[0]:rows[1]]
    for row in sel_rows:
      for i, (ty, col) in enumerate(zip(self.col_types, row)):
        if col==None:
          widths[i]=max(widths[i], len('NA'))
        elif ty=='float':
          widths[i]=max(widths[i], len(float_format % col))
        elif ty=='int':
          widths[i]=max(widths[i], len(int_format % col))
        else:
          widths[i]=max(widths[i], len(str(col)))
    s=''
    if self.comment:
      s+=''.join(['# %s\n' % l for l in self.comment.split('\n')])
    total_width=sum(widths)+2*len(widths)
    for width, col_name in zip(widths, self.col_names):
      s+=col_name.center(width+2)
    s+='\n%s\n' % ('-'*total_width)
    for row in sel_rows:
      for width, ty, col in zip(widths, self.col_types, row):
        cs=''
        if col==None:
          cs='NA'.center(width+2)
        elif ty=='float':
          cs=(float_format % col).rjust(width+2)
        elif ty=='int':
          cs=(int_format % col).rjust(width+2)
        else:
          cs=' '+str(col).ljust(width+1)
        s+=cs
      s+='\n'
    return s

  def __str__(self):
    return self.ToString()
  
  def Stats(self, col):
     idx  = self.GetColIndex(col)
     text ='''
Statistics for column %(col)s

  Number of Rows         : %(num)d
  Number of Rows Not None: %(num_non_null)d 
  Mean                   : %(mean)f
  Median                 : %(median)f
  Standard Deviation     : %(stddev)f
  Min                    : %(min)f
  Max                    : %(max)f
'''
     data = {
       'col' : col,
       'num' : len(self.rows),
       'num_non_null' : self.Count(col),
       'median' : self.Median(col),
       'mean' : self.Mean(col),
       'stddev' : self.StdDev(col),
       'min' : self.Min(col),
       'max' : self.Max(col),
     }
     return text % data

  def _AddRowsFromDict(self, d, overwrite=None):
    '''
    Add one or more rows from a :class:`dictionary <dict>`.
    
    If *overwrite* is not None and set to an existing column name, the specified 
    column in the table is searched for the first occurrence of a value matching
    the value of the column with the same name in the dictionary. If a matching
    value is found, the row is overwritten with the dictionary. If no matching
    row is found, a new row is appended to the table.

    :param d: dictionary containing the data
    :type d: :class:`dict`

    :param overwrite: column name to overwrite existing row if value in
                      column *overwrite* matches
    :type overwrite: :class:`str`

    :raises: :class:`ValueError` if multiple rows are added but the number of
             data items is different for different columns.
    '''
    # get column indices
    idxs = [self.GetColIndex(k) for k in list(d.keys())]
    
    # convert scalar values to list
    old_len = None
    for k,v in d.items():
      if IsScalar(v):
        v = [v]
        d[k] = v
      if not old_len:
        old_len = len(v)
      elif old_len!=len(v):
        raise ValueError("Cannot add rows: length of data must be equal " + \
                         "for all columns in %s"%str(d))
    
    # convert column based dict to row based dict and create row and add data
    for i,data in enumerate(zip(*list(d.values()))):
      new_row = [None for a in range(len(self.col_names))]
      for idx,v in zip(idxs,data):
        new_row[idx] = self._Coerce(v, self.col_types[idx])
        
      # partially overwrite existing row with new data
      if overwrite:
        overwrite_idx = self.GetColIndex(overwrite)
        added = False
        for i,r in enumerate(self.rows):
          if r[overwrite_idx]==new_row[overwrite_idx]:
            for j,e in enumerate(self.rows[i]):
              if new_row[j]==None:
                new_row[j] = e
            self.rows[i] = new_row
            added = True
            break
          
      # if not overwrite or overwrite did not find appropriate row
      if not overwrite or not added:
        self.rows.append(new_row)
      
  def PairedTTest(self, col_a, col_b):
    """
    Two-sided test for the null-hypothesis that two related samples 
    have the same average (expected values).
    
    :param col_a: First column
    :type col_a:  :class:`str`
    :param col_b: Second column
    :type col_b:  :class:`str`

    :returns: P-value between 0 and 1 that the two columns have the 
       same average. The smaller the value, the less related the two
       columns are.
    """
    from scipy.stats import ttest_rel
    xs = []
    ys = []
    for x, y in self.Zip(col_a, col_b):
      if x!=None and y!=None:
        xs.append(x)
        ys.append(y)
    result = ttest_rel(xs, ys)
    return result[1]

  def AddRow(self, data, overwrite=None):
    """
    Add a row to the table.
    
    *data* may either be a dictionary or a list-like object:

     - If *data* is a dictionary, the keys in the dictionary must match the
       column names. Columns not found in the dict will be initialized to None.
       If the dict contains list-like objects, multiple rows will be added, if
       the number of items in all list-like objects is the same, otherwise a
       :class:`ValueError` is raised.

     - If *data* is a list-like object, the row is initialized from the values
       in *data*. The number of items in *data* must match the number of
       columns in the table. A :class:`ValuerError` is raised otherwise. The
       values are added in the order specified in the list, thus, the order of
       the data must match the columns.
          
    If *overwrite* is not None and set to an existing column name, the specified 
    column in the table is searched for the first occurrence of a value matching
    the value of the column with the same name in the dictionary. If a matching
    value is found, the row is overwritten with the dictionary. If no matching
    row is found, a new row is appended to the table.

    :param data: data to add
    :type data: :class:`dict` or *list-like* object

    :param overwrite: column name to overwrite existing row if value in
                      column *overwrite* matches
    :type overwrite: :class:`str`

    :raises: :class:`ValueError` if *list-like* object is used and number of
             items does *not* match number of columns in table.

    :raises: :class:`ValueError` if *dict* is used and multiple rows are added
             but the number of data items is different for different columns.

    **Example:** add multiple data rows to a subset of columns using a dictionary

    .. code-block:: python

      # create table with three float columns
      tab = Table(['x','y','z'], 'fff')

      # add rows from dict
      data = {'x': [1.2, 1.6], 'z': [1.6, 5.3]}
      tab.AddRow(data)
      print tab

      '''
      will produce the table

      ====  ====  ====
      x     y     z
      ====  ====  ====
      1.20  NA    1.60
      1.60  NA    5.30
      ====  ====  ====
      '''

      # overwrite the row with x=1.2 and add row with x=1.9
      data = {'x': [1.2, 1.9], 'z': [7.9, 3.5]}
      tab.AddRow(data, overwrite='x')
      print tab

      '''
      will produce the table

      ====  ====  ====
      x     y     z
      ====  ====  ====
      1.20  NA    7.90
      1.60  NA    5.30
      1.90  NA    3.50
      ====  ====  ====
      '''
    """
    if type(data)==dict:
      self._AddRowsFromDict(data, overwrite)
    else:
      if len(data)!=len(self.col_names):
        msg='data array must have %d elements, not %d'
        raise ValueError(msg % (len(self.col_names), len(data)))
      new_row = [self._Coerce(v, t) for v, t in zip(data, self.col_types)]
      
      # fully overwrite existing row with new data
      if overwrite:
        overwrite_idx = self.GetColIndex(overwrite)
        added = False
        for i,r in enumerate(self.rows):
          if r[overwrite_idx]==new_row[overwrite_idx]:
            self.rows[i] = new_row
            added = True
            break
      
      # if not overwrite or overwrite did not find appropriate row
      if not overwrite or not added:
        self.rows.append(new_row)

  def RemoveCol(self, col):
    """
    Remove column with the given name from the table.

    :param col: name of column to remove
    :type col: :class:`str`
    """
    idx = self.GetColIndex(col)
    del self.col_names[idx]
    del self.col_types[idx]
    for row in self.rows:
      del row[idx]

  def AddCol(self, col_name, col_type, data=None):
    """
    Add a column to the right of the table.
    
    :param col_name: name of new column
    :type col_name: :class:`str`

    :param col_type: type of new column (long versions: *int*, *float*, *bool*,
                     *string* or short versions: *i*, *f*, *b*, *s*)
    :type col_type: :class:`str`

    :param data: data to add to new column
    :type data: scalar or iterable

    **Example:**

    .. code-block:: python
    
      tab = Table(['x'], 'f', x=range(5))
      tab.AddCol('even', 'bool', itertools.cycle([True, False]))
      print tab
    
      '''
      will produce the table

      ====  ====
      x     even
      ====  ====
        0   True
        1   False
        2   True
        3   False
        4   True
      ====  ====
      '''

    If data is a constant instead of an iterable object, it's value
    will be written into each row:

    .. code-block:: python

      tab = Table(['x'], 'f', x=range(5))
      tab.AddCol('num', 'i', 1)
      print tab

      '''
      will produce the table

      ====  ====
      x     num
      ====  ====
        0   1
        1   1
        2   1
        3   1
        4   1
      ====  ====
      '''
    
    As a special case, if there are no previous rows, and data is not 
    None, rows are added for every item in data.
    """

    if col_name in self.col_names:
      raise ValueError('Column with name %s already exists'%col_name)

    col_type = self._ParseColTypes(col_type, exp_num=1)[0]
    self.col_names.append(col_name)
    self.col_types.append(col_type)

    if len(self.rows)>0:
      if IsScalar(data):
        for row in self.rows:
          row.append(data)
      else:
        if hasattr(data, '__len__') and len(data)!=len(self.rows):
          self.col_names.pop()
          self.col_types.pop()
          raise ValueError('Length of data (%i) must correspond to number of '%len(data) +\
                           'existing rows (%i)'%len(self.rows))
        for row, d in zip(self.rows, data):
          row.append(d)

    elif data!=None and len(self.col_names)==1:
      if IsScalar(data):
        self.AddRow({col_name : data})
      else:
        for v in data:
          self.AddRow({col_name : v})

  def Filter(self, *args, **kwargs):
    """
    Returns a filtered table only containing rows matching all the predicates 
    in kwargs and args For example,
    
    .. code-block:: python
    
      tab.Filter(town='Basel')
    
    will return all the rows where the value of the column "town" is equal to 
    "Basel". Several predicates may be combined, i.e.
    
    .. code-block:: python
    
      tab.Filter(town='Basel', male=True)
      
    will return the rows with "town" equal to "Basel" and "male" equal to true.
    args are unary callables returning true if the row should be included in the
    result and false if not.
    """
    filt_tab=Table(list(self.col_names), list(self.col_types))
    for row in self.rows:
      matches=True
      for func in args:
        if not func(row):
          matches=False
          break
      for key, val in kwargs.items():
        if row[self.GetColIndex(key)]!=val:
          matches=False
          break
      if matches:
        filt_tab.AddRow(row)
    return filt_tab


  def Select(self, query):

    """
    Returns a new table object containing all rows matching a logical query
    expression.
    
    *query* is a string containing the logical expression, that will be
    evaluated for every row.

    Operands have to be the name of a column or an expression that can be
    parsed to float, int, bool or string.
    Valid operators are: and, or, !=, !, <=, >=, ==, =, <, >, +, -, \\*, /
    
    .. code-block:: python
    
      subtab = tab.Select('col_a>0.5 and (col_b=5 or col_c=5)')

    The selection query should be self explaining. Allowed parenthesis are:
    (), [], {}, whereas parenthesis mismatches get recognized. Expressions like
    '3<=col_a>=col_b' throw an error, due to problems in figuring out the
    evaluation order.

    There are two special expressions:

    .. code-block:: python

      #selects rows, where 1.0<=col_a<=1.5
      subtab = tab.Select('col_a=1.0:1.5')

      #selects rows, where col_a=1 or col_a=2 or col_a=3
      subtab = tab.Select('col_a=1,2,3')

    Only consistent types can be compared. If col_a is of type string and col_b
    is of type int, following expression would throw an error: 'col_a<col_b'
    """

    try:
      from .table_selector import TableSelector
    except:
      raise ImportError("Tried to import from the file table_selector.py, but could not find it!")

    selector=TableSelector(self.col_types, self.col_names, query)

    selected_tab=Table(list(self.col_names), list(self.col_types))

    for row in self.rows:
      if selector.EvaluateRow(row):
        selected_tab.AddRow(row)

    return selected_tab


  @staticmethod
  def _LoadOST(stream_or_filename):
    fieldname_pattern=re.compile(r'(?P<name>[^[]+)(\[(?P<type>\w+)\])?')
    values_pattern=re.compile("([^\" ]+|\"[^\"]*\")+")
    file_opened=False
    if not hasattr(stream_or_filename, 'read'):
      stream=open(stream_or_filename, 'r')
      file_opened=True
    else:
      stream=stream_or_filename
    header=False
    num_lines=0
    for line in stream:
      line=line.strip()
      if line.startswith('#'):
        continue
      if len(line)==0:
        continue
      num_lines+=1
      if not header:
        fieldnames=[]
        fieldtypes=[]
        for col in line.split():
          match=fieldname_pattern.match(col)
          if match:
            if match.group('type'):
              fieldtypes.append(match.group('type'))
            else:
              fieldtypes.append('string')
            fieldnames.append(match.group('name'))
        try:
          tab=Table(fieldnames, fieldtypes)
        except Exception as e:
          # potentially fails if we read in crap... clean up and pass on error
          if file_opened:
            stream.close()
          raise e
        header=True
        continue
      tab.AddRow([x.strip('"') for x in values_pattern.findall(line)])
    if file_opened:
      stream.close()
    if num_lines==0:
      raise IOError("Cannot read table from empty stream")
    return tab

  def _GuessColumnTypes(self):
    for col_idx in range(len(self.col_names)):
      self.col_types[col_idx]=GuessColumnType(self[self.col_names[col_idx]])
    for row in self.rows:
      for idx in range(len(row)):
        row[idx]=self._Coerce(row[idx], self.col_types[idx])
        
  @staticmethod
  def _LoadCSV(stream_or_filename, sep):
    file_opened=False
    if not hasattr(stream_or_filename, 'read'):
      stream=open(stream_or_filename, 'r')
      file_opened=True
    else:
      stream=stream_or_filename
    reader=csv.reader(stream, delimiter=sep)
    first=True
    for row in reader:
      if first:
        header=row
        types='s'*len(row)
        tab=Table(header, types)
        first=False
      else:
        tab.AddRow(row)
    if file_opened:
      stream.close()
    if first:
      raise IOError('trying to load table from empty CSV stream/file')

    tab._GuessColumnTypes()
    return tab

  @staticmethod
  def _LoadPickle(stream_or_filename):
    file_opened=False
    if not hasattr(stream_or_filename, 'read'):
      stream=open(stream_or_filename, 'rb')
      file_opened=True
    else:
      stream=stream_or_filename
    tab = pickle.load(stream)
    if file_opened:
      stream.close()
    return tab

  @staticmethod
  def _GuessFormat(filename):
    try:
      filename = filename.name
    except AttributeError as e:
      pass
    if filename.endswith('.csv'):
      return 'csv'
    elif filename.endswith('.pickle'):
      return 'pickle'
    else:
      return 'ost'
    
    
  @staticmethod
  def Load(stream_or_filename, format='auto', sep=','):
    """
    Load table from stream or file with given name.

    By default, the file format is set to *auto*, which tries to guess the file
    format from the file extension. The following file extensions are
    recognized:
    
    ============    ======================
    extension       recognized format
    ============    ======================
    .csv            comma separated values
    .pickle         pickled byte stream
    <all others>    ost-specific format
    ============    ======================
    
    Thus, *format* must be specified for reading file with different filename
    extensions.

    The following file formats are understood:

    - ost

      This is an ost-specific, but still human readable file format. The file
      (stream) must start with header line of the form

        col_name1[type1] <col_name2[type2]>...

      The types given in brackets must be one of the data types the
      :class:`Table` class understands. Each following line in the file then must
      contains exactly the same number of data items as listed in the header. The
      data items are automatically converted to the column format. Lines starting
      with a '#' and empty lines are ignored.

    - pickle

      Deserializes the table from a pickled byte stream.

    - csv

      Reads the table from comma separated values stream. Since there is no
      explicit type information in the csv file, the column types are guessed,
      using the following simple rules:

      * if all values are either NA/NULL/NONE the type is set to string.
      * if all non-null values are convertible to float/int the type is set to
        float/int.
      * if all non-null values are true/false/yes/no, the value is set to bool.
      * for all other cases, the column type is set to string.

    :returns: A new :class:`Table` instance
    """
    format=format.lower()
    if format=='auto':
      format = Table._GuessFormat(stream_or_filename)
      
    if format=='ost':
      return Table._LoadOST(stream_or_filename)
    if format=='csv':
      return Table._LoadCSV(stream_or_filename, sep=sep)
    if format=='pickle':
      return Table._LoadPickle(stream_or_filename)
    raise ValueError('unknown format ""' % format)

  def Sort(self, by, order='+'):
    """
    Performs an in-place sort of the table, based on column *by*.

    :param by: column name by which to sort
    :type by: :class:`str`

    :param order: ascending (``-``) or descending (``+``) order
    :type order: :class:`str` (i.e. *+*, *-*)
    """
    sign=-1
    if order=='-':
      sign=1
    key_index=self.GetColIndex(by)
    def _key_cmp(lhs, rhs):
      a = lhs[key_index]
      b = rhs[key_index]
      # mimic behaviour of the cmp function from Python2 that happily
      # compared None values
      if a is None or b is None:
        if a is None and b is not None:
          return -1 * sign
        if b is None and a is not None:
          return 1 * sign
        return 0
      return sign*((a > b) - (a < b))

    import functools
    self.rows=sorted(self.rows, key=functools.cmp_to_key(_key_cmp))
    
  def GetUnique(self, col, ignore_nan=True):
    """
    Extract a list of all unique values from one column.

    :param col: column name
    :type col: :class:`str`

    :param ignore_nan: ignore all *None* values
    :type ignore_nan: :class:`bool`
    """
    idx = self.GetColIndex(col)
    seen = {}
    result = []
    for row in self.rows:
      item = row[idx]
      if item!=None or ignore_nan==False:
        if item in seen: continue
        seen[item] = 1
        result.append(item)
    return result
    
  def Zip(self, *args):
    """
    Allows to conveniently iterate over a selection of columns, e.g.
    
    .. code-block:: python
    
      tab = Table.Load('...')
      for col1, col2 in tab.Zip('col1', 'col2'):
        print col1, col2
    
    is a shortcut for
    
    .. code-block:: python
    
      tab = Table.Load('...')
      for col1, col2 in zip(tab['col1'], tab['col2']):
        print col1, col2
    """
    return list(zip(*[self[arg] for arg in args]))

  def Plot(self, x, y=None, z=None, style='.', x_title=None, y_title=None,
           z_title=None, x_range=None, y_range=None, z_range=None,
           color=None, plot_if=None, legend=None,
           num_z_levels=10, z_contour=True, z_interpol='nn', diag_line=False,
           labels=None, max_num_labels=None, title=None, clear=True, save=False,
           **kwargs):
    """
    Function to plot values from your table in 1, 2 or 3 dimensions using
    `Matplotlib <http://matplotlib.sourceforge.net>`__

    :param x: column name for first dimension
    :type x: :class:`str`

    :param y: column name for second dimension
    :type y: :class:`str`

    :param z: column name for third dimension
    :type z: :class:`str`

    :param style: symbol style (e.g. *.*, *-*, *x*, *o*, *+*, *\\**). For a
                  complete list check (`matplotlib docu <http://matplotlib.sourceforge.net/api/pyplot_api.html#matplotlib.pyplot.plot>`__).
    :type style: :class:`str`

    :param x_title: title for first dimension, if not specified it is
                    automatically derived from column name
    :type x_title: :class:`str`

    :param y_title: title for second dimension, if not specified it is
                    automatically derived from column name
    :type y_title: :class:`str`

    :param z_title: title for third dimension, if not specified it is
                    automatically derived from column name
    :type z_title: :class:`str`

    :param x_range: start and end value for first dimension (e.g. [start_x, end_x])
    :type x_range: :class:`list` of length two

    :param y_range: start and end value for second dimension (e.g. [start_y, end_y])
    :type y_range: :class:`list` of length two

    :param z_range: start and end value for third dimension (e.g. [start_z, end_z])
    :type z_range: :class:`list` of length two

    :param color: color for data (e.g. *b*, *g*, *r*). For a complete list check
                  (`matplotlib docu <http://matplotlib.sourceforge.net/api/pyplot_api.html#matplotlib.pyplot.plot>`__).
    :type color: :class:`str`

    :param plot_if: callable which returnes *True* if row should be plotted. Is
                    invoked like ``plot_if(self, row)``
    :type plot_if: callable

    :param legend: legend label for data series
    :type legend: :class:`str`

    :param num_z_levels: number of levels for third dimension
    :type num_z_levels: :class:`int`

    :param diag_line: draw diagonal line
    :type diag_line: :class:`bool`

    :param labels: column name containing labels to put on x-axis for one
                   dimensional plot
    :type labels: :class:`str`

    :param max_num_labels: limit maximum number of labels
    :type max_num_labels: :class:`int`

    :param title: plot title, if not specified it is automatically derived from
                  plotted column names
    :type title: :class:`str`

    :param clear: clear old data from plot
    :type clear: :class:`bool`

    :param save: filename for saving plot
    :type save: :class:`str`

    :param z_contour: draw contour lines
    :type z_contour: :class:`bool`

    :param z_interpol: interpolation method for 3-dimensional plot (one of 'nn',
                       'linear')
    :type z_interpol: :class:`str`

    :param \\*\\*kwargs: additional arguments passed to matplotlib
    
    :returns: the ``matplotlib.pyplot`` module 

    **Examples:** simple plotting functions

    .. code-block:: python

      tab = Table(['a','b','c','d'],'iffi', a=range(5,0,-1),
                                            b=[x/2.0 for x in range(1,6)],
                                            c=[math.cos(x) for x in range(0,5)],
                                            d=range(3,8))

      # one dimensional plot of column 'd' vs. index
      plt = tab.Plot('d')
      plt.show()

      # two dimensional plot of 'a' vs. 'c'
      plt = tab.Plot('a', y='c', style='o-')
      plt.show()

      # three dimensional plot of 'a' vs. 'c' with values 'b'
      plt = tab.Plot('a', y='c', z='b')
      # manually save plot to file
      plt.savefig("plot.png")
    """
    try:
      import matplotlib.pyplot as plt
      import matplotlib.mlab as mlab
      import numpy as np
      idx1 = self.GetColIndex(x)
      xs = []
      ys = []
      zs = []

      if clear:
        plt.figure(figsize=[8, 6])
      
      if x_title!=None:
        nice_x=x_title
      else:
        nice_x=MakeTitle(x)
      
      if y_title!=None:
        nice_y=y_title
      else:
        if y:
          nice_y=MakeTitle(y)
        else:
          nice_y=None
      
      if z_title!=None:
        nice_z = z_title
      else:
        if z:
          nice_z = MakeTitle(z)
        else:
          nice_z = None

      if x_range and (IsScalar(x_range) or len(x_range)!=2):
        raise ValueError('parameter x_range must contain exactly two elements')
      if y_range and (IsScalar(y_range) or len(y_range)!=2):
        raise ValueError('parameter y_range must contain exactly two elements')
      if z_range and (IsScalar(z_range) or len(z_range)!=2):
        raise ValueError('parameter z_range must contain exactly two elements')

      if color:
        kwargs['color']=color
      if legend:
        kwargs['label']=legend
      if y and z:
        idx3 = self.GetColIndex(z)
        idx2 = self.GetColIndex(y)
        for row in self.rows:
          if row[idx1]!=None and row[idx2]!=None and row[idx3]!=None:
            if plot_if and not plot_if(self, row):
              continue
            xs.append(row[idx1])
            ys.append(row[idx2])
            zs.append(row[idx3])
        levels = []
        if z_range:
          z_spacing = (z_range[1] - z_range[0]) / num_z_levels
          l = z_range[0]
        else:
          l = self.Min(z)
          z_spacing = (self.Max(z) - l) / num_z_levels
        
        for i in range(0,num_z_levels+1):
          levels.append(l)
          l += z_spacing
  
        xi = np.linspace(min(xs),max(xs),len(xs)*10)
        yi = np.linspace(min(ys),max(ys),len(ys)*10)
        zi = mlab.griddata(xs, ys, zs, xi, yi, interp=z_interpol)
  
        if z_contour:
          plt.contour(xi,yi,zi,levels,linewidths=0.5,colors='k')

        plt.contourf(xi,yi,zi,levels,cmap=plt.cm.jet)
        plt.colorbar(ticks=levels)
            
      elif y:
        idx2=self.GetColIndex(y)
        for row in self.rows:
          if row[idx1]!=None and row[idx2]!=None:
            if plot_if and not plot_if(self, row):
              continue
            xs.append(row[idx1])
            ys.append(row[idx2])
        plt.plot(xs, ys, style, **kwargs)
        
      else:
        label_vals=[]
        
        if labels:
          label_idx=self.GetColIndex(labels)
        for row in self.rows:
          if row[idx1]!=None:
            if plot_if and not plot_if(self, row):
              continue
            xs.append(row[idx1])
            if labels:
              label_vals.append(row[label_idx])
        plt.plot(xs, style, **kwargs)
        if labels:
          interval = 1
          if max_num_labels:
            if len(label_vals)>max_num_labels:
              interval = int(math.ceil(float(len(label_vals))/max_num_labels))
              label_vals = label_vals[::interval]
          plt.xticks(np.arange(0, len(xs), interval), label_vals, rotation=45,
                     size='x-small')
      
      if title==None:
        if nice_z:
          title = '%s of %s vs. %s' % (nice_z, nice_x, nice_y)
        elif nice_y:
          title = '%s vs. %s' % (nice_x, nice_y)
        else:
          title = nice_x
  
      plt.title(title, size='x-large', fontweight='bold',
                verticalalignment='bottom')
      
      if legend:
        plt.legend(loc=0)
      
      if x and y:
        plt.xlabel(nice_x, size='x-large')
        if x_range:
          plt.xlim(x_range[0], x_range[1])
        if y_range:
          plt.ylim(y_range[0], y_range[1])
        if diag_line:
          plt.plot(x_range, y_range, '-', color='black')
        
        plt.ylabel(nice_y, size='x-large')
      else:
        if y_range:
          plt.ylim(y_range[0], y_range[1])
        if x_title:
          plt.xlabel(x_title, size='x-large')
        plt.ylabel(nice_y, size='x-large')
      if save:
        plt.savefig(save)
      return plt
    except ImportError:
      LogError("Function needs numpy and matplotlib, but I could not import it.")
      raise
    
  def PlotHistogram(self, col, x_range=None, num_bins=10, normed=False,
                    histtype='stepfilled', align='mid', x_title=None,
                    y_title=None, title=None, clear=True, save=False,
                    color=None, y_range=None):
    """
    Create a histogram of the data in col for the range *x_range*, split into
    *num_bins* bins and plot it using Matplotlib.

    :param col: column name with data
    :type col: :class:`str`

    :param x_range: start and end value for first dimension (e.g. [start_x, end_x])
    :type x_range: :class:`list` of length two

    :param y_range: start and end value for second dimension (e.g. [start_y, end_y])
    :type y_range: :class:`list` of length two

    :param num_bins: number of bins in range
    :type num_bins: :class:`int`

    :param color: Color to be used for the histogram. If not set, color will be 
        determined by matplotlib
    :type color: :class:`str`

    :param normed: normalize histogram
    :type normed: :class:`bool`

    :param histtype: type of histogram (i.e. *bar*, *barstacked*, *step*,
                     *stepfilled*). See (`matplotlib docu <http://matplotlib.sourceforge.net/api/pyplot_api.html#matplotlib.pyplot.hist>`__).
    :type histtype: :class:`str`

    :param align: style of histogram (*left*, *mid*, *right*). See
                  (`matplotlib docu <http://matplotlib.sourceforge.net/api/pyplot_api.html#matplotlib.pyplot.hist>`__).
    :type align: :class:`str`

    :param x_title: title for first dimension, if not specified it is
                    automatically derived from column name
    :type x_title: :class:`str`

    :param y_title: title for second dimension, if not specified it is
                    automatically derived from column name
    :type y_title: :class:`str`

    :param title: plot title, if not specified it is automatically derived from
                  plotted column names
    :type title: :class:`str`

    :param clear: clear old data from plot
    :type clear: :class:`bool`

    :param save: filename for saving plot
    :type save: :class:`str`

    **Examples:** simple plotting functions

    .. code-block:: python

      tab = Table(['a'],'f', a=[math.cos(x*0.01) for x in range(100)])

      # one dimensional plot of column 'd' vs. index
      plt = tab.PlotHistogram('a')
      plt.show()

    """
    try:
      import matplotlib.pyplot as plt
      import numpy as np
      
      if len(self.rows)==0:
        return None
      kwargs={}
      if color:
        kwargs['color']=color
      idx = self.GetColIndex(col)
      data = []
      for r in self.rows:
        if r[idx]!=None:
          data.append(r[idx])
        
      if clear:
        plt.clf()
        
      n, bins, patches = plt.hist(data, bins=num_bins, range=x_range,
                                  normed=normed, histtype=histtype, align=align,
                                  **kwargs)
      
      if x_title!=None:
        nice_x=x_title
      else:
        nice_x=MakeTitle(col)
      plt.xlabel(nice_x, size='x-large')
      if y_range:
        plt.ylim(y_range) 
      if y_title!=None:
        nice_y=y_title
      else:
        nice_y="bin count"  
      plt.ylabel(nice_y, size='x-large')
      
      if title!=None:
        nice_title=title
      else:
        nice_title="Histogram of %s"%nice_x
      plt.title(nice_title, size='x-large', fontweight='bold')
      
      if save:
        plt.savefig(save)
      return plt
    except ImportError:
      LogError("Function needs numpy and matplotlib, but I could not import it.")
      raise
 
  def _Max(self, col):
    if len(self.rows)==0:
      return None, None
    idx = self.GetColIndex(col)
    col_type = self.col_types[idx]
    if col_type=='int' or col_type=='float':
      max_val = -float('inf')
    elif col_type=='bool':
      max_val = False
    elif col_type=='string':
      max_val = chr(0)
    max_idx = None
    for i in range(0, len(self.rows)):
      val = self.rows[i][idx]
      if val and val > max_val:
        max_val = self.rows[i][idx]
        max_idx = i
    return max_val, max_idx

  def PlotBar(self, cols=None, rows=None, xlabels=None, set_xlabels=True, xlabels_rotation='horizontal', y_title=None, title=None, 
              colors=None, width=0.8, bottom=0, legend=False, legend_names=None, show=False, save=False):

    """
    Create a barplot of the data in cols. Every column will be represented
    at one position. If there are several rows, each column will be grouped 
    together.

    :param cols: List of column names. Every column will be represented as a 
                 single bar. If cols is None, every column of the table gets 
                 plotted.
    :type cols: :class:`list`

    :param rows: List of row indices. Values from given rows will be plotted 
                 in parallel at one column position. If set to None, all rows 
                 of the table will be plotted. Note, that the maximum number 
                 of rows is 7.
    :type rows: :class:`list`

    :param xlabels: Label for every col on x-axis. If set to None, the column 
                    names are used. The xlabel plotting can be supressed by 
                    the parameter set_xlabel.
    :type xlabels: :class:`list`

    :param set_xlabels: Controls whether xlabels are plotted or not.
    :type set_xlabels: :class:`bool`

    :param x_labels_rotation: Can either be 'horizontal', 'vertical' or an 
                              integer, that describes the rotation in degrees.

    :param y_title: Y-axis description
    :type y_title: :class:`str`

    :title: Title of the plot. No title appears if set to None
    :type title: :class:`str`

    :param colors: Colors of the different bars in each group. Must be a list 
                   of valid colors in matplotlib. Length of color and rows must 
                   be consistent.
    :type colors: :class:`list`

    :param width: The available space for the groups on the x-axis is divided 
                  by the exact number of groups. The parameters width is the 
                  fraction of what is actually used. If it would be 1.0 the 
                  bars of the different groups would touch each other.
                  Value must be between [0;1]
    :type width: :class:`float`

    :param bottom: Bottom
    :type bottom: :class:`float`

    :param legend: Legend for color explanation, the corresponding row 
                   respectively. If set to True, legend_names must be provided.
    :type legend: :class:`bool`

    :param legend_names: List of names, that describe the differently colored 
                         bars. Length must be consistent with number of rows.

    :param show: If set to True, the plot is directly displayed.

    :param save: If set, a png image with name save in the current working 
                 directory will be saved.
    :type save: :class:`str`

    """
    try:
      import numpy as np
      import matplotlib.pyplot as plt
    except:
      raise ImportError('PlotBar relies on numpy and matplotlib, but I could' \
                        'not import it!')
      
    standard_colors=['b','g','y','c','m','r','k']
    data=[]

    if cols==None:
      cols=self.col_names

    if width<=0 or width>1:
      raise ValueError('Width must be in [0;1]')

    if rows==None:
      if len(self.rows)>7:
        raise ValueError('Table contains too many rows to represent them at one '\
                         'bar position in parallel. You can Select a Subtable or '\
                         'specify the parameter rows with a list of row indices '\
                         '(max 7)')
      else:
        rows=list(range(len(self.rows)))
    else:
      if not isinstance(rows,list):
        rows=[rows]
      if len(rows)>7:
        raise ValueError('Too many rows to represent (max 7). Please note, that '\
                         'data from multiple rows from one column gets '\
                         'represented at one position in parallel.')

    for r_idx in rows:
      row=self.rows[r_idx] 
      temp=list()
      for c in cols:
        try:
          c_idx=self.GetColIndex(c)
        except:
          raise ValueError('Cannot find column with name '+str(c))
        temp.append(row[c_idx])
      data.append(temp)  

    if colors==None:
      colors=standard_colors[:len(rows)]

    if len(rows)!=len(colors):
      raise ValueError("Number of rows and number of colors must be consistent!")

    ind=np.arange(len(data[0]))
    single_bar_width=float(width)/len(data)
    
    fig=plt.figure()
    ax=fig.add_subplot(111)
    legend_data=[]

    for i in range(len(data)):
      legend_data.append(ax.bar(ind+i*single_bar_width+(1-width)/2,data[i],single_bar_width,bottom=bottom,color=colors[i])[0])
      
    if title!=None:
      ax.set_title(title, size='x-large', fontweight='bold')  
    
    if y_title!=None:
      nice_y=y_title
    else:
      nice_y="value" 
    ax.set_ylabel(nice_y)
    
    if xlabels:
      if len(data[0])!=len(xlabels):
        raise ValueError('Number of xlabels is not consistent with number of cols!')
    else:
      xlabels=cols
      
    if set_xlabels:
      ax.set_xticks(ind+0.5)
      ax.set_xticklabels(xlabels, rotation = xlabels_rotation)
    else:
      ax.set_xticks([])
      
    if legend == True:
      if legend_names==None:
        raise ValueError('You must provide legend names! e.g. names for the rows, '\
                         'that are printed in parallel.')
      if len(legend_names)!=len(data):
        raise ValueError('length of legend_names must be consistent with number '\
                         'of plotted rows!')
      ax.legend(legend_data, legend_names)   

    if save:
      plt.savefig(save)

    if show:
      plt.show()
    
    return plt
      
  def PlotHexbin(self, x, y, title=None, x_title=None, y_title=None, x_range=None, y_range=None, binning='log',
                 colormap='jet', show_scalebar=False, scalebar_label=None, clear=True, save=False, show=False):

    """
    Create a heatplot of the data in col x vs the data in col y using matplotlib

    :param x: column name with x data
    :type x: :class:`str`

    :param y: column name with y data
    :type y: :class:`str`

    :param title: title of the plot, will be generated automatically if set to None
    :type title: :class:`str`

    :param x_title: label of x-axis, will be generated automatically if set to None
    :type title: :class:`str`

    :param y_title: label of y-axis, will be generated automatically if set to None
    :type title: :class:`str`

    :param x_range: start and end value for first dimension (e.g. [start_x, end_x])
    :type x_range: :class:`list` of length two

    :param y_range: start and end value for second dimension (e.g. [start_y, end_y])
    :type y_range: :class:`list` of length two

    :param binning: type of binning. If set to None, the value of a hexbin will
                    correspond to the number of datapoints falling into it. If
                    set to 'log', the value will be the log with base 10 of the above
                    value (log(i+1)). If an integer is provided, the number of a 
                    hexbin is equal the number of datapoints falling into it divided 
                    by the integer. If a list of values is provided, these values
                    will be the lower bounds of the bins.
    
    :param colormap: colormap, that will be used. Value can be every colormap defined
                     in matplotlib or an own defined colormap. You can either pass a
                     string with the name of the matplotlib colormap or a colormap
                     object.

    :param show_scalebar: If set to True, a scalebar according to the chosen colormap is shown
    :type show_scalebar: :class:`bool`

    :param scalebar_label: Label of the scalebar
    :type scalebar_label: :class:`str`

    :param clear: clear old data from plot
    :type clear: :class:`bool`

    :param save: filename for saving plot
    :type save: :class:`str`

    :param show: directly show plot
    :type show: :class:`bool`
    
    """

    try:
      import matplotlib.pyplot as plt
      import matplotlib.cm as cm
    except:
      raise ImportError('PlotHexbin relies on matplotlib, but I could not import it')

    idx=self.GetColIndex(x)
    idy=self.GetColIndex(y)
    xdata=[]
    ydata=[]

    for r in self.rows:
      if r[idx]!=None and r[idy]!=None:
        xdata.append(r[idx])
        ydata.append(r[idy])

    if clear:
      plt.clf()
      
    if x_title!=None:
      nice_x=x_title
    else:
      nice_x=MakeTitle(x)
      
    if y_title!=None:
      nice_y=y_title
    else:
      nice_y=MakeTitle(y)

    if title==None:
      title = '%s vs. %s' % (nice_x, nice_y)
  
    if IsStringLike(colormap):
      colormap=getattr(cm, colormap)

    if x_range and (IsScalar(x_range) or len(x_range)!=2):
      raise ValueError('parameter x_range must contain exactly two elements')
    if y_range and (IsScalar(y_range) or len(y_range)!=2):
      raise ValueError('parameter y_range must contain exactly two elements')

    ext = [min(xdata),max(xdata),min(ydata),max(ydata)]

    if x_range:
      plt.xlim((x_range[0], x_range[1]))
      ext[0]=x_range[0]
      ext[1]=x_range[1]
    if y_range:
      plt.ylim(y_range[0], y_range[1])
      ext[2]=y_range[0]
      ext[3]=y_range[1]


    plt.hexbin(xdata, ydata, bins=binning, cmap=colormap, extent=ext)

    plt.title(title, size='x-large', fontweight='bold',
              verticalalignment='bottom')

    plt.xlabel(nice_x)
    plt.ylabel(nice_y)
        
    if show_scalebar:
      cb=plt.colorbar()
      if scalebar_label:
        cb.set_label(scalebar_label)

    if save:
      plt.savefig(save)

    if show:
      plt.show()

    return plt
        
  def MaxRow(self, col):
    """
    Returns the row containing the cell with the maximal value in col. If 
    several rows have the highest value, only the first one is returned.
    ''None'' values are ignored.

    :param col: column name
    :type col: :class:`str`

    :returns: row with maximal col value or None if the table is empty
    """
    val, idx = self._Max(col)
    if idx!=None:
      return self.rows[idx]
  
  def Max(self, col):
    """
    Returns the maximum value in col. If several rows have the highest value,
    only the first one is returned. ''None'' values are ignored.

    :param col: column name
    :type col: :class:`str`
    """
    val, idx = self._Max(col)
    return val
  
  def MaxIdx(self, col):
    """
    Returns the row index of the cell with the maximal value in col. If
    several rows have the highest value, only the first one is returned.
    ''None'' values are ignored.

    :param col: column name
    :type col: :class:`str`
    """
    val, idx = self._Max(col)
    return idx
  
  def _Min(self, col):
    if len(self.rows)==0:
      return None, None
    idx=self.GetColIndex(col)
    col_type = self.col_types[idx]
    if col_type=='int' or col_type=='float':
      min_val=float('inf')
    elif col_type=='bool':
      min_val=True
    elif col_type=='string':
      min_val=chr(255)
    min_idx=None
    for i,row in enumerate(self.rows):
      if row[idx]!=None and row[idx]<min_val:
        min_val=row[idx]
        min_idx=i
    return min_val, min_idx

  def Min(self, col):
    """
    Returns the minimal value in col. If several rows have the lowest value,
    only the first one is returned. ''None'' values are ignored.

    :param col: column name
    :type col: :class:`str`
    """
    val, idx = self._Min(col)
    return val
  
  def MinRow(self, col):
    """
    Returns the row containing the cell with the minimal value in col. If 
    several rows have the lowest value, only the first one is returned.
    ''None'' values are ignored.

    :param col: column name
    :type col: :class:`str`

    :returns: row with minimal col value or None if the table is empty
    """
    val, idx = self._Min(col)
    if idx!=None:
      return self.rows[idx]
  
  def MinIdx(self, col):
    """
    Returns the row index of the cell with the minimal value in col. If
    several rows have the lowest value, only the first one is returned.
    ''None'' values are ignored.

    :param col: column name
    :type col: :class:`str`
    """
    val, idx = self._Min(col)
    return idx
  
  def Sum(self, col):
    """
    Returns the sum of the given column. Cells with ''None'' are ignored. Returns 
    0.0, if the column doesn't contain any elements. Col must be of numeric
    column type ('float', 'int') or boolean column type.

    :param col: column name
    :type col: :class:`str`

    :raises: :class:`TypeError` if column type is ``string``
    """
    idx = self.GetColIndex(col)
    col_type = self.col_types[idx]
    if col_type!='int' and col_type!='float' and col_type!='bool':
      raise TypeError("Sum can only be used on numeric column types")
    s = 0.0
    for r in self.rows:
      if r[idx]!=None:
        s += r[idx] 
    return s 

  def Mean(self, col):
    """
    Returns the mean of the given column. Cells with ''None'' are ignored. Returns 
    None, if the column doesn't contain any elements. Col must be of numeric
    ('float', 'int') or boolean column type.

    If column type is *bool*, the function returns the ratio of
    number of 'Trues' by total number of elements.

    :param col: column name
    :type col: :class:`str`

    :raises: :class:`TypeError` if column type is ``string``
    """
    idx = self.GetColIndex(col)
    col_type = self.col_types[idx]
    if col_type!='int' and col_type!='float' and col_type!='bool':
      raise TypeError("Mean can only be used on numeric or bool column types")
    
    vals=[]
    for v in self[col]:
      if v!=None:
        vals.append(v)
    try:
      return stutil.Mean(vals)
    except:
      return None
    
  def RowMean(self, mean_col_name, cols):
    """
    Adds a new column of type 'float' with a specified name (*mean_col_name*),
    containing the mean of all specified columns for each row.
    
    Cols are specified by their names and must be of numeric column
    type ('float', 'int') or boolean column type. Cells with None are ignored.
    Adds ''None'' if the row doesn't contain any values.
    
    :param mean_col_name: name of new column containing mean values
    :type mean_col_name: :class:`str`

    :param cols: name or list of names of columns to include in computation of
                 mean
    :type cols: :class:`str` or :class:`list` of strings

    :raises: :class:`TypeError` if column type of columns in *col* is ``string``
    
    == Example ==
   
    Staring with the following table:
    
    ==== ==== ====
    x     y    u           
    ==== ==== ====
     1    10  100 
     2    15  None 
     3    20  400 
    ==== ==== ====
    
    the code here adds a column with the name 'mean' to yield the table below:
    
    .. code-block::python
    
      tab.RowMean('mean', ['x', 'u'])
    
    
    ==== ==== ==== ===== 
    x     y    u   mean           
    ==== ==== ==== =====
     1    10  100  50.5 
     2    15  None 2
     3    20  400  201.5 
    ==== ==== ==== =====
      
    """
    
    if IsScalar(cols):
      cols = [cols]
    
    cols_idxs = []
    for col in cols:
      idx = self.GetColIndex(col)
      col_type = self.col_types[idx]
      if col_type!='int' and col_type!='float' and col_type!='bool':
        raise TypeError("RowMean can only be used on numeric column types")
      cols_idxs.append(idx)
      
    mean_rows = []
    for row in self.rows:
      vals = []
      for idx in cols_idxs:
        v = row[idx]
        if v!=None:
          vals.append(v)
      try:
        mean = stutil.Mean(vals)
        mean_rows.append(mean)
      except:
        mean_rows.append(None)
    
    self.AddCol(mean_col_name, 'f', mean_rows)
    
  def Percentiles(self, col, nths):
    """
    Returns the percentiles of column *col* given in *nths*.

    The percentiles are calculated as 
    
    .. code-block:: python

      values[min(len(values)-1, int(math.floor(len(values)*nth/100.0)))]

    where values are the sorted values of *col* not equal to ''None''

    :param col: column name
    :type col:  :class:`str`
    :param nths: list of percentiles to be calculated. Each percentile is a
                 number between 0 and 100.
    :type nths:  :class:`list` of numbers

    :raises: :class:`TypeError` if column type is ``string``
    :returns: List of percentiles in the same order as given in *nths*
    """
    idx = self.GetColIndex(col)
    col_type = self.col_types[idx]
    if col_type!='int' and col_type!='float' and col_type!='bool':
      raise TypeError("Median can only be used on numeric column types")
    
    for nth in nths:
      if nth < 0 or nth > 100:
        raise ValueError("percentiles must be between 0 and 100")
    vals=[]
    for v in self[col]:
      if v!=None:
        vals.append(v)
    vals=sorted(vals)
    if len(vals)==0:
      return [None]*len(nths)
    percentiles=[]
    
    for nth in nths:
      # rounding behaviour between Python2 and Python3 changed....
      # p=vals[min(len(vals)-1, int(round(len(vals)*nth/100.0+0.5)-1))]
      p=vals[min(len(vals)-1, int(math.floor(len(vals)*nth/100.0)))]
      percentiles.append(p)
    return percentiles

  def Median(self, col):
    """
    Returns the median of the given column. Cells with ''None'' are ignored. Returns 
    ''None'', if the column doesn't contain any elements. Col must be of numeric
    column type ('float', 'int') or boolean column type.

    :param col: column name
    :type col: :class:`str`

    :raises: :class:`TypeError` if column type is ``string``
    """
    idx = self.GetColIndex(col)
    col_type = self.col_types[idx]
    if col_type!='int' and col_type!='float' and col_type!='bool':
      raise TypeError("Median can only be used on numeric column types")
    
    vals=[]
    for v in self[col]:
      if v!=None:
        vals.append(v)
    stutil.Median(vals)
    try:
      return stutil.Median(vals)
    except:
      return None
    
  def StdDev(self, col):
    """
    Returns the standard deviation of the given column. Cells with ''None'' are
    ignored. Returns ''None'', if the column doesn't contain any elements. Col must
    be of numeric column type ('float', 'int') or boolean column type.

    :param col: column name
    :type col: :class:`str`

    :raises: :class:`TypeError` if column type is ``string``
    """
    idx = self.GetColIndex(col)
    col_type = self.col_types[idx]
    if col_type!='int' and col_type!='float' and col_type!='bool':
      raise TypeError("StdDev can only be used on numeric column types")
    
    vals=[]
    for v in self[col]:
      if v!=None:
        vals.append(v)
    try:
      return stutil.StdDev(vals)
    except:
      return None

  def Count(self, col, ignore_nan=True):
    """
    Count the number of cells in column that are not equal to ''None''.

    :param col: column name
    :type col: :class:`str`

    :param ignore_nan: ignore all *None* values
    :type ignore_nan: :class:`bool`
    """
    count=0
    idx=self.GetColIndex(col)
    for r in self.rows:
      if ignore_nan:
        if r[idx]!=None:
          count+=1
      else:
        count+=1
    return count

  def Correl(self, col1, col2):
    """
    Calculate the Pearson correlation coefficient between *col1* and *col2*, only
    taking rows into account where both of the values are not equal to *None*.
    If there are not enough data points to calculate a correlation coefficient,
    *None* is returned.

    :param col1: column name for first column
    :type col1: :class:`str`

    :param col2: column name for second column
    :type col2: :class:`str`
    """
    if IsStringLike(col1) and IsStringLike(col2):
      col1 = self.GetColIndex(col1)
      col2 = self.GetColIndex(col2)
    vals1, vals2=([],[])
    for v1, v2 in zip(self[col1], self[col2]):
      if v1!=None and v2!=None:
        vals1.append(v1)
        vals2.append(v2)
    try:
      return stutil.Correl(vals1, vals2)
    except:
      return None

  def SpearmanCorrel(self, col1, col2):
    """
    Calculate the Spearman correlation coefficient between col1 and col2, only 
    taking rows into account where both of the values are not equal to None. If 
    there are not enough data points to calculate a correlation coefficient, 
    None is returned.
    
    :warning: The function depends on the following module: *scipy.stats.mstats*

    :param col1: column name for first column
    :type col1: :class:`str`

    :param col2: column name for second column
    :type col2: :class:`str`
    """
    try:
      import scipy.stats.mstats
      import numpy as np
      
      if IsStringLike(col1) and IsStringLike(col2):
        col1 = self.GetColIndex(col1)
        col2 = self.GetColIndex(col2)
      vals1, vals2=([],[])
      for v1, v2 in zip(self[col1], self[col2]):
        if v1!=None and v2!=None:
          vals1.append(v1)
          vals2.append(v2)
      try:
        correl = scipy.stats.mstats.spearmanr(vals1, vals2)[0]
        if np.isnan(correl):
          return None
        return correl
      except:
        return None

    except ImportError:
      LogError("Function needs scipy.stats.mstats, but I could not import it.")
      raise
    

  def Save(self, stream_or_filename, format='ost', sep=','):
    """
    Save the table to stream or filename. The following three file formats
    are supported (for more information on file formats, see :meth:`Load`):

    =============   =======================================
    ost             ost-specific format (human readable)
    csv             comma separated values (human readable)
    pickle          pickled byte stream (binary)
    html            HTML table
    context         ConTeXt table
    =============   =======================================

    :param stream_or_filename: filename or stream for writing output
    :type stream_or_filename: :class:`str` or :class:`file`

    :param format: output format (i.e. *ost*, *csv*, *pickle*)
    :type format: :class:`str`

    :raises: :class:`ValueError` if format is unknown
    """
    format=format.lower()
    if format=='ost':
      return self._SaveOST(stream_or_filename)
    if format=='csv':
      return self._SaveCSV(stream_or_filename, sep=sep)
    if format=='pickle':
      return self._SavePickle(stream_or_filename)
    if format=='html':
      return self._SaveHTML(stream_or_filename)
    if format=='context':
      return self._SaveContext(stream_or_filename)
    raise ValueError('unknown format "%s"' % format)

  def _SavePickle(self, stream):
    file_opened=False
    if not hasattr(stream, 'write'):
      stream=open(stream, 'wb')
      file_opened=True
    pickle.dump(self, stream, pickle.HIGHEST_PROTOCOL)
    if file_opened:
      stream.close()

  def _SaveHTML(self, stream_or_filename):
    def _escape(s):
      return s.replace('&', '&amp;').replace('>', '&gt;').replace('<', '&lt;')

    file_opened = False
    if not hasattr(stream_or_filename, 'write'):
      stream = open(stream_or_filename, 'w')
      file_opened = True
    else:
      stream = stream_or_filename
    stream.write('<table>') 
    stream.write('<tr>')
    for col_name in self.col_names:
      stream.write('<th>%s</th>' % _escape(col_name)) 
    stream.write('</tr>')
    for row in self.rows:
      stream.write('<tr>')
      for i, col in enumerate(row):
        val = ''
        if col != None:
           if self.col_types[i] == 'float':
             val = '%.3f' % col
           elif self.col_types[i] == 'int':
             val = '%d' % col
           elif self.col_types[i] == 'bool':
             val = col and 'true' or 'false'
           else:
             val  = str(col)
        stream.write('<td>%s</td>' % _escape(val))
      stream.write('</tr>')
    stream.write('</table>')
    if file_opened:
      stream.close()
  def _SaveContext(self, stream_or_filename):
    file_opened = False
    if not hasattr(stream_or_filename, 'write'):
      stream = open(stream_or_filename, 'w')
      file_opened = True
    else:
      stream = stream_or_filename
    stream.write('\\starttable[') 
    for col_type in self.col_types:
      if col_type =='string':
        stream.write('l|')
      elif col_type=='int':
        stream.write('r|')
      elif col_type =='float':
        stream.write('i3r|')
      else:
        stream.write('l|')
    stream.write(']\n\\HL\n')
    for col_name in self.col_names:
      stream.write('\\NC \\bf %s' % col_name) 
    stream.write(' \\AR\\HL\n')
    for row in self.rows:
      for i, col in enumerate(row):
        val = '---'
        if col != None:
           if self.col_types[i] == 'float':
             val = '%.3f' % col
           elif self.col_types[i] == 'int':
             val = '%d' % col
           elif self.col_types[i] == 'bool':
             val = col and 'true' or 'false'
           else:
             val  = str(col)
        stream.write('\\NC %s' % val)
      stream.write(' \\AR\n')
    stream.write('\\HL\n')
    stream.write('\\stoptable')
    if file_opened:
      stream.close()

  def _SaveCSV(self, stream, sep):
    file_opened=False
    if not hasattr(stream, 'write'):
      stream=open(stream, 'w')
      file_opened=True

    writer=csv.writer(stream, delimiter=sep)
    writer.writerow(['%s' % n for n in self.col_names])
    for row in self.rows:
      row=list(row)
      for i, c in enumerate(row):
        if c==None:
          row[i]='NA'
      writer.writerow(row)
    if file_opened:
      stream.close()


  def _SaveOST(self, stream):
    file_opened=False
    if hasattr(stream, 'write'):
      writer=csv.writer(stream, delimiter=' ')
    else:
      stream=open(stream, 'w')
      writer=csv.writer(stream, delimiter=' ')
      file_opened=True
    if self.comment:
      stream.write(''.join(['# %s\n' % l for l in self.comment.split('\n')]))
    writer.writerow(['%s[%s]' % t for t in zip(self.col_names, self.col_types)])
    for row in self.rows:
      row=list(row)
      for i, c in enumerate(row):
        if c==None:
          row[i]='NA'
      writer.writerow(row)
    if file_opened:
      stream.close()

  def GetNumpyMatrixAsArray(self, *args):
    '''
    Returns a numpy array containing the selected columns from the table as 
    columns as a matrix.

    Only columns of type *int* or *float* are supported. *NA* values in the
    table will be converted to *None* values.

    Originally the function used the numpy matrix class but that is going to be
    deprecated in the future. Numpy itself suggests replacing numpy matrix by
    numpy array.

    :param \\*args: column names to include in numpy array

    :warning: The function depends on *numpy*
    '''
    try:
      import numpy as np
      
      if len(args)==0:
        raise RuntimeError("At least one column must be specified.")
      
      idxs = []
      for arg in args:
        idx = self.GetColIndex(arg)
        col_type = self.col_types[idx]
        if col_type!='int' and col_type!='float':
          raise TypeError("Numpy matrix can only be generated from numeric "+\
                          "column types")
        idxs.append(idx)

      a = np.array([list(self[i]) for i in idxs])
      return a.T
    
    except ImportError:
      LogError("Function needs numpy, but I could not import it.")
      raise

  def GetNumpyMatrix(self, *args):
    '''
    *Caution*: Numpy is deprecating the use of the numpy matrix class.

    Returns a numpy matrix containing the selected columns from the table as 
    columns in the matrix.

    Only columns of type *int* or *float* are supported. *NA* values in the
    table will be converted to *None* values.

    :param \\*args: column names to include in numpy matrix

    :warning: The function depends on *numpy*
    '''
    LogWarning("table.GetNumpyMatrix is deprecated, please use "+
               "table.GetNumpyMatrixAsArray instead")
    try:
      import numpy as np
      m = self.GetNumpyMatrixAsArray(*args)
      return np.matrix(m)
    except ImportError:
      LogError("Function needs numpy, but I could not import it.")
      raise

  def GaussianSmooth(self, col, std=1.0, na_value=0.0, padding='reflect', c=0.0):

    '''
    In place Gaussian smooth of a column in the table with a given standard deviation.
    All nan are set to nan_value before smoothing.

    :param col: column name
    :type col: :class:`str`

    :param std: standard deviation for gaussian kernel
    :type std: `scalar` 

    :param na_value: all na (None) values of the speciefied column are set to na_value before smoothing
    :type na_value: `scalar`

    :param padding: allows to handle padding behaviour see scipy ndimage.gaussian_filter1d documentation for more information. standard is reflect
    :type padding: :class:`str`

    :param c: constant value used for padding if padding mode is constant
    :type c: `scalar`



    :warning: The function depends on *scipy*
    ''' 

    try:
      from scipy import ndimage
      import numpy as np
    except ImportError:
      LogError("I need scipy.ndimage and numpy, but could not import it")
      raise
      
    idx = self.GetColIndex(col)
    col_type = self.col_types[idx]
    if col_type!='int' and col_type!='float':
      raise TypeError("GaussianSmooth can only be used on numeric column types")

    vals=[]
    for v in self[col]:
      if v!=None:
        vals.append(v)
      else:
        vals.append(na_value)

    
    smoothed_values_ndarray=ndimage.gaussian_filter1d(vals,std, mode=padding, cval=c)

    result=[]

    for v in smoothed_values_ndarray:
      result.append(v)

    self[col]=result


  def GetOptimalPrefactors(self, ref_col, *args, **kwargs):
    '''
    This returns the optimal prefactor values (i.e. :math:`a, b, c, ...`) for
    the following equation
    
    .. math::
      :label: op1

      a*u + b*v + c*w + ... = z
    
    where :math:`u, v, w` and :math:`z` are vectors. In matrix notation
    
    .. math::
      :label: op2

      A*p = z
    
    where :math:`A` contains the data from the table :math:`(u,v,w,...)`,
    :math:`p` are the prefactors to optimize :math:`(a,b,c,...)` and :math:`z`
    is the vector containing the result of equation :eq:`op1`.
    
    The parameter ref_col equals to :math:`z` in both equations, and \\*args
    are columns :math:`u`, :math:`v` and :math:`w` (or :math:`A` in :eq:`op2`).
    All columns must be specified by their names.
    
    **Example:**

    .. code-block:: python
    
      tab.GetOptimalPrefactors('colC', 'colA', 'colB')
    
    The function returns a list containing the prefactors
    :math:`a, b, c, ...` in the correct order (i.e. same as columns were
    specified in \\*args).
    
    Weighting:
    If the kwarg weights="columX" is specified, the equations are weighted by
    the values in that column. Each row is multiplied by the weight in that
    row, which leads to :eq:`op3`:
    
    .. math::
      :label: op3

      \\textit{weight}*a*u + \\textit{weight}*b*v + \\textit{weight}*c*w + ...
      = \\textit{weight}*z
    
    Weights must be float or int and can have any value. A value of 0 ignores
    this equation, a value of 1 means the same as no weight. If all weights are
    the same for each row, the same result will be obtained as with no weights.
    
    **Example:**
    
    .. code-block:: python
    
      tab.GetOptimalPrefactors('colC', 'colA', 'colB', weights='colD')
    
    '''
    try:
      import numpy as np
  
      if len(args)==0:
        raise RuntimeError("At least one column must be specified.")
      
      b = self.GetNumpyMatrixAsArray(ref_col)
      a = self.GetNumpyMatrixAsArray(*args)

      if len(kwargs)!=0:
        if 'weights' in kwargs:
          w = self.GetNumpyMatrixAsArray(kwargs['weights'])
          b = np.multiply(b,w)
          a = np.multiply(a,w)
          
        else:
          raise RuntimeError("specified unrecognized kwargs, use weights as key")
      
      k = np.linalg.inv(a.T@a)@a.T@b
      return list(k.T.reshape(-1))
    
    except ImportError:
      LogError("Function needs numpy, but I could not import it.")
      raise

  def PlotEnrichment(self, score_col, class_col, score_dir='-', 
                     class_dir='-', class_cutoff=2.0,
                     style='-', title=None, x_title=None, y_title=None,
                     clear=True, save=None):
    '''
    Plot an enrichment curve using matplotlib of column *score_col* classified
    according to *class_col*.
    
    For more information about parameters of the enrichment, see
    :meth:`ComputeEnrichment`, and for plotting see :meth:`Plot`.
    
    :warning: The function depends on *matplotlib*
    '''
    try:
      import matplotlib.pyplot as plt
    
      enrx, enry = self.ComputeEnrichment(score_col, class_col, score_dir,
                                          class_dir, class_cutoff)
      
      if not title:
        title = 'Enrichment of %s'%score_col
        
      if not x_title:
        x_title = '% database'
        
      if not y_title:
        y_title = '% positives'
        
      if clear:
        plt.clf()
        
      plt.plot(enrx, enry, style)
      
      plt.title(title, size='x-large', fontweight='bold')     
      plt.ylabel(y_title, size='x-large')
      plt.xlabel(x_title, size='x-large')
      
      if save:
        plt.savefig(save)
      
      return plt
    except ImportError:
      LogError("Function needs matplotlib, but I could not import it.")
      raise
    
  def ComputeEnrichment(self, score_col, class_col, score_dir='-', 
                        class_dir='-', class_cutoff=2.0):
    '''
    Computes the enrichment of column *score_col* classified according to
    *class_col*.
    
    For this it is necessary, that the datapoints are classified into positive
    and negative points. This can be done in two ways:
    
     - by using one 'bool' type column (*class_col*) which contains *True* for
       positives and *False* for negatives
       
     - by specifying a classification column (*class_col*), a cutoff value
       (*class_cutoff*) and the classification columns direction (*class_dir*).
       This will generate the classification on the fly

       * if ``class_dir=='-'``: values in the classification column that are less than or equal to class_cutoff will be counted as positives
       * if ``class_dir=='+'``: values in the classification column that are larger than or equal to class_cutoff will be counted as positives

    During the calculation, the table will be sorted according to *score_dir*,
    where a '-' values means smallest values first and therefore, the smaller
    the value, the better.
    
    :warning: If either the value of *class_col* or *score_col* is *None*, the
              data in this row is ignored.
    '''
    
    ALLOWED_DIR = ['+','-']
    
    score_idx = self.GetColIndex(score_col)
    score_type = self.col_types[score_idx]
    if score_type!='int' and score_type!='float':
      raise TypeError("Score column must be numeric type")
    
    class_idx = self.GetColIndex(class_col)
    class_type = self.col_types[class_idx]
    if class_type!='int' and class_type!='float' and class_type!='bool':
      raise TypeError("Classifier column must be numeric or bool type")
    
    if (score_dir not in ALLOWED_DIR) or (class_dir not in ALLOWED_DIR):
      raise ValueError("Direction must be one of %s"%str(ALLOWED_DIR))
    
    self.Sort(score_col, score_dir)
    
    x = [0]
    y = [0]
    enr = 0
    old_score_val = None
    i = 0

    for row in self.rows:
      class_val = row[class_idx]
      score_val = row[score_idx]
      if class_val==None or score_val==None:
        continue
      if class_val!=None:
        if old_score_val==None:
          old_score_val = score_val
        if score_val!=old_score_val:
          x.append(i)
          y.append(enr)
          old_score_val = score_val
        i+=1
        if class_type=='bool':
          if class_val==True:
            enr += 1
        else:
          if (class_dir=='-' and class_val<=class_cutoff) or (class_dir=='+' and class_val>=class_cutoff):
            enr += 1
    x.append(i)
    y.append(enr)

    # if no false positives or false negatives values are found return None
    if x[-1]==0 or y[-1]==0:
      return None

    x = [float(v)/x[-1] for v in x]
    y = [float(v)/y[-1] for v in y]
    return x,y
    
  def ComputeEnrichmentAUC(self, score_col, class_col, score_dir='-', 
                           class_dir='-', class_cutoff=2.0):
    '''
    Computes the area under the curve of the enrichment using the trapezoidal
    rule.
    
    For more information about parameters of the enrichment, see
    :meth:`ComputeEnrichment`.

    :warning: The function depends on *numpy*
    '''
    try:
      import numpy as np
      
      enr = self.ComputeEnrichment(score_col, class_col, score_dir,
                                          class_dir, class_cutoff)
      
      if enr==None:
        return None
      return np.trapz(enr[1], enr[0])
    except ImportError:
      LogError("Function needs numpy, but I could not import it.")
      raise

  def ComputeROC(self, score_col, class_col, score_dir='-',
                 class_dir='-', class_cutoff=2.0):
    '''
    Computes the receiver operating characteristics (ROC) of column *score_col*
    classified according to *class_col*.

    For this it is necessary, that the datapoints are classified into positive
    and negative points. This can be done in two ways:

     - by using one 'bool' column (*class_col*) which contains True for positives
       and False for negatives
     - by using a non-bool column (*class_col*), a cutoff value (*class_cutoff*)
       and the classification columns direction (*class_dir*). This will generate
       the classification on the fly

       - if ``class_dir=='-'``: values in the classification column that are less than or equal to *class_cutoff* will be counted as positives
       - if ``class_dir=='+'``: values in the classification column that are larger than or equal to *class_cutoff* will be counted as positives

    During the calculation, the table will be sorted according to *score_dir*,
    where a '-' values means smallest values first and therefore, the smaller
    the value, the better.

    If *class_col* does not contain any positives (i.e. value is True (if column
    is of type bool) or evaluated to True (if column is of type int or float
    (depending on *class_dir* and *class_cutoff*))) the ROC is not defined and
    the function will return *None*.

    :warning: If either the value of *class_col* or *score_col* is *None*, the
              data in this row is ignored.
    '''

    ALLOWED_DIR = ['+','-']

    score_idx = self.GetColIndex(score_col)
    score_type = self.col_types[score_idx]
    if score_type!='int' and score_type!='float':
      raise TypeError("Score column must be numeric type")

    class_idx = self.GetColIndex(class_col)
    class_type = self.col_types[class_idx]
    if class_type!='int' and class_type!='float' and class_type!='bool':
      raise TypeError("Classifier column must be numeric or bool type")

    if (score_dir not in ALLOWED_DIR) or (class_dir not in ALLOWED_DIR):
      raise ValueError("Direction must be one of %s"%str(ALLOWED_DIR))

    self.Sort(score_col, score_dir)

    x = [0]
    y = [0]
    tp = 0
    fp = 0
    old_score_val = None

    for i,row in enumerate(self.rows):
      class_val = row[class_idx]
      score_val = row[score_idx]
      if class_val==None or score_val==None:
        continue
      if class_val!=None:
        if old_score_val==None:
          old_score_val = score_val
        if score_val!=old_score_val:
          x.append(fp)
          y.append(tp)
          old_score_val = score_val
        if class_type=='bool':
          if class_val==True:
            tp += 1
          else:
            fp += 1
        else:
          if (class_dir=='-' and class_val<=class_cutoff) or (class_dir=='+' and class_val>=class_cutoff):
            tp += 1
          else:
            fp += 1
    x.append(fp)
    y.append(tp)
    
    # if no false positives or false negatives values are found return None
    if x[-1]==0 or y[-1]==0:
      return None
    
    x = [float(v)/x[-1] for v in x]
    y = [float(v)/y[-1] for v in y]
    return x,y

  def ComputeROCAUC(self, score_col, class_col, score_dir='-',
                    class_dir='-', class_cutoff=2.0):
    '''
    Computes the area under the curve of the receiver operating characteristics
    using the trapezoidal rule.
    
    For more information about parameters of the ROC, see
    :meth:`ComputeROC`.

    :warning: The function depends on *numpy*
    '''
    try:
      import numpy as np

      roc = self.ComputeROC(score_col, class_col, score_dir,
                            class_dir, class_cutoff)

      if not roc:
        return None
      return np.trapz(roc[1], roc[0])
    except ImportError:
      LogError("Function needs numpy, but I could not import it.")
      raise
    
  def ComputeLogROCAUC(self, score_col, class_col, score_dir='-',
                       class_dir='-', class_cutoff=2.0):
    '''
    Computes the area under the curve of the log receiver operating 
    characteristics (logROC) where the x-axis is semilogarithmic
    using the trapezoidal rule.
    
    The logROC is computed with a lambda of 0.001 according to 
    Rapid Context-Dependent Ligand Desolvation in Molecular Docking
    Mysinger M. and Shoichet B., Journal of Chemical Information and Modeling
    2010 50 (9), 1561-1573
    
    For more information about parameters of the ROC, see
    :meth:`ComputeROC`.

    :warning: The function depends on *numpy*
    '''
    try:
      import numpy as np

      roc = self.ComputeROC(score_col, class_col, score_dir,
                            class_dir, class_cutoff)

      if not roc:
        return None
      
      rocxt, rocyt = roc
      rocx=[]
      rocy=[]
      
      # define lambda
      l=0.001
      
      # remove all duplicate x-values
      rocxt = [x if x>0 else l for x in rocxt]
      for i in range(len(rocxt)-1):
        if rocxt[i]==rocxt[i+1]:
          continue
        rocx.append(rocxt[i])
        rocy.append(rocyt[i])
      rocx.append(1.0)
      rocy.append(1.0)
      
      # compute logauc
      value = 0
      for i in range(len(rocx)-1):
        x = rocx[i]
        if rocx[i]==rocx[i+1]:
          continue
        b = rocy[i+1]-rocx[i+1]*((rocy[i+1]-rocy[i])/(rocx[i+1]-rocx[i]))
        value += ((rocy[i+1]-rocy[i])/math.log(10))+b*(math.log10(rocx[i+1])-math.log10(rocx[i]))
      return value/math.log10(1.0/l)
      
    except ImportError:
      LogError("Function needs numpy, but I could not import it.")
      raise

  def PlotROC(self, score_col, class_col, score_dir='-',
              class_dir='-', class_cutoff=2.0,
              style='-', title=None, x_title=None, y_title=None,
              clear=True, save=None):
    '''
    Plot an ROC curve using matplotlib.
    
    For more information about parameters of the ROC, see
    :meth:`ComputeROC`, and for plotting see :meth:`Plot`.

    :warning: The function depends on *matplotlib*
    '''

    try:
      import matplotlib.pyplot as plt

      roc = self.ComputeROC(score_col, class_col, score_dir,
                                   class_dir, class_cutoff)
      
      if not roc:
        return None

      enrx, enry = roc

      if not title:
        title = 'ROC of %s'%score_col

      if not x_title:
        x_title = 'false positive rate'

      if not y_title:
        y_title = 'true positive rate'

      if clear:
        plt.clf()

      plt.plot(enrx, enry, style)

      plt.title(title, size='x-large', fontweight='bold')
      plt.ylabel(y_title, size='x-large')
      plt.xlabel(x_title, size='x-large')

      if save:
        plt.savefig(save)

      return plt
    except ImportError:
      LogError("Function needs matplotlib, but I could not import it.")
      raise
    
  def PlotLogROC(self, score_col, class_col, score_dir='-',
                 class_dir='-', class_cutoff=2.0,
                 style='-', title=None, x_title=None, y_title=None,
                 clear=True, save=None):
    '''
    Plot an logROC curve where the x-axis is semilogarithmic using matplotlib 
    
    For more information about parameters of the ROC, see
    :meth:`ComputeROC`, and for plotting see :meth:`Plot`.

    :warning: The function depends on *matplotlib*
    '''

    try:
      import matplotlib.pyplot as plt

      roc = self.ComputeROC(score_col, class_col, score_dir,
                                   class_dir, class_cutoff)
      
      if not roc:
        return None

      rocx, rocy = roc

      if not title:
        title = 'logROC of %s'%score_col

      if not x_title:
        x_title = 'false positive rate'

      if not y_title:
        y_title = 'true positive rate'

      if clear:
        plt.clf()
     
      rocx = [x if x>0 else 0.001 for x in rocx]
      
      
      plt.plot(rocx, rocy, style)

      plt.title(title, size='x-large', fontweight='bold')
      plt.ylabel(y_title, size='x-large')
      plt.xlabel(x_title, size='x-large')
      try:
        plt.xscale('log', basex=10)
      except:
        plt.xscale('log', base=10) # breaking change in matplotlib 3.5
      plt.xlim(0.001, 1.0)

      if save:
        plt.savefig(save)

      return plt
    except ImportError:
      LogError("Function needs matplotlib, but I could not import it.")
      raise  
  
  def ComputeMCC(self, score_col, class_col, score_dir='-',
                 class_dir='-', score_cutoff=2.0, class_cutoff=2.0):
    '''
    Compute Matthews correlation coefficient (MCC) for one column (*score_col*)
    with the points classified into true positives, false positives, true
    negatives and false negatives according to a specified classification
    column (*class_col*).
    
    The datapoints in *score_col* and *class_col* are classified into
    positive and negative points. This can be done in two ways:
    
     - by using 'bool' columns which contains True for positives and False
       for negatives
       
     - by using 'float' or 'int' columns and specifying a cutoff value and the
       columns direction. This will generate the classification on the fly
       
       * if ``class_dir``/``score_dir=='-'``: values in the classification column that are less than or equal to *class_cutoff*/*score_cutoff* will be counted as positives
       * if ``class_dir``/``score_dir=='+'``: values in the classification column that are larger than or equal to *class_cutoff*/*score_cutoff* will be counted as positives
                                    
    The two possibilities can be used together, i.e. 'bool' type for one column
    and 'float'/'int' type and cutoff/direction for the other column.
    '''
    ALLOWED_DIR = ['+','-']

    score_idx = self.GetColIndex(score_col)
    score_type = self.col_types[score_idx]
    if score_type!='int' and score_type!='float' and score_type!='bool':
      raise TypeError("Score column must be numeric or bool type")

    class_idx = self.GetColIndex(class_col)
    class_type = self.col_types[class_idx]
    if class_type!='int' and class_type!='float' and class_type!='bool':
      raise TypeError("Classifier column must be numeric or bool type")

    if (score_dir not in ALLOWED_DIR) or (class_dir not in ALLOWED_DIR):
      raise ValueError("Direction must be one of %s"%str(ALLOWED_DIR))
     
    tp = 0
    fp = 0
    fn = 0
    tn = 0

    for i,row in enumerate(self.rows):
      class_val = row[class_idx]
      score_val = row[score_idx]
      if class_val!=None:
        if (class_type=='bool' and class_val==True) or (class_type!='bool' and ((class_dir=='-' and class_val<=class_cutoff) or (class_dir=='+' and class_val>=class_cutoff))):
          if (score_type=='bool' and score_val==True) or (score_type!='bool' and ((score_dir=='-' and score_val<=score_cutoff) or (score_dir=='+' and score_val>=score_cutoff))):
            tp += 1
          else:
            fn += 1
        else:
          if (score_type=='bool' and score_val==False) or (score_type!='bool' and ((score_dir=='-' and score_val>score_cutoff) or (score_dir=='+' and score_val<score_cutoff))):
            tn += 1
          else:
            fp += 1

    mcc = None
    msg = None
    if (tp+fn)==0:
      msg = 'factor (tp + fn) is zero'
    elif (tp+fp)==0:
      msg = 'factor (tp + fp) is zero'
    elif (tn+fn)==0:
      msg = 'factor (tn + fn) is zero'
    elif (tn+fp)==0:
      msg = 'factor (tn + fp) is zero'
    
    if msg:
      LogWarning("Could not compute MCC: MCC is not defined since %s"%msg)
    else:
      mcc = ((tp*tn)-(fp*fn)) / math.sqrt((tp+fn)*(tp+fp)*(tn+fn)*(tn+fp))
    return mcc
    

  def IsEmpty(self, col_name=None, ignore_nan=True):
    '''
    Checks if a table is empty.
    
    If no column name is specified, the whole table is checked for being empty,
    whereas if a column name is specified, only this column is checked.
    
    By default, all NAN (or None) values are ignored, and thus, a table
    containing only NAN values is considered as empty. By specifying the 
    option ignore_nan=False, NAN values are counted as 'normal' values.
    '''
    
    # table with no columns and no rows
    if len(self.col_names)==0:
      if col_name:
        raise ValueError('Table has no column named "%s"' % col_name)
      return True
    
    # column name specified
    if col_name:
      if self.Count(col_name, ignore_nan=ignore_nan)==0:
        return True
      else:
        return False
      
    # no column name specified -> test whole table
    else:
      for row in self.rows:
        for cell in row:
          if ignore_nan:
            if cell!=None:
              return False
          else:
            return False
    return True
    

  def Extend(self, tab, overwrite=None):
    """
    Append each row of *tab* to the current table. The data is appended based
    on the column names, thus the order of the table columns is *not* relevant,
    only the header names.
    
    If there is a column in *tab* that is not present in the current table,
    it is added to the current table and filled with *None* for all the rows
    present in the current table.
    
    If the type of any column in *tab* is not the same as in the current table
    a *TypeError* is raised.
    
    If *overwrite* is not None and set to an existing column name, the specified 
    column in the table is searched for the first occurrence of a value matching
    the value of the column with the same name in the dictionary. If a matching
    value is found, the row is overwritten with the dictionary. If no matching
    row is found, a new row is appended to the table.
    """
    # add column to current table if it doesn't exist
    for name,typ in zip(tab.col_names, tab.col_types):
      if not name in self.col_names:
        self.AddCol(name, typ)
    
    # check that column types are the same in current and new table
    for name in self.col_names:
      if name in tab.col_names:
        curr_type = self.col_types[self.GetColIndex(name)]
        new_type = tab.col_types[tab.GetColIndex(name)]
        if curr_type!=new_type:
          raise TypeError('cannot extend table, column %s in new '%name +\
                          'table different type (%s) than in '%new_type +\
                          'current table (%s)'%curr_type)
    
    num_rows = len(tab.rows)
    for i in range(0,num_rows):
      row = tab.rows[i]
      data = dict(list(zip(tab.col_names,row)))
      self.AddRow(data, overwrite)
    

def Merge(table1, table2, by, only_matching=False):
  """
  Returns a new table containing the data from both tables. The rows are 
  combined based on the common values in the column(s) by. The option 'by' can
  be a list of column names. When this is the case, merging is based on
  multiple columns.
  For example, the two tables below

  ==== ====
  x     y            
  ==== ====
   1    10
   2    15
   3    20
  ==== ====
  
  ==== ====
  x     u
  ==== ====
    1  100
    3  200
    4  400
  ==== ====

  when merged by column x, produce the following output:

  ===== ===== =====
  x      y     u
  ===== ===== =====
  1      10    100
  2      15    None
  3      20    200
  4      None  400
  ===== ===== =====
  

  """
  def _key(row, indices):
    return tuple([row[i] for i in indices])
  def _keep(indices, cn, ct, ni):
    ncn, nct, nni=([],[],[])
    for i in range(len(cn)):
      if i not in indices:
        ncn.append(cn[i])
        nct.append(ct[i])
        nni.append(ni[i])
    return ncn, nct, nni
  col_names=list(table2.col_names)
  col_types=list(table2.col_types)
  new_index=[i for i in range(len(col_names))]
  if isinstance(by, str):
    common2_indices=[col_names.index(by)]
  else:
    common2_indices=[col_names.index(b) for b in by]
  col_names, col_types, new_index=_keep(common2_indices, col_names, 
                                        col_types, new_index)

  for i, name in enumerate(col_names):
    try_name=name
    counter=1
    while try_name in table1.col_names:
      counter+=1
      try_name='%s_%d' % (name, counter)
    col_names[i]=try_name
  common1={}
  if isinstance(by, str):
    common1_indices=[table1.col_names.index(by)]
  else:
    common1_indices=[table1.col_names.index(b) for b in by]
  for row in table1.rows:
    key=_key(row, common1_indices)
    if key in common1:
      raise ValueError('duplicate key "%s in first table"' % (str(key)))
    common1[key]=row
  common2={}
  for row in table2.rows:
    key=_key(row, common2_indices)
    if key in common2:
      raise ValueError('duplicate key "%s" in second table' % (str(key)))
    common2[key]=row
  new_tab=Table(table1.col_names+col_names, table1.col_types+col_types)
  for k, v in common1.items():
    row=v+[None for i in range(len(table2.col_names)-len(common2_indices))]
    matched=False
    if k in common2:
      matched=True
      row2=common2[k]
      for i, index in enumerate(new_index):
        row[len(table1.col_names)+i]=row2[index]
    if only_matching and not matched:
      continue
    new_tab.AddRow(row)
  if only_matching:
    return new_tab
  for k, v in common2.items():
    if not k in common1:
      v2=[v[i] for i in new_index]
      row=[None for i in range(len(table1.col_names))]+v2
      for common1_index, common2_index in zip(common1_indices, common2_indices):
        row[common1_index]=v[common2_index]
      new_tab.AddRow(row)
  return new_tab


#  LocalWords:  numpy Numpy