1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728
|
"""
Chain mapping aims to identify a one-to-one relationship between chains in a
reference structure and a model.
"""
import itertools
import copy
import numpy as np
from scipy.special import factorial
from scipy.special import binom # as of Python 3.8, the math module implements
# comb, i.e. n choose k
import ost
from ost import seq
from ost import mol
from ost import geom
from ost.mol.alg import lddt
from ost.mol.alg import bb_lddt
from ost.mol.alg import qsscore
def _CSel(ent, cnames):
""" Returns view with specified chains
Ensures that quotation marks are around chain names to not confuse
OST query language with weird special characters.
"""
query = "cname=" + ','.join([mol.QueryQuoteName(cname) for cname in cnames])
return ent.Select(query)
class MappingResult:
""" Result object for the chain mapping functions in :class:`ChainMapper`
Constructor is directly called within the functions, no need to construct
such objects yourself.
"""
def __init__(self, target, model, chem_groups, chem_mapping,
mdl_chains_without_chem_mapping, mapping, alns, opt_score=None):
self._target = target
self._model = model
self._chem_groups = chem_groups
self._chem_mapping = chem_mapping
self._mdl_chains_without_chem_mapping = mdl_chains_without_chem_mapping
self._mapping = mapping
self._alns = alns
self._opt_score = opt_score
@property
def target(self):
""" Target/reference structure, i.e. :attr:`ChainMapper.target`
:type: :class:`ost.mol.EntityView`
"""
return self._target
@property
def model(self):
""" Model structure that gets mapped onto :attr:`~target`
Underwent same processing as :attr:`ChainMapper.target`, i.e.
only contains peptide/nucleotide chains of sufficient size.
:type: :class:`ost.mol.EntityView`
"""
return self._model
@property
def chem_groups(self):
""" Groups of chemically equivalent chains in :attr:`~target`
Same as :attr:`ChainMapper.chem_group`
:class:`list` of :class:`list` of :class:`str` (chain names)
"""
return self._chem_groups
@property
def chem_mapping(self):
""" Assigns chains in :attr:`~model` to :attr:`~chem_groups`.
:class:`list` of :class:`list` of :class:`str` (chain names)
"""
return self._chem_mapping
@property
def mdl_chains_without_chem_mapping(self):
""" Model chains that cannot be mapped to :attr:`chem_groups`
Depends on parameterization of :class:`ChainMapper`
:class:`list` of class:`str` (chain names)
"""
return self._mdl_chains_without_chem_mapping
@property
def mapping(self):
""" Mapping of :attr:`~model` chains onto :attr:`~target`
Exact same shape as :attr:`~chem_groups` but containing the names of the
mapped chains in :attr:`~model`. May contain None for :attr:`~target`
chains that are not covered. No guarantee that all chains in
:attr:`~model` are mapped.
:class:`list` of :class:`list` of :class:`str` (chain names)
"""
return self._mapping
@property
def alns(self):
""" Alignments of mapped chains in :attr:`~target` and :attr:`~model`
Each alignment is accessible with ``alns[(t_chain,m_chain)]``. First
sequence is the sequence of :attr:`target` chain, second sequence the
one from :attr:`~model`.
:type: :class:`dict` with key: :class:`tuple` of :class:`str`, value:
:class:`ost.seq.AlignmentHandle`
"""
return self._alns
@property
def opt_score(self):
""" Placeholder property without any guarantee of being set
Different scores get optimized in the various chain mapping algorithms.
Some of them may set their final optimal score in that property.
Consult the documentation of the respective chain mapping algorithm
for more information. Won't be in the return dict of
:func:`JSONSummary`.
"""
return self._opt_score
def GetFlatMapping(self, mdl_as_key=False):
""" Returns flat mapping as :class:`dict` for all mapable chains
:param mdl_as_key: Default is target chain name as key and model chain
name as value. This can be reversed with this flag.
:returns: :class:`dict` with :class:`str` as key/value that describe
one-to-one mapping
"""
flat_mapping = dict()
for trg_chem_group, mdl_chem_group in zip(self.chem_groups,
self.mapping):
for a,b in zip(trg_chem_group, mdl_chem_group):
if a is not None and b is not None:
if mdl_as_key:
flat_mapping[b] = a
else:
flat_mapping[a] = b
return flat_mapping
def JSONSummary(self):
""" Returns JSON serializable summary of results
"""
json_dict = dict()
json_dict["chem_groups"] = self.chem_groups
json_dict["mapping"] = self.mapping
json_dict["flat_mapping"] = self.GetFlatMapping()
json_dict["alns"] = list()
for aln in self.alns.values():
trg_seq = aln.GetSequence(0)
mdl_seq = aln.GetSequence(1)
aln_dict = {"trg_ch": trg_seq.GetName(), "trg_seq": str(trg_seq),
"mdl_ch": mdl_seq.GetName(), "mdl_seq": str(mdl_seq)}
json_dict["alns"].append(aln_dict)
return json_dict
class ReprResult:
""" Result object for :func:`ChainMapper.GetRepr`
Constructor is directly called within the function, no need to construct
such objects yourself.
:param lDDT: lDDT for this mapping. Depends on how you call
:func:`ChainMapper.GetRepr` whether this is backbone only or
full atom lDDT.
:type lDDT: :class:`float`
:param substructure: The full substructure for which we searched for a
representation
:type substructure: :class:`ost.mol.EntityView`
:param ref_view: View pointing to the same underlying entity as
*substructure* but only contains the stuff that is mapped
:type ref_view: :class:`mol.EntityView`
:param mdl_view: The matching counterpart in model
:type mdl_view: :class:`mol.EntityView`
"""
def __init__(self, lDDT, substructure, ref_view, mdl_view):
self._lDDT = lDDT
self._substructure = substructure
assert(len(ref_view.residues) == len(mdl_view.residues))
self._ref_view = ref_view
self._mdl_view = mdl_view
# lazily evaluated attributes
self._ref_bb_pos = None
self._mdl_bb_pos = None
self._ref_full_bb_pos = None
self._mdl_full_bb_pos = None
self._superposition = None
self._superposed_mdl_bb_pos = None
self._ost_query = None
self._flat_mapping = None
self._inconsistent_residues = None
@property
def lDDT(self):
""" lDDT of representation result
Depends on how you call :func:`ChainMapper.GetRepr` whether this is
backbone only or full atom lDDT.
:type: :class:`float`
"""
return self._lDDT
@property
def substructure(self):
""" The full substructure for which we searched for a
representation
:type: :class:`ost.mol.EntityView`
"""
return self._substructure
@property
def ref_view(self):
""" View which contains the mapped subset of :attr:`substructure`
:type: :class:`ost.mol.EntityView`
"""
return self._ref_view
@property
def mdl_view(self):
""" The :attr:`ref_view` representation in the model
:type: :class:`ost.mol.EntityView`
"""
return self._mdl_view
@property
def ref_residues(self):
""" The reference residues
:type: class:`mol.ResidueViewList`
"""
return self.ref_view.residues
@property
def mdl_residues(self):
""" The model residues
:type: :class:`mol.ResidueViewList`
"""
return self.mdl_view.residues
@property
def inconsistent_residues(self):
""" A list of mapped residue whose names do not match (eg. ALA in the
reference and LEU in the model).
The mismatches are reported as a tuple of :class:`~ost.mol.ResidueView`
(reference, model), or as an empty list if all the residue names match.
:type: :class:`list`
"""
if self._inconsistent_residues is None:
self._inconsistent_residues = self._GetInconsistentResidues(
self.ref_residues, self.mdl_residues)
return self._inconsistent_residues
@property
def ref_bb_pos(self):
""" Representative backbone positions for reference residues.
Thats CA positions for peptides and C3' positions for Nucleotides.
:type: :class:`geom.Vec3List`
"""
if self._ref_bb_pos is None:
self._ref_bb_pos = self._GetBBPos(self.ref_residues)
return self._ref_bb_pos
@property
def mdl_bb_pos(self):
""" Representative backbone positions for model residues.
Thats CA positions for peptides and C3' positions for Nucleotides.
:type: :class:`geom.Vec3List`
"""
if self._mdl_bb_pos is None:
self._mdl_bb_pos = self._GetBBPos(self.mdl_residues)
return self._mdl_bb_pos
@property
def ref_full_bb_pos(self):
""" Representative backbone positions for reference residues.
Thats N, CA and C positions for peptides and O5', C5', C4', C3', O3'
positions for Nucleotides.
:type: :class:`geom.Vec3List`
"""
if self._ref_full_bb_pos is None:
self._ref_full_bb_pos = self._GetFullBBPos(self.ref_residues)
return self._ref_full_bb_pos
@property
def mdl_full_bb_pos(self):
""" Representative backbone positions for reference residues.
Thats N, CA and C positions for peptides and O5', C5', C4', C3', O3'
positions for Nucleotides.
:type: :class:`geom.Vec3List`
"""
if self._mdl_full_bb_pos is None:
self._mdl_full_bb_pos = self._GetFullBBPos(self.mdl_residues)
return self._mdl_full_bb_pos
@property
def superposition(self):
""" Superposition of mdl residues onto ref residues
Superposition computed as minimal RMSD superposition on
:attr:`ref_bb_pos` and :attr:`mdl_bb_pos`. If number of positions is
smaller 3, the full_bb_pos equivalents are used instead.
:type: :class:`ost.mol.alg.SuperpositionResult`
"""
if self._superposition is None:
if len(self.mdl_bb_pos) < 3:
self._superposition = _GetSuperposition(self.mdl_full_bb_pos,
self.ref_full_bb_pos, False)
else:
self._superposition = _GetSuperposition(self.mdl_bb_pos,
self.ref_bb_pos, False)
return self._superposition
@property
def transform(self):
""" Transformation to superpose mdl residues onto ref residues
:type: :class:`ost.geom.Mat4`
"""
return self.superposition.transformation
@property
def superposed_mdl_bb_pos(self):
""" :attr:`mdl_bb_pos` with :attr:`transform applied`
:type: :class:`geom.Vec3List`
"""
if self._superposed_mdl_bb_pos is None:
self._superposed_mdl_bb_pos = geom.Vec3List(self.mdl_bb_pos)
self._superposed_mdl_bb_pos.ApplyTransform(self.transform)
return self._superposed_mdl_bb_pos
@property
def bb_rmsd(self):
""" RMSD of the binding site backbone atoms after :attr:`superposition`
:type: :class:`float`
"""
return self.superposition.rmsd
@property
def ost_query(self):
""" query for mdl residues in OpenStructure query language
Repr can be selected as ``full_mdl.Select(ost_query)``
Returns invalid query if residue numbers have insertion codes.
:type: :class:`str`
"""
if self._ost_query is None:
chain_rnums = dict()
for r in self.mdl_residues:
chname = r.GetChain().GetName()
rnum = r.GetNumber().GetNum()
if chname not in chain_rnums:
chain_rnums[chname] = list()
chain_rnums[chname].append(str(rnum))
chain_queries = list()
for k,v in chain_rnums.items():
q = f"(cname={mol.QueryQuoteName(k)} and "
q += f"rnum={','.join(v)})"
chain_queries.append(q)
self._ost_query = " or ".join(chain_queries)
return self._ost_query
def JSONSummary(self):
""" Returns JSON serializable summary of results
"""
json_dict = dict()
json_dict["lDDT"] = self.lDDT
json_dict["ref_residues"] = [r.GetQualifiedName() for r in \
self.ref_residues]
json_dict["mdl_residues"] = [r.GetQualifiedName() for r in \
self.mdl_residues]
json_dict["transform"] = list(self.transform.data)
json_dict["bb_rmsd"] = self.bb_rmsd
json_dict["ost_query"] = self.ost_query
json_dict["flat_mapping"] = self.GetFlatChainMapping()
return json_dict
def GetFlatChainMapping(self, mdl_as_key=False):
""" Returns flat mapping of all chains in the representation
:param mdl_as_key: Default is target chain name as key and model chain
name as value. This can be reversed with this flag.
:returns: :class:`dict` with :class:`str` as key/value that describe
one-to-one mapping
"""
flat_mapping = dict()
for trg_res, mdl_res in zip(self.ref_residues, self.mdl_residues):
if mdl_as_key:
flat_mapping[mdl_res.chain.name] = trg_res.chain.name
else:
flat_mapping[trg_res.chain.name] = mdl_res.chain.name
return flat_mapping
def _GetFullBBPos(self, residues):
""" Helper to extract full backbone positions
"""
exp_pep_atoms = ["N", "CA", "C"]
exp_nuc_atoms = ["O5'", "C5'", "C4'", "C3'", "O3'"]
bb_pos = geom.Vec3List()
for r in residues:
if r.GetChemType() == mol.ChemType.NUCLEOTIDES:
exp_atoms = exp_nuc_atoms
elif r.GetChemType() == mol.ChemType.AMINOACIDS:
exp_atoms = exp_pep_atoms
else:
raise RuntimeError(f"Residue {r.qualified_name} has unexpected"
f" chem type {r.GetChemType()}")
for aname in exp_atoms:
a = r.FindAtom(aname)
if not a.IsValid():
raise RuntimeError(f"Expected atom {aname} missing from "
f"{r.qualified_name}")
bb_pos.append(a.GetPos())
return bb_pos
def _GetBBPos(self, residues):
""" Helper to extract single representative position for each residue
"""
bb_pos = geom.Vec3List()
for r in residues:
at = r.FindAtom("CA")
if not at.IsValid():
at = r.FindAtom("C3'")
if not at.IsValid():
raise RuntimeError(f"Residue {r.qualified_name} missing "
f"expected CA/C3' atom")
bb_pos.append(at.GetPos())
return bb_pos
def _GetInconsistentResidues(self, ref_residues, mdl_residues):
""" Helper to extract a list of inconsistent residues.
"""
if len(ref_residues) != len(mdl_residues):
raise ValueError("Something terrible happened... Reference and "
"model lengths differ... RUN...")
inconsistent_residues = list()
for ref_residue, mdl_residue in zip(ref_residues, mdl_residues):
if ref_residue.name != mdl_residue.name:
inconsistent_residues.append((ref_residue, mdl_residue))
return inconsistent_residues
class ChainMapper:
""" Class to compute chain mappings
All algorithms are performed on processed structures which fulfill
criteria as given in constructor arguments (*min_pep_length*,
"min_nuc_length") and only contain residues which have all required backbone
atoms. for peptide residues thats N, CA, C and CB (no CB for GLY), for
nucleotide residues thats O5', C5', C4', C3' and O3'.
Chain mapping is a three step process:
* Group chemically identical chains in *target* into so called chem
groups. There are two options to achieve this:
1) using pairwise alignments that are either computed with
Needleman-Wunsch (NW) or simply derived from residue numbers
(*resnum_alignments* flag). In case of NW, *pep_subst_mat*, *pep_gap_open*
and *pep_gap_ext* and their nucleotide equivalents are relevant. Two
chains are considered identical if they fulfill the *pep_seqid_thr* and
have at least *min_pep_length* aligned residues. Same logic is applied
for nucleotides with respective thresholds.
2) specify seqres sequences and provide the mapping manually. This can
be useful if you're loading data from an mmCIF file where you have mmCIF
entity information. Alignments are performed based on residue numbers
in this case and don't consider the *resnum_alignments* flag. Any
mismatch of one letter code in the structure and the respective SEQRES
raises an error.
* Map chains in an input model to these groups. Parameters for generating
alignments are the same as above. Model chains are mapped to the chem
group with highest sequence identity. Optionally, you can set a minimum
sequence identity threshold with *mdl_map_pep_seqid_thr*/
*mdl_map_nuc_seqid_thr* to avoid nonsensical mappings. You can either
get the group mapping with :func:`GetChemMapping` or directly call
one of the full fletched one-to-one chain mapping functions which
execute that step internally.
* Obtain one-to-one mapping for chains in an input model and
*target* with one of the available mapping functions. Just to get an
idea of complexity. If *target* and *model* are octamers, there are
``8! = 40320`` possible chain mappings.
:param target: Target structure onto which models are mapped.
Computations happen on a selection only containing
polypeptides and polynucleotides.
:type target: :class:`ost.mol.EntityView`/:class:`ost.mol.EntityHandle`
:param resnum_alignments: Use residue numbers instead of
Needleman-Wunsch to compute pairwise
alignments. Relevant for :attr:`~chem_groups`
if *seqres* is not specified explicitely.
:type resnum_alignments: :class:`bool`
:param pep_seqid_thr: Sequence identity threshold (in percent of aligned
columns) used to decide when two chains are
identical. 95 percent tolerates the few mutations
crystallographers like to do. Range: [0-100].
:type pep_seqid_thr: :class:`float`
:param nuc_seqid_thr: Nucleotide equivalent for *pep_seqid_thr*
:type nuc_seqid_thr: :class:`float`
:param pep_subst_mat: Substitution matrix to align peptide sequences,
irrelevant if *resnum_alignments* is True,
defaults to seq.alg.BLOSUM62
:type pep_subst_mat: :class:`ost.seq.alg.SubstWeightMatrix`
:param pep_gap_open: Gap open penalty to align peptide sequences,
irrelevant if *resnum_alignments* is True
:type pep_gap_open: :class:`int`
:param pep_gap_ext: Gap extension penalty to align peptide sequences,
irrelevant if *resnum_alignments* is True
:type pep_gap_ext: :class:`int`
:param nuc_subst_mat: Nucleotide equivalent for *pep_subst_mat*,
defaults to seq.alg.NUC44
:type nuc_subst_mat: :class:`ost.seq.alg.SubstWeightMatrix`
:param nuc_gap_open: Nucleotide equivalent for *pep_gap_open*
:type nuc_gap_open: :class:`int`
:param nuc_gap_ext: Nucleotide equivalent for *pep_gap_ext*
:type nuc_gap_ext: :class:`int`
:param min_pep_length: Minimal number of residues for a peptide chain to be
considered in target and in models.
:type min_pep_length: :class:`int`
:param min_nuc_length: Minimal number of residues for a nucleotide chain to be
considered in target and in models.
:type min_nuc_length: :class:`int`
:param n_max_naive: Max possible chain mappings that are enumerated in
:func:`~GetNaivelDDTMapping` /
:func:`~GetDecomposerlDDTMapping`. A
:class:`RuntimeError` is raised in case of bigger
complexity.
:type n_max_naive: :class:`int`
:param mdl_map_pep_seqid_thr: Sequence identity threshold (in percent of
aligned columns) to avoid non-sensical
mapping of model chains to reference chem
groups. If a value larger than 0.0 is
provided, minimal criteria for assignment
becomes a sequence identity of
*mdl_map_pep_seqid_thr* and at least
*min_pep_length* aligned residues. If set to
zero, it simply assigns a model chain to the
chem group with highest sequence identity.
Range: [0-100].
:type mdl_map_pep_seqid_thr: :class:`float`
:param mdl_map_nuc_seqid_thr: Nucleotide equivalent of
*mdl_map_pep_seqid_thr*
:type mdl_map_nuc_seqid_thr: :class:`float`
:param seqres: SEQRES sequences. All polymer chains in *target* will be
aligned to these sequences using a residue number based
alignment, effectively ignoring *resnum_alignments* in
the chem grouping step. Additionally, you need to
manually specify a mapping of the polymer chains using
*trg_seqres_mapping* and an error is raised otherwise.
The one letter codes in
the structure must exactly match the respective characters
in seqres and an error is raised if not. These seqres
sequences are set as :attr:`~chem_group_ref_seqs` and will
thus influence the mapping of model chains.
:type seqres: :class:`ost.seq.SequenceList`
:param trg_seqres_mapping: Maps each polymer chain in *target* to a sequence
in *seqres*. It's a :class:`dict` with chain name
as key and seqres sequence name as value.
:type trg_seqres_mapping: :class:`dict`
"""
def __init__(self, target, resnum_alignments=False,
pep_seqid_thr = 95., nuc_seqid_thr = 95.,
pep_subst_mat = seq.alg.BLOSUM62, pep_gap_open = -11,
pep_gap_ext = -1, nuc_subst_mat = seq.alg.NUC44,
nuc_gap_open = -4, nuc_gap_ext = -4,
min_pep_length = 6, min_nuc_length = 4,
n_max_naive = 1e8,
mdl_map_pep_seqid_thr = 0.,
mdl_map_nuc_seqid_thr = 0.,
seqres = None,
trg_seqres_mapping = None):
# input parameter check
seqres_params_set = sum([seqres is not None,
trg_seqres_mapping is not None])
if seqres_params_set not in [0, 2]:
raise RuntimeError("Must either give both, seqres and "
"trg_seqres_mapping, or none of them.")
# attributes
self.resnum_alignments = resnum_alignments
self.pep_seqid_thr = pep_seqid_thr
self.nuc_seqid_thr = nuc_seqid_thr
self.min_pep_length = min_pep_length
self.min_nuc_length = min_nuc_length
self.n_max_naive = n_max_naive
self.mdl_map_pep_seqid_thr = mdl_map_pep_seqid_thr
self.mdl_map_nuc_seqid_thr = mdl_map_nuc_seqid_thr
self.pep_subst_mat = pep_subst_mat
self.pep_gap_open = pep_gap_open
self.pep_gap_ext = pep_gap_ext
self.nuc_subst_mat = nuc_subst_mat
self.nuc_gap_open = nuc_gap_open
self.nuc_gap_ext = nuc_gap_ext
self.seqres = seqres
self.trg_seqres_mapping = trg_seqres_mapping
self.seqres_set = seqres_params_set == 2
# lazy computed attributes
self._chem_groups = None
self._chem_group_alignments = None
self._chem_group_ref_seqs = None
self._chem_group_types = None
# target structure preprocessing
self._target, self._polypep_seqs, self._polynuc_seqs = \
self.ProcessStructure(target)
# input parameter check
if self.seqres_set:
# check if seqres names, i.e. entity ids, are unique
entity_ids = set()
for s in self.seqres:
sname = s.GetName()
if sname in entity_ids:
raise RuntimeError(f"Sequence names in seqres param must "
f"be unique and refer to entity ids. "
f"Duplicate sequence name: \"{sname}\"")
entity_ids.add(sname)
# check if entity ids in trg_seqres_mapping are all covered
# in seqres
for cname, entity_id in self.trg_seqres_mapping.items():
if entity_id not in entity_ids:
raise RuntimeError(f"trg_seqres_mapping contains entity id "
f"for which no seqres is given: "
f"cname: \"{cname}\", entity id: "
f"\"{entity_id}\"")
# check if all sequences in self.polypep_seqs and self.polynuc_seqs
# have a mapping in trg_seqres_mapping
for s in self.polypep_seqs:
if s.GetName() not in self.trg_seqres_mapping:
raise RuntimeError(f"If seqres information is provided, "
f"all polymer chains must be covered "
f"by trg_seqres_mapping. Missing "
f"mapping for chain \"{s.GetName()}\"")
for s in self.polynuc_seqs:
if s.GetName() not in self.trg_seqres_mapping:
raise RuntimeError(f"If seqres information is provided, "
f"all polymer chains must be covered "
f"by trg_seqres_mapping. Missing "
f"mapping for chain \"{s.GetName()}\"")
@property
def target(self):
"""Target structure that only contains peptides/nucleotides
Contains only residues that have the backbone representatives
(CA for peptide and C3' for nucleotides) to avoid ATOMSEQ alignment
inconsistencies when switching between all atom and backbone only
representations.
:type: :class:`ost.mol.EntityView`
"""
return self._target
@property
def polypep_seqs(self):
"""Sequences of peptide chains in :attr:`~target`
:type: :class:`ost.seq.SequenceList`
"""
return self._polypep_seqs
@property
def polynuc_seqs(self):
"""Sequences of nucleotide chains in :attr:`~target`
:type: :class:`ost.seq.SequenceList`
"""
return self._polynuc_seqs
@property
def chem_groups(self):
"""Groups of chemically equivalent chains in :attr:`~target`
First chain in group is the one with longest sequence.
:getter: Computed on first use (cached)
:type: :class:`list` of :class:`list` of :class:`str` (chain names)
"""
if self._chem_groups is None:
self._ComputeChemGroups()
return self._chem_groups
@property
def chem_group_alignments(self):
"""MSA for each group in :attr:`~chem_groups`
The first sequence is the reference sequence.
The subsequent sequences represent the ATOMSEQ sequences in
:attr:`~target` in same order as in :attr:`~chem_groups`.
:getter: Computed on first use (cached)
:type: :class:`ost.seq.AlignmentList`
"""
if self._chem_group_alignments is None:
self._ComputeChemGroups()
return self._chem_group_alignments
@property
def chem_group_ref_seqs(self):
"""Reference sequence for each group in :attr:`~chem_groups`
:getter: Computed on first use (cached)
:type: :class:`ost.seq.SequenceList`
"""
if self._chem_group_ref_seqs is None:
self._ComputeChemGroups()
return self._chem_group_ref_seqs
@property
def chem_group_types(self):
"""ChemType of each group in :attr:`~chem_groups`
Specifying if groups are poly-peptides/nucleotides, i.e.
:class:`ost.mol.ChemType.AMINOACIDS` or
:class:`ost.mol.ChemType.NUCLEOTIDES`
:getter: Computed on first use (cached)
:type: :class:`list` of :class:`ost.mol.ChemType`
"""
if self._chem_group_types is None:
self._ComputeChemGroups()
return self._chem_group_types
def GetChemMapping(self, model):
"""Maps sequences in *model* to chem_groups of target
:param model: Model from which to extract sequences, a
selection that only includes peptides and nucleotides
is performed and returned along other results.
:type model: :class:`ost.mol.EntityView`/:class:`ost.mol.EntityHandle`
:returns: Tuple with two lists of length `len(self.chem_groups)`, a list
and an :class:`ost.mol.EntityView` representing *model*:
1) Each element is a :class:`list` with mdl chain names that
map to the chem group at that position.
2) Each element is a :class:`ost.seq.AlignmentList` aligning
these mdl chain sequences to the chem group ref sequences.
3) The model chains that could not be mapped to the reference
4) A selection of *model* that only contains polypeptides and
polynucleotides whose ATOMSEQ exactly matches the sequence
info in the returned alignments.
"""
mdl, mdl_pep_seqs, mdl_nuc_seqs = self.ProcessStructure(model)
mapping = [list() for x in self.chem_groups]
mdl_chains_without_chem_mapping = list()
alns = [seq.AlignmentList() for x in self.chem_groups]
for s in mdl_pep_seqs:
idx, aln = self._MapSequence(self.chem_group_ref_seqs,
self.chem_group_types,
s, mol.ChemType.AMINOACIDS, mdl,
seq_id_thr = self.mdl_map_pep_seqid_thr,
min_aln_length = self.min_pep_length)
if idx is None:
ost.LogWarning("Could not map model chain %s to any chem group"
" in the target" % s.name)
mdl_chains_without_chem_mapping.append(s.GetName())
else:
mapping[idx].append(s.GetName())
alns[idx].append(aln)
for s in mdl_nuc_seqs:
idx, aln = self._MapSequence(self.chem_group_ref_seqs,
self.chem_group_types,
s, mol.ChemType.NUCLEOTIDES, mdl,
seq_id_thr = self.mdl_map_nuc_seqid_thr,
min_aln_length = self.min_nuc_length)
if idx is None:
ost.LogWarning("Could not map model chain %s to any chem group"
" in the target" % s.name)
mdl_chains_without_chem_mapping.append(s.GetName())
else:
mapping[idx].append(s.GetName())
alns[idx].append(aln)
return (mapping, alns, mdl_chains_without_chem_mapping, mdl)
def GetlDDTMapping(self, model, inclusion_radius=15.0,
thresholds=[0.5, 1.0, 2.0, 4.0], strategy="heuristic",
steep_opt_rate = None, block_seed_size = 5,
block_blocks_per_chem_group = 5,
chem_mapping_result = None,
heuristic_n_max_naive = 40320):
""" Identify chain mapping by optimizing lDDT score
Maps *model* chain sequences to :attr:`~chem_groups` and find mapping
based on backbone only lDDT score (CA for amino acids C3' for
Nucleotides).
Either performs a naive search, i.e. enumerate all possible mappings or
executes a greedy strategy that tries to identify a (close to) optimal
mapping in an iterative way by starting from a start mapping (seed). In
each iteration, the one-to-one mapping that leads to highest increase
in number of conserved contacts is added with the additional requirement
that this added mapping must have non-zero interface counts towards the
already mapped chains. So basically we're "growing" the mapped structure
by only adding connected stuff.
The available strategies:
* **naive**: Enumerates all possible mappings and returns best
* **greedy_full**: try multiple seeds for greedy extension, i.e. try
all ref/mdl chain combinations within the respective chem groups and
retain the mapping leading to the best lDDT.
* **greedy_block**: try multiple seeds for greedy extension, i.e. try
all ref/mdl chain combinations within the respective chem groups and
extend them to *block_seed_size*. *block_blocks_per_chem_group*
for each chem group are selected for exhaustive extension.
* **heuristic**: Uses *naive* strategy if number of possible mappings
is within *heuristic_n_max_naive*. The default of 40320 corresponds
to an octamer (8!=40320). A structure with stoichiometry A6B2 would be
6!*2!=1440 etc. If the number of possible mappings is larger,
*greedy_full* is used.
Sets :attr:`MappingResult.opt_score` in case of no trivial one-to-one
mapping.
:param model: Model to map
:type model: :class:`ost.mol.EntityView`/:class:`ost.mol.EntityHandle`
:param inclusion_radius: Inclusion radius for lDDT
:type inclusion_radius: :class:`float`
:param thresholds: Thresholds for lDDT
:type thresholds: :class:`list` of :class:`float`
:param strategy: Strategy to find mapping. Must be in ["naive",
"greedy_full", "greedy_block"]
:type strategy: :class:`str`
:param steep_opt_rate: Only relevant for greedy strategies.
If set, every *steep_opt_rate* mappings, a simple
optimization is executed with the goal of
avoiding local minima. The optimization
iteratively checks all possible swaps of mappings
within their respective chem groups and accepts
swaps that improve lDDT score. Iteration stops as
soon as no improvement can be achieved anymore.
:type steep_opt_rate: :class:`int`
:param block_seed_size: Param for *greedy_block* strategy - Initial seeds
are extended by that number of chains.
:type block_seed_size: :class:`int`
:param block_blocks_per_chem_group: Param for *greedy_block* strategy -
Number of blocks per chem group that
are extended in an initial search
for high scoring local solutions.
:type block_blocks_per_chem_group: :class:`int`
:param chem_mapping_result: Pro param. The result of
:func:`~GetChemMapping` where you provided
*model*. If set, *model* parameter is not
used.
:type chem_mapping_result: :class:`tuple`
:returns: A :class:`MappingResult`
"""
strategies = ["naive", "greedy_full", "greedy_block", "heuristic"]
if strategy not in strategies:
raise RuntimeError(f"Strategy must be in {strategies}")
if chem_mapping_result is None:
chem_mapping, chem_group_alns, mdl_chains_without_chem_mapping, mdl = \
self.GetChemMapping(model)
else:
chem_mapping, chem_group_alns, mdl_chains_without_chem_mapping, mdl = \
chem_mapping_result
ref_mdl_alns = _GetRefMdlAlns(self.chem_groups,
self.chem_group_alignments,
chem_mapping,
chem_group_alns)
# check for the simplest case
one_to_one = _CheckOneToOneMapping(self.chem_groups, chem_mapping)
if one_to_one is not None:
alns = dict()
for ref_group, mdl_group in zip(self.chem_groups, one_to_one):
for ref_ch, mdl_ch in zip(ref_group, mdl_group):
if ref_ch is not None and mdl_ch is not None:
aln = ref_mdl_alns[(ref_ch, mdl_ch)]
alns[(ref_ch, mdl_ch)] = aln
return MappingResult(self.target, mdl, self.chem_groups, chem_mapping,
mdl_chains_without_chem_mapping, one_to_one, alns)
if strategy == "heuristic":
if _NMappingsWithin(self.chem_groups, chem_mapping,
heuristic_n_max_naive):
strategy = "naive"
else:
strategy = "greedy_full"
mapping = None
opt_lddt = None
if strategy == "naive":
mapping, opt_lddt = _lDDTNaive(self.target, mdl, inclusion_radius,
thresholds, self.chem_groups,
chem_mapping, ref_mdl_alns,
self.n_max_naive)
else:
# its one of the greedy strategies - setup greedy searcher
the_greed = _lDDTGreedySearcher(self.target, mdl, self.chem_groups,
chem_mapping, ref_mdl_alns,
inclusion_radius=inclusion_radius,
thresholds=thresholds,
steep_opt_rate=steep_opt_rate)
if strategy == "greedy_full":
mapping = _lDDTGreedyFull(the_greed)
elif strategy == "greedy_block":
mapping = _lDDTGreedyBlock(the_greed, block_seed_size,
block_blocks_per_chem_group)
# cached => lDDT computation is fast here
opt_lddt = the_greed.Score(mapping)
alns = dict()
for ref_group, mdl_group in zip(self.chem_groups, mapping):
for ref_ch, mdl_ch in zip(ref_group, mdl_group):
if ref_ch is not None and mdl_ch is not None:
aln = ref_mdl_alns[(ref_ch, mdl_ch)]
alns[(ref_ch, mdl_ch)] = aln
return MappingResult(self.target, mdl, self.chem_groups, chem_mapping,
mdl_chains_without_chem_mapping, mapping, alns,
opt_score = opt_lddt)
def GetQSScoreMapping(self, model, contact_d = 12.0, strategy = "heuristic",
block_seed_size = 5, block_blocks_per_chem_group = 5,
heuristic_n_max_naive = 40320, steep_opt_rate = None,
chem_mapping_result = None,
greedy_prune_contact_map = True):
""" Identify chain mapping based on QSScore
Scoring is based on CA/C3' positions which are present in all chains of
a :attr:`chem_groups` as well as the *model* chains which are mapped to
that respective chem group.
The following strategies are available:
* **naive**: Naively iterate all possible mappings and return best based
on QS score.
* **greedy_full**: try multiple seeds for greedy extension, i.e. try
all ref/mdl chain combinations within the respective chem groups and
retain the mapping leading to the best QS-score.
* **greedy_block**: try multiple seeds for greedy extension, i.e. try
all ref/mdl chain combinations within the respective chem groups and
extend them to *block_seed_size*. *block_blocks_per_chem_group*
for each chem group are selected for exhaustive extension.
* **heuristic**: Uses *naive* strategy if number of possible mappings
is within *heuristic_n_max_naive*. The default of 40320 corresponds
to an octamer (8!=40320). A structure with stoichiometry A6B2 would be
6!*2!=1440 etc. If the number of possible mappings is larger,
*greedy_full* is used.
Sets :attr:`MappingResult.opt_score` in case of no trivial one-to-one
mapping.
:param model: Model to map
:type model: :class:`ost.mol.EntityView`/:class:`ost.mol.EntityHandle`
:param contact_d: Max distance between two residues to be considered as
contact in qs scoring
:type contact_d: :class:`float`
:param strategy: Strategy for sampling, must be in ["naive",
greedy_full", "greedy_block"]
:type strategy: :class:`str`
:param chem_mapping_result: Pro param. The result of
:func:`~GetChemMapping` where you provided
*model*. If set, *model* parameter is not
used.
:type chem_mapping_result: :class:`tuple`
:param greedy_prune_contact_map: Relevant for all strategies that use
greedy extensions. If True, only chains
with at least 3 contacts (8A CB
distance) towards already mapped chains
in trg/mdl are considered for
extension. All chains that give a
potential non-zero QS-score increase
are used otherwise (at least one
contact within 12A). The consequence
is reduced runtime and usually no
real reduction in accuracy.
:returns: A :class:`MappingResult`
"""
strategies = ["naive", "greedy_full", "greedy_block", "heuristic"]
if strategy not in strategies:
raise RuntimeError(f"strategy must be {strategies}")
if chem_mapping_result is None:
chem_mapping, chem_group_alns, mdl_chains_without_chem_mapping, mdl = \
self.GetChemMapping(model)
else:
chem_mapping, chem_group_alns, mdl_chains_without_chem_mapping, mdl = \
chem_mapping_result
ref_mdl_alns = _GetRefMdlAlns(self.chem_groups,
self.chem_group_alignments,
chem_mapping,
chem_group_alns)
# check for the simplest case
one_to_one = _CheckOneToOneMapping(self.chem_groups, chem_mapping)
if one_to_one is not None:
alns = dict()
for ref_group, mdl_group in zip(self.chem_groups, one_to_one):
for ref_ch, mdl_ch in zip(ref_group, mdl_group):
if ref_ch is not None and mdl_ch is not None:
aln = ref_mdl_alns[(ref_ch, mdl_ch)]
alns[(ref_ch, mdl_ch)] = aln
return MappingResult(self.target, mdl, self.chem_groups, chem_mapping,
mdl_chains_without_chem_mapping, one_to_one, alns)
if strategy == "heuristic":
if _NMappingsWithin(self.chem_groups, chem_mapping,
heuristic_n_max_naive):
strategy = "naive"
else:
strategy = "greedy_full"
mapping = None
opt_qsscore = None
if strategy == "naive":
mapping, opt_qsscore = _QSScoreNaive(self.target, mdl,
self.chem_groups,
chem_mapping, ref_mdl_alns,
contact_d, self.n_max_naive)
else:
# its one of the greedy strategies - setup greedy searcher
the_greed = _QSScoreGreedySearcher(self.target, mdl,
self.chem_groups,
chem_mapping, ref_mdl_alns,
contact_d = contact_d,
steep_opt_rate=steep_opt_rate,
greedy_prune_contact_map = greedy_prune_contact_map)
if strategy == "greedy_full":
mapping = _QSScoreGreedyFull(the_greed)
elif strategy == "greedy_block":
mapping = _QSScoreGreedyBlock(the_greed, block_seed_size,
block_blocks_per_chem_group)
# cached => QSScore computation is fast here
opt_qsscore = the_greed.Score(mapping, check=False).QS_global
alns = dict()
for ref_group, mdl_group in zip(self.chem_groups, mapping):
for ref_ch, mdl_ch in zip(ref_group, mdl_group):
if ref_ch is not None and mdl_ch is not None:
aln = ref_mdl_alns[(ref_ch, mdl_ch)]
alns[(ref_ch, mdl_ch)] = aln
return MappingResult(self.target, mdl, self.chem_groups, chem_mapping,
mdl_chains_without_chem_mapping, mapping, alns,
opt_score = opt_qsscore)
def GetRMSDMapping(self, model, strategy = "heuristic", subsampling=50,
chem_mapping_result = None, heuristic_n_max_naive = 120):
"""Identify chain mapping based on minimal RMSD superposition
Superposition and scoring is based on CA/C3' positions which are present
in all chains of a :attr:`chem_groups` as well as the *model*
chains which are mapped to that respective chem group.
The following strategies are available:
* **naive**: Naively iterate all possible mappings and return the one
with lowes RMSD.
* **greedy_single**: perform all vs. all single chain superpositions
within the respective ref/mdl chem groups to use as starting points.
For each starting point, iteratively add the model/target chain pair
with lowest RMSD until a full mapping is achieved. The mapping with
lowest RMSD is returned.
* **greedy_single_centroid**: Same as *greedy_single* but iteratively
adds model/target chain pairs with lowest centroid distance. The
mapping with the lowest centroid RMSD is returned. This is mainly for
evaluation purposes. One known failure mode is that intertwined
structures may have multiple centroids sitting on top of each other.
RMSD and thus *greedy_single* are better able to disentangle this
situation.
* **greedy_iterative**: Same as greedy_single_rmsd exept that the
transformation gets updated with each added chain pair.
* **heuristic**: Uses *naive* strategy if number of possible mappings
is within *heuristic_n_max_naive*. The default of 120 corresponds
to a homo-pentamer (5!=120). If the number of possible mappings is
larger, *greedy_iterative* is used.
:param model: Model to map
:type model: :class:`ost.mol.EntityView`/:class:`ost.mol.EntityHandle`
:param strategy: Strategy for sampling. Must be in ["naive",
"greedy_single", "greedy_iterative"]
:type strategy: :class:`str`
:param subsampling: If given, only an equally distributed subset
of CA/C3' positions in each chain are used for
superposition/scoring.
:type subsampling: :class:`int`
:param chem_mapping_result: Pro param. The result of
:func:`~GetChemMapping` where you provided
*model*. If set, *model* parameter is not
used.
:type chem_mapping_result: :class:`tuple`
:returns: A :class:`MappingResult`
"""
strategies = ["naive", "greedy_single", "greedy_single_centroid",
"greedy_iterative", "heuristic"]
if strategy not in strategies:
raise RuntimeError(f"strategy must be {strategies}")
if chem_mapping_result is None:
chem_mapping, chem_group_alns, mdl_chains_without_chem_mapping, mdl = \
self.GetChemMapping(model)
else:
chem_mapping, chem_group_alns, mdl_chains_without_chem_mapping, mdl = \
chem_mapping_result
ref_mdl_alns = _GetRefMdlAlns(self.chem_groups,
self.chem_group_alignments,
chem_mapping,
chem_group_alns)
# check for the simplest case
one_to_one = _CheckOneToOneMapping(self.chem_groups, chem_mapping)
if one_to_one is not None:
alns = dict()
for ref_group, mdl_group in zip(self.chem_groups, one_to_one):
for ref_ch, mdl_ch in zip(ref_group, mdl_group):
if ref_ch is not None and mdl_ch is not None:
aln = ref_mdl_alns[(ref_ch, mdl_ch)]
alns[(ref_ch, mdl_ch)] = aln
return MappingResult(self.target, mdl, self.chem_groups, chem_mapping,
mdl_chains_without_chem_mapping, one_to_one, alns)
trg_group_pos, mdl_group_pos = _GetRefPos(self.target, mdl,
self.chem_group_alignments,
chem_group_alns,
max_pos = subsampling)
if strategy == "heuristic":
if _NMappingsWithin(self.chem_groups, chem_mapping,
heuristic_n_max_naive):
strategy = "naive"
else:
strategy = "greedy_iterative"
mapping = None
if strategy.startswith("greedy"):
# get transforms of any mdl chain onto any trg chain in same chem
# group that fulfills gdtts threshold
initial_transforms = list()
initial_mappings = list()
for trg_pos, trg_chains, mdl_pos, mdl_chains in zip(trg_group_pos,
self.chem_groups,
mdl_group_pos,
chem_mapping):
for t_pos, t in zip(trg_pos, trg_chains):
for m_pos, m in zip(mdl_pos, mdl_chains):
if len(t_pos) >= 3 and len(m_pos) >= 3:
transform = _GetSuperposition(m_pos, t_pos,
False).transformation
initial_transforms.append(transform)
initial_mappings.append((t,m))
if strategy == "greedy_single":
mapping = _SingleRigidRMSD(initial_transforms,
initial_mappings,
self.chem_groups,
chem_mapping,
trg_group_pos,
mdl_group_pos)
elif strategy == "greedy_single_centroid":
mapping = _SingleRigidCentroid(initial_transforms,
initial_mappings,
self.chem_groups,
chem_mapping,
trg_group_pos,
mdl_group_pos)
elif strategy == "greedy_iterative":
mapping = _IterativeRigidRMSD(initial_transforms,
initial_mappings,
self.chem_groups, chem_mapping,
trg_group_pos, mdl_group_pos)
elif strategy == "naive":
mapping = _NaiveRMSD(self.chem_groups, chem_mapping,
trg_group_pos, mdl_group_pos,
self.n_max_naive)
# translate mapping format and return
final_mapping = list()
for ref_chains in self.chem_groups:
mapped_mdl_chains = list()
for ref_ch in ref_chains:
if ref_ch in mapping:
mapped_mdl_chains.append(mapping[ref_ch])
else:
mapped_mdl_chains.append(None)
final_mapping.append(mapped_mdl_chains)
alns = dict()
for ref_group, mdl_group in zip(self.chem_groups, final_mapping):
for ref_ch, mdl_ch in zip(ref_group, mdl_group):
if ref_ch is not None and mdl_ch is not None:
aln = ref_mdl_alns[(ref_ch, mdl_ch)]
alns[(ref_ch, mdl_ch)] = aln
return MappingResult(self.target, mdl, self.chem_groups, chem_mapping,
mdl_chains_without_chem_mapping, final_mapping, alns)
def GetAFMMapping(self, model, chem_mapping_result = None):
"""Identify chain mapping as in AlphaFold-Multimer (AFM)
Described in section 7.3 of
Richard Evans, Michael O’Neill, Alexander Pritzel, Natasha Antropova,
Andrew Senior, Tim Green, Augustin ŽÃdek, Russ Bates, Sam Blackwell,
Jason Yim, et al. Protein complex prediction with AlphaFold-Multimer.
bioRxiv preprint bioRxiv:10.1101/2021.10.04.463034, 2021.
To summarize (largely follows the description in the AF-Multimer paper):
One anchor chain in the ground truth (reference) is selected. If the
reference has stoichiometry A3B2, an arbitary chain in B is selected
as it has smaller ambiguity. In a tie, for example A2B2, the longest
chain in A, B is selected.
Given a model chain with same sequence as the reference anchor chain,
a CA-RMSD (C3' for nucleotides) based superposition is performed. Chains
are then greedily assigned by minimum distance of their geometric
centers. This procedure is repeated for every model chain with same
sequence and the assignment with minimal RMSD of the geometric centers
is returned.
A modification of this algorithm allows to deal with different
stoichiometries in reference and model. In the anchor selection, this
function ensures that there is at least one model chain that can be
mapped to this anchor. If the logic above does not identify a mappable
chain pair for the smallest group, it continues with the second smallest
group etc.
:param model: Model to map
:type model: :class:`ost.mol.EntityView`/:class:`ost.mol.EntityHandle`
:param chem_mapping_result: Pro param. The result of
:func:`~GetChemMapping` where you provided
*model*. If set, *model* parameter is not
used.
:type chem_mapping_result: :class:`tuple`
:returns: A :class:`MappingResult`
"""
if chem_mapping_result is None:
chem_mapping, chem_group_alns, mdl_chains_without_chem_mapping, mdl = \
self.GetChemMapping(model)
else:
chem_mapping, chem_group_alns, mdl_chains_without_chem_mapping, mdl = \
chem_mapping_result
ref_mdl_alns = _GetRefMdlAlns(self.chem_groups,
self.chem_group_alignments,
chem_mapping,
chem_group_alns)
# check for the simplest case
one_to_one = _CheckOneToOneMapping(self.chem_groups, chem_mapping)
if one_to_one is not None:
alns = dict()
for ref_group, mdl_group in zip(self.chem_groups, one_to_one):
for ref_ch, mdl_ch in zip(ref_group, mdl_group):
if ref_ch is not None and mdl_ch is not None:
aln = ref_mdl_alns[(ref_ch, mdl_ch)]
alns[(ref_ch, mdl_ch)] = aln
return MappingResult(self.target, mdl, self.chem_groups, chem_mapping,
mdl_chains_without_chem_mapping, one_to_one, alns)
# Select anchor chain in reference
ref_group_idx = None
ref_ch = None
chem_group_sizes = list(set([len(g) for g in self.chem_groups]))
chem_group_sizes.sort()
for min_size in chem_group_sizes:
min_chem_groups = list()
for chem_group_idx, chem_group in enumerate(self.chem_groups):
if len(chem_group) == min_size:
min_chem_groups.append(chem_group_idx)
if len(min_chem_groups) == 1:
if len(chem_mapping[min_chem_groups[0]]) > 0:
# Unique smallest chem group that has at least one
# model chain for mapping
# => select arbitrary chain
ref_group_idx = min_chem_groups[0]
ref_ch = self.chem_groups[min_chem_groups[0]][0]
else:
# No unique smallest chem group
# => select the largest chain from any of these chem groups
# that has at least one model chain for mapping
n_max = 0
for chem_group_idx in min_chem_groups:
if len(chem_mapping[chem_group_idx]) > 0:
for ch in self.chem_groups[chem_group_idx]:
n = self.target.FindChain(ch).GetResidueCount()
if n > n_max:
n_max = n
ref_group_idx = chem_group_idx
ref_ch = ch
if ref_group_idx is not None and ref_ch is not None:
break
# One transformation for each model chain that can be mapped to this one
# anchor in the reference
ref_bb_pos = _GetBBPos(self.target)
mdl_bb_pos = _GetBBPos(mdl)
transformations = list()
for mdl_ch in chem_mapping[ref_group_idx]:
aln = ref_mdl_alns[(ref_ch, mdl_ch)]
# assertion can be removed after some testing
l1 = len(ref_bb_pos[ref_ch])
l2 = len(aln.GetSequence(0).GetGaplessString())
assert(l1 == l2)
l1 = len(mdl_bb_pos[mdl_ch])
l2 = len(aln.GetSequence(1).GetGaplessString())
assert(l1 == l2)
# extract aligned positions
ref_idx = 0
mdl_idx = 0
ref_pos = geom.Vec3List()
mdl_pos = geom.Vec3List()
for col in aln:
if col[0] != '-' and col[1] != '-':
ref_pos.append(ref_bb_pos[ref_ch][ref_idx])
mdl_pos.append(mdl_bb_pos[mdl_ch][mdl_idx])
if col[0] != '-':
ref_idx += 1
if col[1] != '-':
mdl_idx += 1
t = _GetSuperposition(mdl_pos, ref_pos, False).transformation
transformations.append(t)
ref_centers = {k: v.center for k,v in ref_bb_pos.items()}
mdl_chains = list()
mdl_centers = list()
for k,v in mdl_bb_pos.items():
mdl_chains.append(k)
mdl_centers.append(v.center)
mdl_centers = geom.Vec3List(mdl_centers)
best_rmsd = float("inf")
best_mapping = None # k: ref_ch, v: mdl_ch
for t in transformations:
tmp = geom.Vec3List(mdl_centers)
tmp.ApplyTransform(t)
# somehow the Vec3List did not really work in a dict comprehension
t_mdl_centers = dict()
for i in range(len(tmp)):
t_mdl_centers[mdl_chains[i]] = tmp[i]
# one entry for each possible assignment
# (<squared_distance>, <ref_ch>, <mdl_ch>)
tmp = list()
for a, b in zip(self.chem_groups, chem_mapping):
for ref_ch in a:
for mdl_ch in b:
d = geom.Length2(ref_centers[ref_ch]-t_mdl_centers[mdl_ch])
tmp.append((d, ref_ch, mdl_ch))
tmp.sort()
mapping = dict()
mapped_mdl_chains = set()
for item in tmp:
if item[1] not in mapping and item[2] not in mapped_mdl_chains:
mapping[item[1]] = item[2]
mapped_mdl_chains.add(item[2])
if len(mapping) == 0:
raise RuntimeError("Empty mapping in GetAFMMapping")
elif len(mapping) == 1:
# by definition zero
rmsd = 0.0
elif len(mapping) == 2:
# no superposition possible with two positions
# derive rmsd from the distance difference between
# the centroid pairs in reference and model
ref_p = [ref_centers[k] for k in mapping.keys()]
mdl_p = [t_mdl_centers[v] for v in mapping.values()]
ref_d = geom.Distance(ref_p[0], ref_p[1])
mdl_d = geom.Distance(mdl_p[0], mdl_p[1])
# compute RMSD when placing pair of coordinates with smaller
# distance in the middle of pair of cooridnates with larger
# distance
dd = abs(ref_d-mdl_d) # distance difference
# rmsd = sqrt(1/2 * ((dd/2)**2 + (dd/2)**2))
# => rmsd = dd/2
rmsd = dd/2
else:
# go for classic Kabsch superposition
mapped_ref_centers = geom.Vec3List()
mapped_mdl_centers = geom.Vec3List()
for ref_ch, mdl_ch in mapping.items():
mapped_ref_centers.append(ref_centers[ref_ch])
mapped_mdl_centers.append(t_mdl_centers[mdl_ch])
rmsd = _GetSuperposition(mapped_ref_centers,
mapped_mdl_centers, False).rmsd
if rmsd < best_rmsd:
best_rmsd = rmsd
best_mapping = mapping
# translate mapping format and return
final_mapping = list()
for ref_chains in self.chem_groups:
mapped_mdl_chains = list()
for ref_ch in ref_chains:
if ref_ch in best_mapping:
mapped_mdl_chains.append(best_mapping[ref_ch])
else:
mapped_mdl_chains.append(None)
final_mapping.append(mapped_mdl_chains)
alns = dict()
for ref_group, mdl_group in zip(self.chem_groups, final_mapping):
for ref_ch, mdl_ch in zip(ref_group, mdl_group):
if ref_ch is not None and mdl_ch is not None:
aln = ref_mdl_alns[(ref_ch, mdl_ch)]
alns[(ref_ch, mdl_ch)] = aln
return MappingResult(self.target, mdl, self.chem_groups, chem_mapping,
mdl_chains_without_chem_mapping, final_mapping, alns)
def GetMapping(self, model, n_max_naive = 40320):
""" Convenience function to get mapping with currently preferred method
If number of possible chain mappings is <= *n_max_naive*, a naive
QS-score mapping is performed and optimal QS-score is guaranteed.
For anything else, a QS-score mapping with the greedy_full strategy is
performed (greedy_prune_contact_map = True). The default for
*n_max_naive* of 40320 corresponds to an octamer (8!=40320). A
structure with stoichiometry A6B2 would be 6!*2!=1440 etc.
If :attr:`~target` has nucleotide sequences, the QS-score target
function is replaced with a backbone only lDDT score that has
an inclusion radius of 30A.
"""
if len(self.polynuc_seqs) > 0:
return self.GetlDDTMapping(model, strategy = "heuristic",
inclusion_radius = 30.0,
heuristic_n_max_naive = n_max_naive)
else:
return self.GetQSScoreMapping(model, strategy="heuristic",
greedy_prune_contact_map=True,
heuristic_n_max_naive = n_max_naive)
def GetRepr(self, substructure, model, topn=1, inclusion_radius=15.0,
thresholds=[0.5, 1.0, 2.0, 4.0], bb_only=False,
only_interchain=False, chem_mapping_result = None,
global_mapping = None):
""" Identify *topn* representations of *substructure* in *model*
*substructure* defines a subset of :attr:`~target` for which one
wants the *topn* representations in *model*. Representations are scored
and sorted by lDDT.
:param substructure: A :class:`ost.mol.EntityView` which is a subset of
:attr:`~target`. Should be selected with the
OpenStructure query language. Example: if you're
interested in residues with number 42,43 and 85 in
chain A:
``substructure=mapper.target.Select("cname=A and rnum=42,43,85")``
A :class:`RuntimeError` is raised if *substructure*
does not refer to the same underlying
:class:`ost.mol.EntityHandle` as :attr:`~target`.
:type substructure: :class:`ost.mol.EntityView`
:param model: Structure in which one wants to find representations for
*substructure*
:type model: :class:`ost.mol.EntityView`/:class:`ost.mol.EntityHandle`
:param topn: Max number of representations that are returned
:type topn: :class:`int`
:param inclusion_radius: Inclusion radius for lDDT
:type inclusion_radius: :class:`float`
:param thresholds: Thresholds for lDDT
:type thresholds: :class:`list` of :class:`float`
:param bb_only: Only consider backbone atoms in lDDT computation
:type bb_only: :class:`bool`
:param only_interchain: Only score interchain contacts in lDDT. Useful
if you want to identify interface patches.
:type only_interchain: :class:`bool`
:param chem_mapping_result: Pro param. The result of
:func:`~GetChemMapping` where you provided
*model*. If set, *model* parameter is not
used.
:type chem_mapping_result: :class:`tuple`
:param global_mapping: Pro param. Specify a global mapping result. This
fully defines the desired representation in the
model but extracts it and enriches it with all
the nice attributes of :class:`ReprResult`.
The target attribute in *global_mapping* must be
of the same entity as self.target and the model
attribute of *global_mapping* must be of the same
entity as *model*.
:type global_mapping: :class:`MappingResult`
:returns: :class:`list` of :class:`ReprResult`
"""
if topn < 1:
raise RuntimeError("topn must be >= 1")
if global_mapping is not None:
# ensure that this mapping is derived from the same structures
if global_mapping.target.handle.GetHashCode() != \
self.target.handle.GetHashCode():
raise RuntimeError("global_mapping.target must be the same "
"entity as self.target")
if global_mapping.model.handle.GetHashCode() != \
model.handle.GetHashCode():
raise RuntimeError("global_mapping.model must be the same "
"entity as model param")
# check whether substructure really is a subset of self.target
for r in substructure.residues:
ch_name = r.GetChain().GetName()
rnum = r.GetNumber()
target_r = self.target.FindResidue(ch_name, rnum)
if not target_r.IsValid():
raise RuntimeError(f"substructure has residue "
f"{r.GetQualifiedName()} which is not in "
f"self.target")
if target_r.handle.GetHashCode() != r.handle.GetHashCode():
raise RuntimeError(f"substructure has residue "
f"{r.GetQualifiedName()} which has an "
f"equivalent in self.target but it does "
f"not refer to the same underlying "
f"EntityHandle")
for a in r.atoms:
target_a = target_r.FindAtom(a.GetName())
if not target_a.IsValid():
raise RuntimeError(f"substructure has atom "
f"{a.GetQualifiedName()} which is not "
f"in self.target")
if a.handle.GetHashCode() != target_a.handle.GetHashCode():
raise RuntimeError(f"substructure has atom "
f"{a.GetQualifiedName()} which has an "
f"equivalent in self.target but it does "
f"not refer to the same underlying "
f"EntityHandle")
# check whether it contains either CA or C3'
ca = r.FindAtom("CA")
c3 = r.FindAtom("C3'") # FindAtom with prime in string is tested
# and works
if not ca.IsValid() and not c3.IsValid():
raise RuntimeError("All residues in substructure must contain "
"a backbone atom named CA or C3\'")
# perform mapping and alignments on full structures
if chem_mapping_result is None:
chem_mapping, chem_group_alns, mdl_chains_without_chem_mapping, mdl = \
self.GetChemMapping(model)
else:
chem_mapping, chem_group_alns, mdl_chains_without_chem_mapping, mdl = \
chem_mapping_result
ref_mdl_alns = _GetRefMdlAlns(self.chem_groups,
self.chem_group_alignments,
chem_mapping,
chem_group_alns)
# Get residue indices relative to full target chain
substructure_res_indices = dict()
for ch in substructure.chains:
full_ch = self.target.FindChain(ch.GetName())
idx = [full_ch.GetResidueIndex(r.GetNumber()) for r in ch.residues]
substructure_res_indices[ch.GetName()] = idx
# strip down variables to make them specific to substructure
# keep only chem_groups which are present in substructure
substructure_chem_groups = list()
substructure_chem_mapping = list()
chnames = set([ch.GetName() for ch in substructure.chains])
for chem_group, mapping in zip(self.chem_groups, chem_mapping):
substructure_chem_group = [ch for ch in chem_group if ch in chnames]
if len(substructure_chem_group) > 0:
substructure_chem_groups.append(substructure_chem_group)
substructure_chem_mapping.append(mapping)
# early stopping if no mdl chain can be mapped to substructure
n_mapped_mdl_chains = sum([len(m) for m in substructure_chem_mapping])
if n_mapped_mdl_chains == 0:
return list()
# strip the reference sequence in alignments to only contain
# sequence from substructure
substructure_ref_mdl_alns = dict()
mdl_views = dict()
for ch in mdl.chains:
mdl_views[ch.GetName()] = _CSel(mdl, [ch.GetName()])
for chem_group, mapping in zip(substructure_chem_groups,
substructure_chem_mapping):
for ref_ch in chem_group:
for mdl_ch in mapping:
full_aln = ref_mdl_alns[(ref_ch, mdl_ch)]
ref_seq = full_aln.GetSequence(0)
# the ref sequence is tricky... we start with a gap only
# sequence and only add olcs as defined by the residue
# indices that we extracted before...
tmp = ['-'] * len(full_aln)
for idx in substructure_res_indices[ref_ch]:
idx_in_seq = ref_seq.GetPos(idx)
tmp[idx_in_seq] = ref_seq[idx_in_seq]
ref_seq = seq.CreateSequence(ref_ch, ''.join(tmp))
ref_seq.AttachView(_CSel(substructure, [ref_ch]))
mdl_seq = full_aln.GetSequence(1)
mdl_seq = seq.CreateSequence(mdl_seq.GetName(),
mdl_seq.GetString())
mdl_seq.AttachView(mdl_views[mdl_ch])
aln = seq.CreateAlignment()
aln.AddSequence(ref_seq)
aln.AddSequence(mdl_seq)
substructure_ref_mdl_alns[(ref_ch, mdl_ch)] = aln
lddt_scorer = lddt.lDDTScorer(substructure,
inclusion_radius = inclusion_radius,
bb_only = bb_only)
scored_mappings = list()
if global_mapping:
# construct mapping of substructure from global mapping
flat_mapping = global_mapping.GetFlatMapping()
mapping = list()
for chem_group, chem_mapping in zip(substructure_chem_groups,
substructure_chem_mapping):
chem_group_mapping = list()
for ch in chem_group:
if ch in flat_mapping:
mdl_ch = flat_mapping[ch]
if mdl_ch in chem_mapping:
chem_group_mapping.append(mdl_ch)
else:
chem_group_mapping.append(None)
else:
chem_group_mapping.append(None)
mapping.append(chem_group_mapping)
mappings = [mapping]
else:
mappings = list(_ChainMappings(substructure_chem_groups,
substructure_chem_mapping,
self.n_max_naive))
# This step can be slow so give some hints in logs
msg = "Computing initial ranking of %d chain mappings" % len(mappings)
(ost.LogWarning if len(mappings) > 10000 else ost.LogInfo)(msg)
for mapping in mappings:
# chain_mapping and alns as input for lDDT computation
lddt_chain_mapping = dict()
lddt_alns = dict()
n_res_aln = 0
for ref_chem_group, mdl_chem_group in zip(substructure_chem_groups,
mapping):
for ref_ch, mdl_ch in zip(ref_chem_group, mdl_chem_group):
# some mdl chains can be None
if mdl_ch is not None:
lddt_chain_mapping[mdl_ch] = ref_ch
aln = substructure_ref_mdl_alns[(ref_ch, mdl_ch)]
lddt_alns[mdl_ch] = aln
tmp = [int(c[0] != '-' and c[1] != '-') for c in aln]
n_res_aln += sum(tmp)
# don't compute lDDT if no single residue in mdl and ref is aligned
if n_res_aln == 0:
continue
lDDT, _ = lddt_scorer.lDDT(mdl, thresholds=thresholds,
chain_mapping=lddt_chain_mapping,
residue_mapping = lddt_alns,
check_resnames = False,
no_intrachain = only_interchain)
if lDDT is None:
ost.LogVerbose("No valid contacts in the reference")
lDDT = 0.0 # that means, that we have not a single valid contact
# in lDDT. For the code below to work, we just set it
# to a terrible score => 0.0
if len(scored_mappings) == 0:
scored_mappings.append((lDDT, mapping))
elif len(scored_mappings) < topn:
scored_mappings.append((lDDT, mapping))
scored_mappings.sort(reverse=True, key=lambda x: x[0])
elif lDDT > scored_mappings[-1][0]:
scored_mappings.append((lDDT, mapping))
scored_mappings.sort(reverse=True, key=lambda x: x[0])
scored_mappings = scored_mappings[:topn]
# finalize and return
results = list()
for scored_mapping in scored_mappings:
ref_view = substructure.handle.CreateEmptyView()
mdl_view = mdl.handle.CreateEmptyView()
for ref_ch_group, mdl_ch_group in zip(substructure_chem_groups,
scored_mapping[1]):
for ref_ch, mdl_ch in zip(ref_ch_group, mdl_ch_group):
if ref_ch is not None and mdl_ch is not None:
aln = substructure_ref_mdl_alns[(ref_ch, mdl_ch)]
for col in aln:
if col[0] != '-' and col[1] != '-':
ref_view.AddResidue(col.GetResidue(0),
mol.ViewAddFlag.INCLUDE_ALL)
mdl_view.AddResidue(col.GetResidue(1),
mol.ViewAddFlag.INCLUDE_ALL)
results.append(ReprResult(scored_mapping[0], substructure,
ref_view, mdl_view))
return results
def GetNMappings(self, model):
""" Returns number of possible mappings
:param model: Model with chains that are mapped onto
:attr:`chem_groups`
:type model: :class:`ost.mol.EntityView`/:class:`ost.mol.EntityHandle`
"""
chem_mapping, chem_group_alns, mdl_chains_without_chem_mapping, mdl = \
self.GetChemMapping(model)
return _NMappings(self.chem_groups, chem_mapping)
def ProcessStructure(self, ent):
""" Entity processing for chain mapping
* Selects view containing peptide and nucleotide residues which have
required backbone atoms present - for peptide residues thats
N, CA, C and CB (no CB for GLY), for nucleotide residues thats
O5', C5', C4', C3' and O3'.
* filters view by chain lengths, see *min_pep_length* and
*min_nuc_length* in constructor
* Extracts atom sequences for each chain in that view
* If residue number alignments are used, strictly increasing residue
numbers without insertion codes are ensured in each chain
:param ent: Entity to process
:type ent: :class:`ost.mol.EntityView`/:class:`ost.mol.EntityHandle`
:returns: Tuple with 3 elements: 1) :class:`ost.mol.EntityView`
containing peptide and nucleotide residues 2)
:class:`ost.seq.SequenceList` containing ATOMSEQ sequences
for each polypeptide chain in returned view
3) same for polynucleotide chains
"""
view = ent.CreateEmptyView()
exp_pep_atoms = ["N", "CA", "C", "CB"]
exp_nuc_atoms = ["\"O5'\"", "\"C5'\"", "\"C4'\"", "\"C3'\"", "\"O3'\""]
pep_query = "peptide=true and aname=" + ','.join(exp_pep_atoms)
nuc_query = "nucleotide=true and aname=" + ','.join(exp_nuc_atoms)
pep_sel = ent.Select(pep_query)
for r in pep_sel.residues:
if len(r.atoms) == 4:
view.AddResidue(r.handle, mol.INCLUDE_ALL)
elif r.name == "GLY" and len(r.atoms) == 3:
atom_names = [a.GetName() for a in r.atoms]
if sorted(atom_names) == ["C", "CA", "N"]:
view.AddResidue(r.handle, mol.INCLUDE_ALL)
nuc_sel = ent.Select(nuc_query)
for r in nuc_sel.residues:
if len(r.atoms) == 5:
view.AddResidue(r.handle, mol.INCLUDE_ALL)
polypep_seqs = seq.CreateSequenceList()
polynuc_seqs = seq.CreateSequenceList()
if len(view.residues) == 0:
# no residues survived => return
return (view, polypep_seqs, polynuc_seqs)
for ch in view.chains:
n_res = len(ch.residues)
n_pep = sum([r.IsPeptideLinking() for r in ch.residues])
n_nuc = sum([r.IsNucleotideLinking() for r in ch.residues])
# guarantee that we have either pep or nuc (no mix of the two)
if n_pep > 0 and n_nuc > 0:
raise RuntimeError(f"Must not mix peptide and nucleotide linking "
f"residues in same chain ({ch.GetName()})")
if (n_pep + n_nuc) != n_res:
raise RuntimeError("All residues must either be peptide_linking "
"or nucleotide_linking")
# filter out short chains
if n_pep > 0 and n_pep < self.min_pep_length:
ost.LogWarning("Skipping short peptide chain: %s" % ch.name)
continue
if n_nuc > 0 and n_nuc < self.min_nuc_length:
ost.LogWarning("Skipping short nucleotide chain: %s" % ch.name)
continue
# the superfast residue number based alignment adds some
# restrictions on the numbers themselves:
# 1) no insertion codes 2) strictly increasing
if self.resnum_alignments:
# check if no insertion codes are present in residue numbers
ins_codes = [r.GetNumber().GetInsCode() for r in ch.residues]
if len(set(ins_codes)) != 1 or ins_codes[0] != '\0':
raise RuntimeError("Residue numbers in input structures must not "
"contain insertion codes")
# check if residue numbers are strictly increasing
nums = [r.GetNumber().GetNum() for r in ch.residues]
if not all(i < j for i, j in zip(nums, nums[1:])):
raise RuntimeError("Residue numbers in input structures must be "
"strictly increasing for each chain")
s = ''.join([r.one_letter_code for r in ch.residues])
s = seq.CreateSequence(ch.GetName(), s)
if n_pep == n_res:
polypep_seqs.AddSequence(s)
elif n_nuc == n_res:
polynuc_seqs.AddSequence(s)
else:
raise RuntimeError("This shouldnt happen")
if len(polypep_seqs) == 0 and len(polynuc_seqs) == 0:
raise RuntimeError(f"No chain fulfilled minimum length requirement "
f"to be considered in chain mapping "
f"({self.min_pep_length} for peptide chains, "
f"{self.min_nuc_length} for nucleotide chains) "
f"- mapping failed")
# select for chains for which we actually extracted the sequence
chain_names = [s.name for s in polypep_seqs]
chain_names += [s.name for s in polynuc_seqs]
view = _CSel(view, chain_names)
return (view, polypep_seqs, polynuc_seqs)
def NWAlign(self, s1, s2, stype):
""" Access to internal sequence alignment functionality
Performs Needleman-Wunsch alignment with parameterization
setup at ChainMapper construction
:param s1: First sequence to align
:type s1: :class:`ost.seq.SequenceHandle`
:param s2: Second sequence to align
:type s2: :class:`ost.seq.SequenceHandle`
:param stype: Type of sequences to align, must be in
[:class:`ost.mol.ChemType.AMINOACIDS`,
:class:`ost.mol.ChemType.NUCLEOTIDES`]
:returns: Pairwise alignment of s1 and s2
"""
if stype == mol.ChemType.AMINOACIDS:
return seq.alg.SemiGlobalAlign(s1, s2, self.pep_subst_mat,
gap_open=self.pep_gap_open,
gap_ext=self.pep_gap_ext)[0]
elif stype == mol.ChemType.NUCLEOTIDES:
return seq.alg.SemiGlobalAlign(s1, s2, self.nuc_subst_mat,
gap_open=self.nuc_gap_open,
gap_ext=self.nuc_gap_ext)[0]
else:
raise RuntimeError("Invalid ChemType")
return aln
def SEQRESAlign(self, seqres, s, s_ent):
""" Access to internal sequence alignment functionality
Performs alignment on SEQRES. Residue numbers for *s* are
extracted from *s_ent*. Residue numbers start from 1, i.e.
1 aligns to the first element in *seqres*.
:param seqres: SEQRES sequence
:type seqres: :class:`ost.seq.SequenceHandle`
:param s: Sequence to align
:type s: :class:`ost.seq.SequenceHandle`
:param s_ent: Structure which must contain a chain of same name as *s*.
This chain must have the exact same number of residues
as characters in *s*.
:type s_ent: :class:`ost.mol.EntityView`/:class:`ost.mol.EntityHandle`
"""
ch = s_ent.FindChain(s.name)
if not ch.IsValid():
raise RuntimeError("s_ent lacks required chain in SEQRESAlign")
if len(s) != ch.GetResidueCount():
raise RuntimeError("Sequence/structure mismatch in SEQRESAlign")
rnums = [r.GetNumber().GetNum() for r in ch.residues]
max_rnum = max(len(seqres), max(rnums))
# potentially add some trailing gaps
seqres_s = seqres.GetGaplessString() + '-'*(max_rnum-len(seqres))
olcs = ['-'] * max_rnum
for olc, num in zip(s, rnums):
olcs[num-1] = olc
aln = seq.CreateAlignment()
aln.AddSequence(seq.CreateSequence(seqres.GetName(), seqres_s))
aln.AddSequence(seq.CreateSequence(s.GetName(), ''.join(olcs)))
return aln
def ResNumAlign(self, s1, s2, s1_ent, s2_ent):
""" Access to internal sequence alignment functionality
Performs residue number based alignment. Residue numbers are extracted
from *s1_ent*/*s2_ent*.
:param s1: First sequence to align
:type s1: :class:`ost.seq.SequenceHandle`
:param s2: Second sequence to align
:type s2: :class:`ost.seq.SequenceHandle`
:param s1_ent: Structure as source for residue numbers in *s1*. Must
contain a chain named after sequence name in *s1*. This
chain must have the exact same number of residues as
characters in s1.
:type s1_ent: :class:`ost.mol.EntityView`/:class:`ost.mol.EntityHandle`
:param s2_ent: Same for *s2*.
:type s2_ent: :class:`ost.mol.EntityView`/:class:`ost.mol.EntityHandle`
:returns: Pairwise alignment of s1 and s2
"""
ch1 = s1_ent.FindChain(s1.name)
ch2 = s2_ent.FindChain(s2.name)
if not ch1.IsValid():
raise RuntimeError("s1_ent lacks requested chain in ResNumAlign")
if not ch2.IsValid():
raise RuntimeError("s2_ent lacks requested chain in ResNumAlign")
if len(s1) != ch1.GetResidueCount():
raise RuntimeError("Sequence/structure mismatch in ResNumAlign")
if len(s2) != ch2.GetResidueCount():
raise RuntimeError("Sequence/structure mismatch in ResNumAlign")
rnums1 = [r.GetNumber().GetNum() for r in ch1.residues]
rnums2 = [r.GetNumber().GetNum() for r in ch2.residues]
min_num = min(rnums1[0], rnums2[0])
max_num = max(rnums1[-1], rnums2[-1])
aln_length = max_num - min_num + 1
aln_s1 = ['-'] * aln_length
for olc, rnum in zip(s1, rnums1):
aln_s1[rnum-min_num] = olc
aln_s2 = ['-'] * aln_length
for olc, rnum in zip(s2, rnums2):
aln_s2[rnum-min_num] = olc
aln = seq.CreateAlignment()
aln.AddSequence(seq.CreateSequence(s1.GetName(), ''.join(aln_s1)))
aln.AddSequence(seq.CreateSequence(s2.GetName(), ''.join(aln_s2)))
return aln
def _ComputeChemGroups(self):
""" Sets properties :attr:`~chem_groups`,
:attr:`~chem_group_alignments`, :attr:`~chem_group_ref_seqs`,
:attr:`~chem_group_types`
"""
if self.seqres_set:
self._chem_group_alignments, self._chem_group_types =\
self._ChemGroupAlignmentsFromSEQRES()
else:
self._chem_group_alignments, self._chem_group_types =\
self._ChemGroupAlignmentsFromATOMSEQ()
self._chem_group_ref_seqs = seq.CreateSequenceList()
for a in self.chem_group_alignments:
s = seq.CreateSequence(a.GetSequence(0).GetName(),
a.GetSequence(0).GetGaplessString())
self._chem_group_ref_seqs.AddSequence(s)
self._chem_groups = list()
for a in self.chem_group_alignments:
group = list()
for s_idx in range(1, a.GetCount()):
s = a.GetSequence(s_idx)
group.append(s.GetName())
self._chem_groups.append(group)
def _ChemGroupAlignmentsFromSEQRES(self):
""" Groups target sequences based on SEQRES
returns tuple that can be set as self._chem_group_alignments and
self._chem_group_types
"""
pep_groups = self._GroupSequencesSEQRES(self.polypep_seqs)
nuc_groups = self._GroupSequencesSEQRES(self.polynuc_seqs)
group_types = [mol.ChemType.AMINOACIDS] * len(pep_groups)
group_types += [mol.ChemType.NUCLEOTIDES] * len(nuc_groups)
groups = pep_groups
groups.extend(nuc_groups)
return (groups, group_types)
def _GroupSequencesSEQRES(self, poly_seqs):
alns = dict()
for poly_seq in poly_seqs:
sname = poly_seq.GetName()
seqres_name = self.trg_seqres_mapping[sname]
if seqres_name not in alns:
aln = seq.CreateAlignment()
seqres = None
for s in self.seqres:
if s.GetName() == seqres_name:
seqres = s
break
if seqres is None:
# each element in self.trg_seqres_mapping is guaranteed
# to have a SEQRES counterpart as checked in ChainMapper
# constructor. So we should never end up here.
raise RuntimeError("You should never get here - contact "
"OST developer")
aln.AddSequence(seqres)
alns[seqres_name] = aln
seqres = alns[seqres_name].GetSequence(0)
aln_length = seqres.GetLength()
atomseq = ['-'] * aln_length
trg_chain = self.target.FindChain(sname)
assert(trg_chain.IsValid())
assert(trg_chain.GetResidueCount() == len(poly_seq))
for olc, r in zip(poly_seq, trg_chain.residues):
num = r.GetNumber().GetNum()
if num < 1 or num > aln_length:
raise RuntimeError(f"Observed residue with invalid number: "
f"\"{r}\" which cannot be aligned to "
f"seqres with id \"{seqres_name}\"")
if olc != seqres[num-1]:
raise RuntimeError(f"Sequence mismatch of residue \"{r}\" "
f"with olc \"{olc}\" and residue number "
f"\"{num}\". Character at that location "
f"in seqres: \"{seqres[num-1]}\"."
f"Seqres name: \"{seqres_name}\"")
atomseq[num-1] = olc
atomseq = ''.join(atomseq)
alns[seqres_name].AddSequence(seq.CreateSequence(sname, atomseq))
return [aln for aln in alns.values()]
def _ChemGroupAlignmentsFromATOMSEQ(self):
""" Groups target sequences based on ATOMSEQ
returns tuple that can be set as self._chem_group_alignments and
self._chem_group_types
"""
pep_groups = self._GroupSequences(self.polypep_seqs, self.pep_seqid_thr,
self.min_pep_length,
mol.ChemType.AMINOACIDS)
nuc_groups = self._GroupSequences(self.polynuc_seqs, self.nuc_seqid_thr,
self.min_nuc_length,
mol.ChemType.NUCLEOTIDES)
# pep_groups and nuc_groups give us alignments based on ATOMSEQ.
# For example: If you have polymer chains A,B and C in the same
# group and A is the longest one, you get an alignment that looks
# like:
# A: ASDFE
# B: ASDF-
# C: -SDFE
#
# however, the first sequence in chem group alignments must not be
# bound to any ATOMSEQ and represent the reference sequence. In the
# case of this function, this is simply a copy of sequence A:
# REF: ASDFE
# A: ASDFE
# B: ASDF-
# C: -SDFE
# do pep_groups
tmp = list()
for a in pep_groups:
new_a = seq.CreateAlignment()
new_a.AddSequence(a.GetSequence(0))
for s_idx in range(a.GetCount()):
new_a.AddSequence(a.GetSequence(s_idx))
tmp.append(new_a)
pep_groups = tmp
# do nuc groups
tmp = list()
for a in nuc_groups:
new_a = seq.CreateAlignment()
new_a.AddSequence(a.GetSequence(0))
for s_idx in range(a.GetCount()):
new_a.AddSequence(a.GetSequence(s_idx))
tmp.append(new_a)
nuc_groups = tmp
group_types = [mol.ChemType.AMINOACIDS] * len(pep_groups)
group_types += [mol.ChemType.NUCLEOTIDES] * len(nuc_groups)
groups = pep_groups
groups.extend(nuc_groups)
return (groups, group_types)
def _GroupSequences(self, seqs, seqid_thr, min_length, chem_type):
"""Get list of alignments representing groups of equivalent sequences
:param seqid_thr: Threshold used to decide when two chains are identical.
:type seqid_thr: :class:`float`
:param gap_thr: Additional threshold to avoid gappy alignments with high
seqid. Number of aligned columns must be at least this
number.
:type gap_thr: :class:`int`
:param aligner: Helper class to generate pairwise alignments
:type aligner: :class:`_Aligner`
:param chem_type: ChemType of seqs, must be in
[:class:`ost.mol.ChemType.AMINOACIDS`,
:class:`ost.mol.ChemType.NUCLEOTIDES`]
:type chem_type: :class:`ost.mol.ChemType`
:returns: A list of alignments, one alignment for each group
with longest sequence (reference) as first sequence.
:rtype: :class:`ost.seq.AlignmentList`
"""
groups = list()
for s_idx in range(len(seqs)):
matching_group = None
for g_idx in range(len(groups)):
for g_s_idx in range(len(groups[g_idx])):
if self.resnum_alignments:
aln = self.ResNumAlign(seqs[s_idx],
seqs[groups[g_idx][g_s_idx]],
self.target, self.target)
else:
aln = self.NWAlign(seqs[s_idx],
seqs[groups[g_idx][g_s_idx]],
chem_type)
sid, n_aligned = _GetAlnPropsOne(aln)
if sid >= seqid_thr and n_aligned >= min_length:
matching_group = g_idx
break
if matching_group is not None:
break
if matching_group is None:
groups.append([s_idx])
else:
groups[matching_group].append(s_idx)
# sort based on sequence length
sorted_groups = list()
for g in groups:
if len(g) > 1:
tmp = sorted([[len(seqs[i]), i] for i in g], reverse=True)
sorted_groups.append([x[1] for x in tmp])
else:
sorted_groups.append(g)
# translate from indices back to sequences and directly generate alignments
# of the groups with the longest (first) sequence as reference
aln_list = seq.AlignmentList()
for g in sorted_groups:
if len(g) == 1:
# aln with one single sequence
aln_list.append(seq.CreateAlignment(seqs[g[0]]))
else:
# obtain pairwise aln of first sequence (reference) to all others
alns = seq.AlignmentList()
i = g[0]
for j in g[1:]:
if self.resnum_alignments:
aln = self.ResNumAlign(seqs[i], seqs[j],
self.target, self.target)
else:
aln = self.NWAlign(seqs[i], seqs[j], chem_type)
alns.append(aln)
# and merge
aln_list.append(seq.alg.MergePairwiseAlignments(alns, seqs[i]))
return aln_list
def _MapSequence(self, ref_seqs, ref_types, s, s_type, s_ent,
seq_id_thr=0.0, min_aln_length=0):
"""Tries top map *s* onto any of the sequences in *ref_seqs*
Computes alignments of *s* to each of the reference sequences of equal type
and sorts them by seqid*fraction_covered (seqid: sequence identity of
aligned columns in alignment, fraction_covered: Fraction of non-gap
characters in reference sequence that are covered by non-gap characters in
*s*). Best scoring mapping is returned. Optionally, *seq_id*/
*min_aln_length* thresholds can be enabled to avoid non-sensical mappings.
However, *min_aln_length* only has an effect if *seq_id_thr* > 0!!!
:param ref_seqs: Reference sequences
:type ref_seqs: :class:`ost.seq.SequenceList`
:param ref_types: Types of reference sequences, e.g.
ost.mol.ChemType.AminoAcids
:type ref_types: :class:`list` of :class:`ost.mol.ChemType`
:param s: Sequence to map
:type s: :class:`ost.seq.SequenceHandle`
:param s_type: Type of *s*, only try mapping to sequences in *ref_seqs*
with equal type as defined in *ref_types*
:param s_ent: Entity which represents *s*. Only relevant in case of
residue number alignments.
:type s_ent: :class:`ost.mol.EntityHandle`/:class:`ost.mol.EntityView`
:param seq_id_thr: Minimum sequence identity to be considered as match
:type seq_id_thr: :class:`float`
:param min_aln_length: Minimum number of aligned columns to be considered
as match. Only has an effect if *seq_id_thr* > 0!
:type min_aln_length: :class:`int`
:returns: Tuple with two elements. 1) index of sequence in *ref_seqs* to
which *s* can be mapped 2) Pairwise sequence alignment with
sequence from *ref_seqs* as first sequence. Both elements are
None if no mapping can be found or if thresholds are not
fulfilled for any alignment.
:raises: :class:`RuntimeError` if mapping is ambiguous, i.e. *s*
successfully maps to more than one sequence in *ref_seqs*
"""
scored_alns = list()
for ref_idx, ref_seq in enumerate(ref_seqs):
if ref_types[ref_idx] == s_type:
if self.seqres_set and self.resnum_alignments:
aln = self.SEQRESAlign(ref_seq, s, s_ent)
elif self.resnum_alignments:
aln = self.ResNumAlign(ref_seq, s, self.target, s_ent)
else:
aln = self.NWAlign(ref_seq, s, s_type)
seqid, n_tot, n_aligned = _GetAlnPropsTwo(aln)
if seq_id_thr > 0:
if seqid >= seq_id_thr and n_aligned >= min_aln_length:
fraction_covered = float(n_aligned)/n_tot
score = seqid * fraction_covered
scored_alns.append((score, ref_idx, aln))
else:
fraction_covered = float(n_aligned)/n_tot
score = seqid * fraction_covered
scored_alns.append((score, ref_idx, aln))
if len(scored_alns) == 0:
return (None, None) # no mapping possible...
scored_alns = sorted(scored_alns, key=lambda x: x[0], reverse=True)
return (scored_alns[0][1], scored_alns[0][2])
def _GetAlnPropsTwo(aln):
"""Returns basic properties of *aln* version two...
:param aln: Alignment to compute properties
:type aln: :class:`seq.AlignmentHandle`
:returns: Tuple with 3 elements. 1) sequence identity in range [0, 100]
considering aligned columns 2) Number of non gap characters in
first sequence 3) Number of aligned characters.
"""
assert(aln.GetCount() == 2)
n_tot = sum([1 for col in aln if col[0] != '-'])
n_aligned = sum([1 for col in aln if (col[0] != '-' and col[1] != '-')])
return (seq.alg.SequenceIdentity(aln), n_tot, n_aligned)
def _GetAlnPropsOne(aln):
"""Returns basic properties of *aln* version one...
:param aln: Alignment to compute properties
:type aln: :class:`seq.AlignmentHandle`
:returns: Tuple with 2 elements. 1) sequence identify in range [0, 100]
considering aligned columns 2) Number of aligned columns.
"""
assert(aln.GetCount() == 2)
seqid = seq.alg.SequenceIdentity(aln)
n_aligned = sum([1 for col in aln if (col[0] != '-' and col[1] != '-')])
return (seqid, n_aligned)
def _GetRefMdlAlns(ref_chem_groups, ref_chem_group_msas, mdl_chem_groups,
mdl_chem_group_alns, pairs=None):
""" Get all possible ref/mdl chain alignments given chem group mapping
:param ref_chem_groups: :attr:`ChainMapper.chem_groups`
:type ref_chem_groups: :class:`list` of :class:`list` of :class:`str`
:param ref_chem_group_msas: :attr:`ChainMapper.chem_group_alignments`
:type ref_chem_group_msas: :class:`ost.seq.AlignmentList`
:param mdl_chem_groups: Groups of model chains that are mapped to
*ref_chem_groups*. Return value of
:func:`ChainMapper.GetChemMapping`.
:type mdl_chem_groups: :class:`list` of :class:`list` of :class:`str`
:param mdl_chem_group_alns: A pairwise sequence alignment for every chain
in *mdl_chem_groups* that aligns these sequences
to the respective reference sequence.
Return values of
:func:`ChainMapper.GetChemMapping`.
:type mdl_chem_group_alns: :class:`list` of :class:`ost.seq.AlignmentList`
:param pairs: Pro param - restrict return dict to specified pairs. A set of
tuples in form (<trg_ch>, <mdl_ch>)
:type pairs: :class:`set`
:returns: A dictionary holding all possible ref/mdl chain alignments. Keys
in that dictionary are tuples of the form (ref_ch, mdl_ch) and
values are the respective pairwise alignments with first sequence
being from ref, the second from mdl.
"""
# alignment of each model chain to chem_group reference sequence
mdl_alns = dict()
for alns in mdl_chem_group_alns:
for aln in alns:
mdl_chain_name = aln.GetSequence(1).GetName()
mdl_alns[mdl_chain_name] = aln
# generate all alignments between ref/mdl chain atomseqs that we will
# ever observe
ref_mdl_alns = dict()
for ref_chains, mdl_chains, ref_aln in zip(ref_chem_groups, mdl_chem_groups,
ref_chem_group_msas):
for ref_ch in ref_chains:
for mdl_ch in mdl_chains:
if pairs is not None and (ref_ch, mdl_ch) not in pairs:
continue
# obtain alignments of mdl and ref chains towards chem
# group ref sequence and merge them
aln_list = seq.AlignmentList()
# do ref aln
############
# reference sequence
s1 = ref_aln.GetSequence(0)
# ATOMSEQ of ref_ch
s2 = ref_aln.GetSequence(1+ref_chains.index(ref_ch))
aln_list.append(seq.CreateAlignment(s1, s2))
# do mdl aln
############
aln_list.append(mdl_alns[mdl_ch])
# merge
#######
ref_seq = seq.CreateSequence(s1.GetName(),
s1.GetGaplessString())
merged_aln = seq.alg.MergePairwiseAlignments(aln_list,
ref_seq)
# merged_aln:
# seq1: ref seq of chem group
# seq2: seq of ref chain
# seq3: seq of mdl chain
# => we need the alignment between seq2 and seq3
s2 = merged_aln.GetSequence(1)
s3 = merged_aln.GetSequence(2)
# cut leading and trailing gap columns
a = 0 # number of leading gap columns
for idx in range(len(s2)):
if s2[idx] != '-' or s3[idx] != '-':
break
a += 1
b = 0 # number of trailing gap columns
for idx in reversed(range(len(s2))):
if s2[idx] != '-' or s3[idx] != '-':
break
b += 1
s2 = seq.CreateSequence(s2.GetName(), s2[a: len(s2)-b])
s3 = seq.CreateSequence(s3.GetName(), s3[a: len(s3)-b])
ref_mdl_alns[(ref_ch, mdl_ch)] = seq.CreateAlignment(s2, s3)
return ref_mdl_alns
def _CheckOneToOneMapping(ref_chains, mdl_chains):
""" Checks whether we already have a perfect one to one mapping
That means each list in *ref_chains* has either exactly one element
and the respective list in *mdl_chains* has also one element or
it has several elements and the respective list in *mdl_chains* is
empty (ref chain(s) has no mapped mdl chain). Returns None if no such
mapping can be found.
:param ref_chains: corresponds to :attr:`ChainMapper.chem_groups`
:type ref_chains: :class:`list` of :class:`list` of :class:`str`
:param mdl_chains: mdl chains mapped to chem groups in *ref_chains*, i.e.
the return value of :func:`ChainMapper.GetChemMapping`
:type mdl_chains: class:`list` of :class:`list` of :class:`str`
:returns: A :class:`list` of :class:`list` if a one to one mapping is found,
None otherwise
"""
only_one_to_one = True
one_to_one = list()
for ref, mdl in zip(ref_chains, mdl_chains):
if len(ref) == 1 and len(mdl) == 1:
one_to_one.append(mdl)
elif len(ref) >= 1 and len(mdl) == 0:
one_to_one.append(len(ref)*[None])
else:
only_one_to_one = False
break
if only_one_to_one:
return one_to_one
else:
return None
class _lDDTGreedySearcher(bb_lddt.BBlDDTScorer):
def __init__(self, ref, mdl, ref_chem_groups, mdl_chem_groups,
ref_mdl_alns, inclusion_radius = 15.0,
thresholds = [0.5, 1.0, 2.0, 4.0],
steep_opt_rate = None):
""" Greedy extension of already existing but incomplete chain mappings
"""
super().__init__(ref, ref_chem_groups, mdl, ref_mdl_alns,
dist_thresh=inclusion_radius,
dist_diff_thresholds=thresholds)
self.mdl_chem_groups = mdl_chem_groups
self.steep_opt_rate = steep_opt_rate
self.neighbors = {k: set() for k in self.trg.chain_names}
for interface in self.trg.interacting_chains:
self.neighbors[interface[0]].add(interface[1])
self.neighbors[interface[1]].add(interface[0])
assert(len(ref_chem_groups) == len(mdl_chem_groups))
self.ref_chem_groups = ref_chem_groups
self.mdl_chem_groups = mdl_chem_groups
self.ref_ch_group_mapper = dict()
self.mdl_ch_group_mapper = dict()
for g_idx, (ref_g, mdl_g) in enumerate(zip(ref_chem_groups,
mdl_chem_groups)):
for ch in ref_g:
self.ref_ch_group_mapper[ch] = g_idx
for ch in mdl_g:
self.mdl_ch_group_mapper[ch] = g_idx
# keep track of mdl chains that potentially give lDDT contributions,
# i.e. they have locations within inclusion_radius + max(thresholds)
self.mdl_neighbors = {k: set() for k in self.mdl.chain_names}
for interface in self.mdl.potentially_contributing_chains:
self.mdl_neighbors[interface[0]].add(interface[1])
self.mdl_neighbors[interface[1]].add(interface[0])
def ExtendMapping(self, mapping, max_ext = None):
if len(mapping) == 0:
raise RuntimError("Mapping must contain a starting point")
# Ref chains onto which we can map. The algorithm starts with a mapping
# on ref_ch. From there we can start to expand to connected neighbors.
# All neighbors that we can reach from the already mapped chains are
# stored in this set which will be updated during runtime
map_targets = set()
for ref_ch in mapping.keys():
map_targets.update(self.neighbors[ref_ch])
# remove the already mapped chains
for ref_ch in mapping.keys():
map_targets.discard(ref_ch)
if len(map_targets) == 0:
return mapping # nothing to extend
# keep track of what model chains are not yet mapped for each chem group
free_mdl_chains = list()
for chem_group in self.mdl_chem_groups:
tmp = [x for x in chem_group if x not in mapping.values()]
free_mdl_chains.append(set(tmp))
# keep track of what ref chains got a mapping
newly_mapped_ref_chains = list()
something_happened = True
while something_happened:
something_happened=False
if self.steep_opt_rate is not None:
n_chains = len(newly_mapped_ref_chains)
if n_chains > 0 and n_chains % self.steep_opt_rate == 0:
mapping = self._SteepOpt(mapping, newly_mapped_ref_chains)
if max_ext is not None and len(newly_mapped_ref_chains) >= max_ext:
break
max_n = 0
max_mapping = None
for ref_ch in map_targets:
chem_group_idx = self.ref_ch_group_mapper[ref_ch]
for mdl_ch in free_mdl_chains[chem_group_idx]:
# single chain score
n_single = self._NSCConserved(ref_ch, mdl_ch).sum()
# scores towards neighbors that are already mapped
n_inter = 0
for neighbor in self.neighbors[ref_ch]:
if neighbor in mapping and mapping[neighbor] in \
self.mdl_neighbors[mdl_ch]:
n_inter += self._NPairConserved((ref_ch, neighbor),
(mdl_ch, mapping[neighbor])).sum()
n = n_single + n_inter
if n_inter > 0 and n > max_n:
# Only accept a new solution if its actually connected
# i.e. n_inter > 0. Otherwise we could just map a big
# fat mdl chain sitting somewhere in Nirvana
max_n = n
max_mapping = (ref_ch, mdl_ch)
if max_n > 0:
something_happened = True
# assign new found mapping
mapping[max_mapping[0]] = max_mapping[1]
# add all neighboring chains to map targets as they are now
# reachable
for neighbor in self.neighbors[max_mapping[0]]:
if neighbor not in mapping:
map_targets.add(neighbor)
# remove the ref chain from map targets
map_targets.remove(max_mapping[0])
# remove the mdl chain from free_mdl_chains - its taken...
chem_group_idx = self.ref_ch_group_mapper[max_mapping[0]]
free_mdl_chains[chem_group_idx].remove(max_mapping[1])
# keep track of what ref chains got a mapping
newly_mapped_ref_chains.append(max_mapping[0])
return mapping
def _SteepOpt(self, mapping, chains_to_optimize=None):
# just optimize ALL ref chains if nothing specified
if chains_to_optimize is None:
chains_to_optimize = mapping.keys()
# make sure that we only have ref chains which are actually mapped
ref_chains = [x for x in chains_to_optimize if mapping[x] is not None]
# group ref chains to be optimized into chem groups
tmp = dict()
for ch in ref_chains:
chem_group_idx = self.ref_ch_group_mapper[ch]
if chem_group_idx in tmp:
tmp[chem_group_idx].append(ch)
else:
tmp[chem_group_idx] = [ch]
chem_groups = list(tmp.values())
# try all possible mapping swaps. Swaps that improve the score are
# immediately accepted and we start all over again
current_lddt = self.FromFlatMapping(mapping)
something_happened = True
while something_happened:
something_happened = False
for chem_group in chem_groups:
if something_happened:
break
for ch1, ch2 in itertools.combinations(chem_group, 2):
swapped_mapping = dict(mapping)
swapped_mapping[ch1] = mapping[ch2]
swapped_mapping[ch2] = mapping[ch1]
score = self.FromFlatMapping(swapped_mapping)
if score > current_lddt:
something_happened = True
mapping = swapped_mapping
current_lddt = score
break
return mapping
def _lDDTNaive(trg, mdl, inclusion_radius, thresholds, chem_groups,
chem_mapping, ref_mdl_alns, n_max_naive):
""" Naively iterates all possible chain mappings and returns the best
"""
best_mapping = None
best_lddt = -1.0
# Setup scoring
lddt_scorer = bb_lddt.BBlDDTScorer(trg, chem_groups, mdl, ref_mdl_alns,
dist_thresh=inclusion_radius,
dist_diff_thresholds=thresholds)
for mapping in _ChainMappings(chem_groups, chem_mapping, n_max_naive):
lDDT = lddt_scorer.Score(mapping, check=False)
if lDDT > best_lddt:
best_mapping = mapping
best_lddt = lDDT
return (best_mapping, best_lddt)
def _GetSeeds(ref_chem_groups, mdl_chem_groups, mapped_ref_chains = set(),
mapped_mdl_chains = set()):
seeds = list()
for ref_chains, mdl_chains in zip(ref_chem_groups,
mdl_chem_groups):
for ref_ch in ref_chains:
if ref_ch not in mapped_ref_chains:
for mdl_ch in mdl_chains:
if mdl_ch not in mapped_mdl_chains:
seeds.append((ref_ch, mdl_ch))
return seeds
def _lDDTGreedyFull(the_greed):
""" Uses each reference chain as starting point for expansion
"""
seeds = _GetSeeds(the_greed.ref_chem_groups, the_greed.mdl_chem_groups)
best_overall_score = -1.0
best_overall_mapping = dict()
for seed in seeds:
# do initial extension
mapping = the_greed.ExtendMapping({seed[0]: seed[1]})
# repeat the process until we have a full mapping
something_happened = True
while something_happened:
something_happened = False
remnant_seeds = _GetSeeds(the_greed.ref_chem_groups,
the_greed.mdl_chem_groups,
mapped_ref_chains = set(mapping.keys()),
mapped_mdl_chains = set(mapping.values()))
if len(remnant_seeds) > 0:
# still more mapping to be done
best_score = -1.0
best_mapping = None
for remnant_seed in remnant_seeds:
tmp_mapping = dict(mapping)
tmp_mapping[remnant_seed[0]] = remnant_seed[1]
tmp_mapping = the_greed.ExtendMapping(tmp_mapping)
score = the_greed.FromFlatMapping(tmp_mapping)
if score > best_score:
best_score = score
best_mapping = tmp_mapping
if best_mapping is not None:
something_happened = True
mapping = best_mapping
score = the_greed.FromFlatMapping(mapping)
if score > best_overall_score:
best_overall_score = score
best_overall_mapping = mapping
mapping = best_overall_mapping
# translate mapping format and return
final_mapping = list()
for ref_chains in the_greed.ref_chem_groups:
mapped_mdl_chains = list()
for ref_ch in ref_chains:
if ref_ch in mapping:
mapped_mdl_chains.append(mapping[ref_ch])
else:
mapped_mdl_chains.append(None)
final_mapping.append(mapped_mdl_chains)
return final_mapping
def _lDDTGreedyBlock(the_greed, seed_size, blocks_per_chem_group):
""" try multiple seeds, i.e. try all ref/mdl chain combinations within the
respective chem groups and compute single chain lDDTs. The
*blocks_per_chem_group* best scoring ones are extend by *seed_size* chains
and the best scoring one is exhaustively extended.
"""
if seed_size is None or seed_size < 1:
raise RuntimeError(f"seed_size must be an int >= 1 (got {seed_size})")
if blocks_per_chem_group is None or blocks_per_chem_group < 1:
raise RuntimeError(f"blocks_per_chem_group must be an int >= 1 "
f"(got {blocks_per_chem_group})")
max_ext = seed_size - 1 # -1 => start seed already has size 1
ref_chem_groups = copy.deepcopy(the_greed.ref_chem_groups)
mdl_chem_groups = copy.deepcopy(the_greed.mdl_chem_groups)
mapping = dict()
something_happened = True
while something_happened:
something_happened = False
starting_blocks = list()
for ref_chains, mdl_chains in zip(ref_chem_groups, mdl_chem_groups):
if len(mdl_chains) == 0:
continue # nothing to map
ref_chains_copy = list(ref_chains)
for i in range(blocks_per_chem_group):
if len(ref_chains_copy) == 0:
break
seeds = list()
for ref_ch in ref_chains_copy:
seeds += [(ref_ch, mdl_ch) for mdl_ch in mdl_chains]
# extend starting seeds to *seed_size* and retain best scoring
# block for further extension
best_score = -1.0
best_mapping = None
best_seed = None
for s in seeds:
seed = dict(mapping)
seed.update({s[0]: s[1]})
seed = the_greed.ExtendMapping(seed, max_ext = max_ext)
seed_lddt = the_greed.FromFlatMapping(seed)
if seed_lddt > best_score:
best_score = seed_lddt
best_mapping = seed
best_seed = s
if best_mapping != None:
starting_blocks.append(best_mapping)
if best_seed[0] in ref_chains_copy:
# remove that ref chain to enforce diversity
ref_chains_copy.remove(best_seed[0])
# fully expand initial starting blocks
best_lddt = 0.0
best_mapping = None
for seed in starting_blocks:
seed = the_greed.ExtendMapping(seed)
seed_lddt = the_greed.FromFlatMapping(seed)
if seed_lddt > best_lddt:
best_lddt = seed_lddt
best_mapping = seed
if best_lddt == 0.0:
break # no proper mapping found anymore
something_happened = True
mapping.update(best_mapping)
for ref_ch, mdl_ch in best_mapping.items():
for group_idx in range(len(ref_chem_groups)):
if ref_ch in ref_chem_groups[group_idx]:
ref_chem_groups[group_idx].remove(ref_ch)
if mdl_ch in mdl_chem_groups[group_idx]:
mdl_chem_groups[group_idx].remove(mdl_ch)
# translate mapping format and return
final_mapping = list()
for ref_chains in the_greed.ref_chem_groups:
mapped_mdl_chains = list()
for ref_ch in ref_chains:
if ref_ch in mapping:
mapped_mdl_chains.append(mapping[ref_ch])
else:
mapped_mdl_chains.append(None)
final_mapping.append(mapped_mdl_chains)
return final_mapping
class _QSScoreGreedySearcher(qsscore.QSScorer):
def __init__(self, ref, mdl, ref_chem_groups, mdl_chem_groups,
ref_mdl_alns, contact_d = 12.0,
steep_opt_rate = None, greedy_prune_contact_map=False):
""" Greedy extension of already existing but incomplete chain mappings
"""
super().__init__(ref, ref_chem_groups, mdl, ref_mdl_alns,
contact_d = contact_d)
self.ref = ref
self.mdl = mdl
self.ref_mdl_alns = ref_mdl_alns
self.steep_opt_rate = steep_opt_rate
if greedy_prune_contact_map:
self.neighbors = {k: set() for k in self.qsent1.chain_names}
for p in self.qsent1.interacting_chains:
if np.count_nonzero(self.qsent1.PairDist(p[0], p[1])<=8) >= 3:
self.neighbors[p[0]].add(p[1])
self.neighbors[p[1]].add(p[0])
self.mdl_neighbors = {k: set() for k in self.qsent2.chain_names}
for p in self.qsent2.interacting_chains:
if np.count_nonzero(self.qsent2.PairDist(p[0], p[1])<=8) >= 3:
self.mdl_neighbors[p[0]].add(p[1])
self.mdl_neighbors[p[1]].add(p[0])
else:
self.neighbors = {k: set() for k in self.qsent1.chain_names}
for p in self.qsent1.interacting_chains:
self.neighbors[p[0]].add(p[1])
self.neighbors[p[1]].add(p[0])
self.mdl_neighbors = {k: set() for k in self.qsent2.chain_names}
for p in self.qsent2.interacting_chains:
self.mdl_neighbors[p[0]].add(p[1])
self.mdl_neighbors[p[1]].add(p[0])
assert(len(ref_chem_groups) == len(mdl_chem_groups))
self.ref_chem_groups = ref_chem_groups
self.mdl_chem_groups = mdl_chem_groups
self.ref_ch_group_mapper = dict()
self.mdl_ch_group_mapper = dict()
for g_idx, (ref_g, mdl_g) in enumerate(zip(ref_chem_groups,
mdl_chem_groups)):
for ch in ref_g:
self.ref_ch_group_mapper[ch] = g_idx
for ch in mdl_g:
self.mdl_ch_group_mapper[ch] = g_idx
# cache for lDDT based single chain conserved contacts
# used to identify starting points for further extension by QS score
# key: tuple (ref_ch, mdl_ch) value: number of conserved contacts
self.single_chain_scorer = dict()
self.single_chain_cache = dict()
for ch in self.ref.chains:
single_chain_ref = _CSel(self.ref, [ch.GetName()])
self.single_chain_scorer[ch.GetName()] = \
lddt.lDDTScorer(single_chain_ref, bb_only = True)
def SCCounts(self, ref_ch, mdl_ch):
if not (ref_ch, mdl_ch) in self.single_chain_cache:
alns = dict()
alns[mdl_ch] = self.ref_mdl_alns[(ref_ch, mdl_ch)]
mdl_sel = _CSel(self.mdl, [mdl_ch])
s = self.single_chain_scorer[ref_ch]
_,_,_,conserved,_,_,_ = s.lDDT(mdl_sel,
residue_mapping=alns,
return_dist_test=True,
no_interchain=True,
chain_mapping={mdl_ch: ref_ch},
check_resnames=False)
self.single_chain_cache[(ref_ch, mdl_ch)] = conserved
return self.single_chain_cache[(ref_ch, mdl_ch)]
def ExtendMapping(self, mapping, max_ext = None):
if len(mapping) == 0:
raise RuntimError("Mapping must contain a starting point")
# Ref chains onto which we can map. The algorithm starts with a mapping
# on ref_ch. From there we can start to expand to connected neighbors.
# All neighbors that we can reach from the already mapped chains are
# stored in this set which will be updated during runtime
map_targets = set()
for ref_ch in mapping.keys():
map_targets.update(self.neighbors[ref_ch])
# remove the already mapped chains
for ref_ch in mapping.keys():
map_targets.discard(ref_ch)
if len(map_targets) == 0:
return mapping # nothing to extend
# keep track of what model chains are not yet mapped for each chem group
free_mdl_chains = list()
for chem_group in self.mdl_chem_groups:
tmp = [x for x in chem_group if x not in mapping.values()]
free_mdl_chains.append(set(tmp))
# keep track of what ref chains got a mapping
newly_mapped_ref_chains = list()
something_happened = True
while something_happened:
something_happened=False
if self.steep_opt_rate is not None:
n_chains = len(newly_mapped_ref_chains)
if n_chains > 0 and n_chains % self.steep_opt_rate == 0:
mapping = self._SteepOpt(mapping, newly_mapped_ref_chains)
if max_ext is not None and len(newly_mapped_ref_chains) >= max_ext:
break
score_result = self.FromFlatMapping(mapping)
old_score = score_result.QS_global
nominator = score_result.weighted_scores
denominator = score_result.weight_sum + score_result.weight_extra_all
max_diff = 0.0
max_mapping = None
for ref_ch in map_targets:
chem_group_idx = self.ref_ch_group_mapper[ref_ch]
for mdl_ch in free_mdl_chains[chem_group_idx]:
# we're not computing full QS-score here, we directly hack
# into the QS-score formula to compute a diff
nominator_diff = 0.0
denominator_diff = 0.0
for neighbor in self.neighbors[ref_ch]:
if neighbor in mapping and mapping[neighbor] in \
self.mdl_neighbors[mdl_ch]:
# it's a newly added interface if (ref_ch, mdl_ch)
# are added to mapping
int1 = (ref_ch, neighbor)
int2 = (mdl_ch, mapping[neighbor])
a, b, c, d = self._MappedInterfaceScores(int1, int2)
nominator_diff += a # weighted_scores
denominator_diff += b # weight_sum
denominator_diff += d # weight_extra_all
# the respective interface penalties are subtracted
# from denominator
denominator_diff -= self._InterfacePenalty1(int1)
denominator_diff -= self._InterfacePenalty2(int2)
if nominator_diff > 0:
# Only accept a new solution if its actually connected
# i.e. nominator_diff > 0.
new_nominator = nominator + nominator_diff
new_denominator = denominator + denominator_diff
new_score = 0.0
if new_denominator != 0.0:
new_score = new_nominator/new_denominator
diff = new_score - old_score
if diff > max_diff:
max_diff = diff
max_mapping = (ref_ch, mdl_ch)
if max_mapping is not None:
something_happened = True
# assign new found mapping
mapping[max_mapping[0]] = max_mapping[1]
# add all neighboring chains to map targets as they are now
# reachable
for neighbor in self.neighbors[max_mapping[0]]:
if neighbor not in mapping:
map_targets.add(neighbor)
# remove the ref chain from map targets
map_targets.remove(max_mapping[0])
# remove the mdl chain from free_mdl_chains - its taken...
chem_group_idx = self.ref_ch_group_mapper[max_mapping[0]]
free_mdl_chains[chem_group_idx].remove(max_mapping[1])
# keep track of what ref chains got a mapping
newly_mapped_ref_chains.append(max_mapping[0])
return mapping
def _SteepOpt(self, mapping, chains_to_optimize=None):
# just optimize ALL ref chains if nothing specified
if chains_to_optimize is None:
chains_to_optimize = mapping.keys()
# make sure that we only have ref chains which are actually mapped
ref_chains = [x for x in chains_to_optimize if mapping[x] is not None]
# group ref chains to be optimized into chem groups
tmp = dict()
for ch in ref_chains:
chem_group_idx = self.ref_ch_group_mapper[ch]
if chem_group_idx in tmp:
tmp[chem_group_idx].append(ch)
else:
tmp[chem_group_idx] = [ch]
chem_groups = list(tmp.values())
# try all possible mapping swaps. Swaps that improve the score are
# immediately accepted and we start all over again
score_result = self.FromFlatMapping(mapping)
current_score = score_result.QS_global
something_happened = True
while something_happened:
something_happened = False
for chem_group in chem_groups:
if something_happened:
break
for ch1, ch2 in itertools.combinations(chem_group, 2):
swapped_mapping = dict(mapping)
swapped_mapping[ch1] = mapping[ch2]
swapped_mapping[ch2] = mapping[ch1]
score_result = self.FromFlatMapping(swapped_mapping)
if score_result.QS_global > current_score:
something_happened = True
mapping = swapped_mapping
current_score = score_result.QS_global
break
return mapping
def _QSScoreNaive(trg, mdl, chem_groups, chem_mapping, ref_mdl_alns, contact_d,
n_max_naive):
best_mapping = None
best_score = -1.0
# qs_scorer implements caching, score calculation is thus as fast as it gets
# you'll just hit a wall when the number of possible mappings becomes large
qs_scorer = qsscore.QSScorer(trg, chem_groups, mdl, ref_mdl_alns)
for mapping in _ChainMappings(chem_groups, chem_mapping, n_max_naive):
score_result = qs_scorer.Score(mapping, check=False)
if score_result.QS_global > best_score:
best_mapping = mapping
best_score = score_result.QS_global
return (best_mapping, best_score)
def _QSScoreGreedyFull(the_greed):
""" Uses each reference chain as starting point for expansion
"""
seeds = _GetSeeds(the_greed.ref_chem_groups, the_greed.mdl_chem_groups)
best_overall_score = -1.0
best_overall_mapping = dict()
for seed in seeds:
# do initial extension
mapping = the_greed.ExtendMapping({seed[0]: seed[1]})
# repeat the process until we have a full mapping
something_happened = True
while something_happened:
something_happened = False
remnant_seeds = _GetSeeds(the_greed.ref_chem_groups,
the_greed.mdl_chem_groups,
mapped_ref_chains = set(mapping.keys()),
mapped_mdl_chains = set(mapping.values()))
if len(remnant_seeds) > 0:
# still more mapping to be done
best_score = -1.0
best_mapping = None
for remnant_seed in remnant_seeds:
tmp_mapping = dict(mapping)
tmp_mapping[remnant_seed[0]] = remnant_seed[1]
tmp_mapping = the_greed.ExtendMapping(tmp_mapping)
score_result = the_greed.FromFlatMapping(tmp_mapping)
if score_result.QS_global > best_score:
best_score = score_result.QS_global
best_mapping = tmp_mapping
if best_mapping is not None:
something_happened = True
mapping = best_mapping
score_result = the_greed.FromFlatMapping(mapping)
if score_result.QS_global > best_overall_score:
best_overall_score = score_result.QS_global
best_overall_mapping = mapping
mapping = best_overall_mapping
# translate mapping format and return
final_mapping = list()
for ref_chains in the_greed.ref_chem_groups:
mapped_mdl_chains = list()
for ref_ch in ref_chains:
if ref_ch in mapping:
mapped_mdl_chains.append(mapping[ref_ch])
else:
mapped_mdl_chains.append(None)
final_mapping.append(mapped_mdl_chains)
return final_mapping
def _QSScoreGreedyBlock(the_greed, seed_size, blocks_per_chem_group):
""" try multiple seeds, i.e. try all ref/mdl chain combinations within the
respective chem groups and compute single chain lDDTs. The
*blocks_per_chem_group* best scoring ones are extend by *seed_size* chains
and the best scoring one with respect to QS score is exhaustively extended.
"""
if seed_size is None or seed_size < 1:
raise RuntimeError(f"seed_size must be an int >= 1 (got {seed_size})")
if blocks_per_chem_group is None or blocks_per_chem_group < 1:
raise RuntimeError(f"blocks_per_chem_group must be an int >= 1 "
f"(got {blocks_per_chem_group})")
max_ext = seed_size - 1 # -1 => start seed already has size 1
ref_chem_groups = copy.deepcopy(the_greed.ref_chem_groups)
mdl_chem_groups = copy.deepcopy(the_greed.mdl_chem_groups)
mapping = dict()
something_happened = True
while something_happened:
something_happened = False
starting_blocks = list()
for ref_chains, mdl_chains in zip(ref_chem_groups, mdl_chem_groups):
if len(mdl_chains) == 0:
continue # nothing to map
ref_chains_copy = list(ref_chains)
for i in range(blocks_per_chem_group):
if len(ref_chains_copy) == 0:
break
seeds = list()
for ref_ch in ref_chains_copy:
seeds += [(ref_ch, mdl_ch) for mdl_ch in mdl_chains]
# extend starting seeds to *seed_size* and retain best scoring block
# for further extension
best_score = -1.0
best_mapping = None
best_seed = None
for s in seeds:
seed = dict(mapping)
seed.update({s[0]: s[1]})
seed = the_greed.ExtendMapping(seed, max_ext = max_ext)
score_result = the_greed.FromFlatMapping(seed)
if score_result.QS_global > best_score:
best_score = score_result.QS_global
best_mapping = seed
best_seed = s
if best_mapping != None:
starting_blocks.append(best_mapping)
if best_seed[0] in ref_chains_copy:
# remove selected ref chain to enforce diversity
ref_chains_copy.remove(best_seed[0])
# fully expand initial starting blocks
best_score = -1.0
best_mapping = None
for seed in starting_blocks:
seed = the_greed.ExtendMapping(seed)
score_result = the_greed.FromFlatMapping(seed)
if score_result.QS_global > best_score:
best_score = score_result.QS_global
best_mapping = seed
if best_mapping is not None and len(best_mapping) > len(mapping):
# this even accepts extensions that lead to no increase in QS-score
# at least they make sense from an lDDT perspective
something_happened = True
mapping.update(best_mapping)
for ref_ch, mdl_ch in best_mapping.items():
for group_idx in range(len(ref_chem_groups)):
if ref_ch in ref_chem_groups[group_idx]:
ref_chem_groups[group_idx].remove(ref_ch)
if mdl_ch in mdl_chem_groups[group_idx]:
mdl_chem_groups[group_idx].remove(mdl_ch)
# translate mapping format and return
final_mapping = list()
for ref_chains in the_greed.ref_chem_groups:
mapped_mdl_chains = list()
for ref_ch in ref_chains:
if ref_ch in mapping:
mapped_mdl_chains.append(mapping[ref_ch])
else:
mapped_mdl_chains.append(None)
final_mapping.append(mapped_mdl_chains)
return final_mapping
def _SingleRigidRMSD(initial_transforms, initial_mappings, chem_groups,
chem_mapping, trg_group_pos, mdl_group_pos):
"""
Takes initial transforms and sequentially adds chain pairs with lowest RMSD.
The mapping from the transform that leads to lowest overall RMSD is
returned.
"""
best_mapping = dict()
best_ssd = float("inf") # we're actually going for summed squared distances
# Since all positions have same lengths and we do a
# full mapping, lowest SSD has a guarantee of also
# being lowest RMSD
for transform in initial_transforms:
mapping = dict()
mapped_mdl_chains = set()
ssd = 0.0
for trg_chains, mdl_chains, trg_pos, mdl_pos, in zip(chem_groups,
chem_mapping,
trg_group_pos,
mdl_group_pos):
if len(trg_pos) == 0 or len(mdl_pos) == 0:
continue # cannot compute valid rmsd
ssds = list()
t_mdl_pos = list()
for m_pos in mdl_pos:
t_m_pos = geom.Vec3List(m_pos)
t_m_pos.ApplyTransform(transform)
t_mdl_pos.append(t_m_pos)
for t_pos, t in zip(trg_pos, trg_chains):
for t_m_pos, m in zip(t_mdl_pos, mdl_chains):
ssd = t_pos.GetSummedSquaredDistances(t_m_pos)
ssds.append((ssd, (t,m)))
ssds.sort()
for item in ssds:
p = item[1]
if p[0] not in mapping and p[1] not in mapped_mdl_chains:
mapping[p[0]] = p[1]
mapped_mdl_chains.add(p[1])
ssd += item[0]
if ssd < best_ssd:
best_ssd = ssd
best_mapping = mapping
return best_mapping
def _SingleRigidCentroid(initial_transforms, initial_mappings, chem_groups,
chem_mapping, trg_group_pos, mdl_group_pos):
"""
Takes initial transforms and sequentially adds chain pairs with lowest
centroid distance.
The mapping from the transform that leads to lowest overall RMSD of
the centroids is returned.
"""
best_mapping = dict()
best_rmsd = float("inf")
trg_group_centroids = list()
mdl_group_centroids = list()
for trg_pos, mdl_pos, in zip(trg_group_pos, mdl_group_pos):
trg_group_centroids.append(geom.Vec3List([p.center for p in trg_pos]))
mdl_group_centroids.append(geom.Vec3List([p.center for p in mdl_pos]))
for transform in initial_transforms:
mapping = dict()
mapped_mdl_chains = set()
mapped_trg_centroids = list()
mapped_mdl_centroids = list()
for trg_chains, mdl_chains, trg_centroids, mdl_centroids, in zip(chem_groups,
chem_mapping,
trg_group_centroids,
mdl_group_centroids):
if len(trg_centroids) == 0 or len(mdl_centroids) == 0:
continue # cannot compute valid rmsd
distances = list()
t_mdl_centroids = geom.Vec3List(mdl_centroids)
t_mdl_centroids.ApplyTransform(transform)
for trg_idx in range(len(trg_chains)):
for mdl_idx in range(len(mdl_chains)):
distances.append((geom.Length2(trg_centroids[trg_idx]-t_mdl_centroids[mdl_idx]),
(trg_chains[trg_idx], mdl_chains[mdl_idx]),
(trg_centroids[trg_idx], t_mdl_centroids[mdl_idx])))
distances.sort()
for item in distances:
p = item[1]
if p[0] not in mapping and p[1] not in mapped_mdl_chains:
mapping[p[0]] = p[1]
mapped_mdl_chains.add(p[1])
mapped_trg_centroids.append(item[2][0])
mapped_mdl_centroids.append(item[2][1])
if len(mapping) == 0:
raise RuntimeError("Empty mapping in _SingleRigidCentroid")
elif len(mapping) == 1:
# by definition zero
rmsd = 0.0
elif len(mapping) == 2:
# no superposition possible with two positions
# derive rmsd from the distance difference between
# the centroid pairs in reference and model
ref_d = geom.Distance(mapped_trg_centroids[0],
mapped_trg_centroids[1])
mdl_d = geom.Distance(mapped_mdl_centroids[0],
mapped_mdl_centroids[1])
# compute RMSD when placing pair of coordinates with smaller
# distance in the middle of pair of cooridnates with larger
# distance
dd = abs(ref_d-mdl_d) # distance difference
# rmsd = sqrt(1/2 * ((dd/2)**2 + (dd/2)**2))
# => rmsd = dd/2
rmsd = dd/2
else:
# go for classic Kabsch superposition
mapped_trg_centroids = geom.Vec3List(mapped_trg_centroids)
mapped_mdl_centroids = geom.Vec3List(mapped_mdl_centroids)
rmsd = _GetSuperposition(mapped_trg_centroids,
mapped_mdl_centroids, False).rmsd
if rmsd < best_rmsd:
best_rmsd = rmsd
best_mapping = mapping
return best_mapping
def _IterativeRigidRMSD(initial_transforms, initial_mappings, chem_groups,
chem_mapping, trg_group_pos, mdl_group_pos):
""" Takes initial transforms and sequentially adds chain pairs with
lowest RMSD. With each added chain pair, the transform gets updated.
Thus the naming iterative. The mapping from the initial transform that
leads to best overall RMSD score is returned.
"""
# to directly retrieve positions using chain names
trg_pos_dict = dict()
for trg_pos, trg_chains in zip(trg_group_pos, chem_groups):
for t_pos, t in zip(trg_pos, trg_chains):
trg_pos_dict[t] = t_pos
mdl_pos_dict = dict()
for mdl_pos, mdl_chains in zip(mdl_group_pos, chem_mapping):
for m_pos, m in zip(mdl_pos, mdl_chains):
mdl_pos_dict[m] = m_pos
best_mapping = dict()
best_rmsd = float("inf")
for initial_transform, initial_mapping in zip(initial_transforms,
initial_mappings):
mapping = {initial_mapping[0]: initial_mapping[1]}
transform = geom.Mat4(initial_transform)
mapped_trg_pos = geom.Vec3List(trg_pos_dict[initial_mapping[0]])
mapped_mdl_pos = geom.Vec3List(mdl_pos_dict[initial_mapping[1]])
# the following variables contain the chains which are
# available for mapping
trg_chain_groups = [set(group) for group in chem_groups]
mdl_chain_groups = [set(group) for group in chem_mapping]
# search and kick out inital mapping
for group in trg_chain_groups:
if initial_mapping[0] in group:
group.remove(initial_mapping[0])
break
for group in mdl_chain_groups:
if initial_mapping[1] in group:
group.remove(initial_mapping[1])
break
something_happened = True
while something_happened:
# search for best mapping given current transform
something_happened=False
best_sc_mapping = None
best_sc_group_idx = None
best_sc_rmsd = float("inf")
group_idx = 0
for trg_chains, mdl_chains in zip(trg_chain_groups, mdl_chain_groups):
for t in trg_chains:
t_pos = trg_pos_dict[t]
for m in mdl_chains:
m_pos = mdl_pos_dict[m]
t_m_pos = geom.Vec3List(m_pos)
t_m_pos.ApplyTransform(transform)
rmsd = t_pos.GetRMSD(t_m_pos)
if rmsd < best_sc_rmsd:
best_sc_rmsd = rmsd
best_sc_mapping = (t,m)
best_sc_group_idx = group_idx
group_idx += 1
if best_sc_mapping is not None:
something_happened = True
mapping[best_sc_mapping[0]] = best_sc_mapping[1]
mapped_trg_pos.extend(trg_pos_dict[best_sc_mapping[0]])
mapped_mdl_pos.extend(mdl_pos_dict[best_sc_mapping[1]])
trg_chain_groups[best_sc_group_idx].remove(best_sc_mapping[0])
mdl_chain_groups[best_sc_group_idx].remove(best_sc_mapping[1])
transform = _GetSuperposition(mapped_mdl_pos, mapped_trg_pos,
False).transformation
# compute overall RMSD for current transform
mapped_mdl_pos.ApplyTransform(transform)
rmsd = mapped_trg_pos.GetRMSD(mapped_mdl_pos)
if rmsd < best_rmsd:
best_rmsd = rmsd
best_mapping = mapping
return best_mapping
def _NaiveRMSD(chem_groups, chem_mapping, trg_group_pos, mdl_group_pos,
n_max_naive):
# to directly retrieve positions using chain names
trg_pos_dict = dict()
for trg_pos, trg_chains in zip(trg_group_pos, chem_groups):
for t_pos, t in zip(trg_pos, trg_chains):
trg_pos_dict[t] = t_pos
mdl_pos_dict = dict()
for mdl_pos, mdl_chains in zip(mdl_group_pos, chem_mapping):
for m_pos, m in zip(mdl_pos, mdl_chains):
mdl_pos_dict[m] = m_pos
best_mapping = [[None]*len(x) for x in chem_groups]
best_rmsd = float("inf")
for mapping in _ChainMappings(chem_groups, chem_mapping, n_max_naive):
trg_pos = geom.Vec3List()
mdl_pos = geom.Vec3List()
for trg_group, mdl_group in zip(chem_groups, mapping):
for trg_ch, mdl_ch in zip(trg_group, mdl_group):
if trg_ch is not None and mdl_ch is not None:
trg_pos.extend(trg_pos_dict[trg_ch])
mdl_pos.extend(mdl_pos_dict[mdl_ch])
if len(mdl_pos) >= 3:
superpose_res = mol.alg.SuperposeSVD(mdl_pos, trg_pos)
if superpose_res.rmsd < best_rmsd:
best_rmsd = superpose_res.rmsd
best_mapping = mapping
# this is stupid...
tmp = dict()
for chem_group, mapping in zip(chem_groups, best_mapping):
for trg_ch, mdl_ch in zip(chem_group, mapping):
tmp[trg_ch] = mdl_ch
return tmp
def _GetRefPos(trg, mdl, trg_msas, mdl_alns, max_pos = None):
""" Extracts reference positions which are present in trg and mdl
"""
# mdl_alns are pairwise, let's construct MSAs
mdl_msas = list()
for aln_list in mdl_alns:
if len(aln_list) > 0:
tmp = aln_list[0].GetSequence(0)
ref_seq = seq.CreateSequence(tmp.GetName(), tmp.GetGaplessString())
mdl_msas.append(seq.alg.MergePairwiseAlignments(aln_list, ref_seq))
else:
mdl_msas.append(seq.CreateAlignment())
# fetch positions of all backbone atoms
bb_trg = _GetBBPos(trg)
bb_mdl = _GetBBPos(mdl)
# there are the actual return values
trg_pos = list()
mdl_pos = list()
for trg_msa, mdl_msa in zip(trg_msas, mdl_msas):
if mdl_msa.GetCount() > 0:
# make sure they have the same ref sequence (should be a given...)
assert(trg_msa.GetSequence(0).GetGaplessString() == \
mdl_msa.GetSequence(0).GetGaplessString())
else:
# if mdl_msa is empty, i.e. no model chain maps to the chem group
# represented by trg_msa, we just continue. The result will be
# empty position lists added to trg_pos and mdl_pos.
pass
# check which columns in MSAs are fully covered (indices relative to
# first sequence)
trg_indices = _GetFullyCoveredIndices(trg_msa)
mdl_indices = _GetFullyCoveredIndices(mdl_msa)
# get indices where both, mdl and trg, are fully covered
indices = sorted(list(trg_indices.intersection(mdl_indices)))
# subsample if necessary
if max_pos is not None and len(indices) > max_pos:
step = int(len(indices)/max_pos)
indices = [indices[i] for i in range(0, len(indices), step)]
# translate to column indices in the respective MSAs
trg_indices = _RefIndicesToColumnIndices(trg_msa, indices)
mdl_indices = _RefIndicesToColumnIndices(mdl_msa, indices)
# extract positions
trg_pos.append(list())
mdl_pos.append(list())
# first seq in trg_msa is ref sequence and does not refer to any
# ATOMSEQ
for s_idx in range(1, trg_msa.GetCount()):
trg_pos[-1].append(_ExtractMSAPos(trg_msa, s_idx, trg_indices,
bb_trg))
# first seq in mdl_msa is ref sequence in trg and does not belong to mdl
for s_idx in range(1, mdl_msa.GetCount()):
mdl_pos[-1].append(_ExtractMSAPos(mdl_msa, s_idx, mdl_indices,
bb_mdl))
return (trg_pos, mdl_pos)
def _GetBBPos(ent):
""" Helper for _GetRefPos
Returns a dict with key: chain name and value: a geom.Vec3List of backbone
atom positions. Assumes that either CA or C3' is always there.
"""
bb = dict()
for ch in ent.chains:
l = geom.Vec3List()
for r in ch.residues:
a = r.FindAtom("CA")
if not a.IsValid():
a = r.FindAtom("C3'")
l.append(a.GetPos())
bb[ch.name] = l
return bb
def _GetFullyCoveredIndices(msa):
""" Helper for _GetRefPos
Returns a set containing the indices relative to first sequence in msa which
are fully covered in all other sequences
--AA-A-A
-BBBB-BB
CCCC-C-C
=> (0,1,3)
"""
indices = set()
ref_idx = 0
for col in msa:
if sum([1 for olc in col if olc != '-']) == col.GetRowCount():
indices.add(ref_idx)
if col[0] != '-':
ref_idx += 1
return indices
def _RefIndicesToColumnIndices(msa, indices):
""" Helper for _GetRefPos
Returns a list of mapped indices. indices refer to non-gap one letter
codes in the first msa sequence. The returnes mapped indices are translated
to the according msa column indices
"""
ref_idx = 0
mapping = dict()
for col_idx, col in enumerate(msa):
if col[0] != '-':
mapping[ref_idx] = col_idx
ref_idx += 1
return [mapping[i] for i in indices]
def _ExtractMSAPos(msa, s_idx, indices, bb):
""" Helper for _GetRefPos
Returns a geom.Vec3List containing positions refering to given msa sequence.
=> Chain with corresponding name is mapped onto sequence and the position of
the first atom of each residue specified in indices is extracted.
Indices refers to column indices in msa!
"""
s = msa.GetSequence(s_idx)
ch_bb = bb[s.GetName()]
# sanity check
assert(len(s.GetGaplessString()) == len(ch_bb))
residue_idx = [s.GetResidueIndex(i) for i in indices]
return geom.Vec3List([ch_bb[i] for i in residue_idx])
def _NChemGroupMappings(ref_chains, mdl_chains):
""" Number of mappings within one chem group
:param ref_chains: Reference chains
:type ref_chains: :class:`list` of :class:`str`
:param mdl_chains: Model chains that are mapped onto *ref_chains*
:type mdl_chains: :class:`list` of :class:`str`
:returns: Number of possible mappings of *mdl_chains* onto *ref_chains*
"""
n_ref = len(ref_chains)
n_mdl = len(mdl_chains)
if n_ref == n_mdl:
return factorial(n_ref)
elif n_ref > n_mdl:
n_choose_k = binom(n_ref, n_mdl)
return n_choose_k * factorial(n_mdl)
else:
n_choose_k = binom(n_mdl, n_ref)
return n_choose_k * factorial(n_ref)
def _NMappings(ref_chains, mdl_chains):
""" Number of mappings for a full chem mapping
:param ref_chains: Chem groups of reference
:type ref_chains: :class:`list` of :class:`list` of :class:`str`
:param mdl_chains: Model chains that map onto those chem groups
:type mdl_chains: :class:`list` of :class:`list` of :class:`str`
:returns: Number of possible mappings of *mdl_chains* onto *ref_chains*
"""
assert(len(ref_chains) == len(mdl_chains))
n = 1
for a,b in zip(ref_chains, mdl_chains):
n *= _NChemGroupMappings(a,b)
return n
def _NMappingsWithin(ref_chains, mdl_chains, max_mappings):
""" Check whether total number of mappings is smaller than given maximum
In principle the same as :func:`_NMappings` but it stops as soon as the
maximum is hit.
:param ref_chains: Chem groups of reference
:type ref_chains: :class:`list` of :class:`list` of :class:`str`
:param mdl_chains: Model chains that map onto those chem groups
:type mdl_chains: :class:`list` of :class:`list` of :class:`str`
:param max_mappings: Number of max allowed mappings
:returns: Whether number of possible mappings of *mdl_chains* onto
*ref_chains* is below or equal *max_mappings*.
"""
assert(len(ref_chains) == len(mdl_chains))
n = 1
for a,b in zip(ref_chains, mdl_chains):
n *= _NChemGroupMappings(a,b)
if n > max_mappings:
return False
return True
def _RefSmallerGenerator(ref_chains, mdl_chains):
""" Returns all possible ways to map mdl_chains onto ref_chains
Specific for the case where len(ref_chains) < len(mdl_chains)
"""
for c in itertools.combinations(mdl_chains, len(ref_chains)):
for p in itertools.permutations(c):
yield list(p)
def _RefLargerGenerator(ref_chains, mdl_chains):
""" Returns all possible ways to map mdl_chains onto ref_chains
Specific for the case where len(ref_chains) > len(mdl_chains)
Ref chains without mapped mdl chain are assigned None
"""
n_ref = len(ref_chains)
n_mdl = len(mdl_chains)
for c in itertools.combinations(range(n_ref), n_mdl):
for p in itertools.permutations(mdl_chains):
ret_list = [None] * n_ref
for idx, ch in zip(c, p):
ret_list[idx] = ch
yield ret_list
def _RefEqualGenerator(ref_chains, mdl_chains):
""" Returns all possible ways to map mdl_chains onto ref_chains
Specific for the case where len(ref_chains) == len(mdl_chains)
"""
for p in itertools.permutations(mdl_chains):
yield list(p)
def _RefEmptyGenerator(ref_chains, mdl_chains):
yield list()
def _ConcatIterators(iterators):
for item in itertools.product(*iterators):
yield list(item)
def _ChainMappings(ref_chains, mdl_chains, n_max=None):
"""Returns all possible ways to map *mdl_chains* onto fixed *ref_chains*
:param ref_chains: List of list of chemically equivalent chains in reference
:type ref_chains: :class:`list` of :class:`list`
:param mdl_chains: Equally long list of list of chemically equivalent chains
in model that map on those ref chains.
:type mdl_chains: :class:`list` of :class:`list`
:param n_max: Aborts and raises :class:`RuntimeError` if max number of
mappings is above this threshold.
:type n_max: :class:`int`
:returns: Iterator over all possible mappings of *mdl_chains* onto fixed
*ref_chains*. Potentially contains None as padding when number of
model chains for a certain mapping is smaller than the according
reference chains.
Example: _ChainMappings([['A', 'B', 'C'], ['D', 'E']],
[['x', 'y'], ['i', 'j']])
gives an iterator over: [[['x', 'y', None], ['i', 'j']],
[['x', 'y', None], ['j', 'i']],
[['y', 'x', None], ['i', 'j']],
[['y', 'x', None], ['j', 'i']],
[['x', None, 'y'], ['i', 'j']],
[['x', None, 'y'], ['j', 'i']],
[['y', None, 'x'], ['i', 'j']],
[['y', None, 'x'], ['j', 'i']],
[[None, 'x', 'y'], ['i', 'j']],
[[None, 'x', 'y'], ['j', 'i']],
[[None, 'y', 'x'], ['i', 'j']],
[[None, 'y', 'x'], ['j', 'i']]]
"""
assert(len(ref_chains) == len(mdl_chains))
if n_max is not None:
if not _NMappingsWithin(ref_chains, mdl_chains, n_max):
raise RuntimeError(f"Too many mappings. Max allowed: {n_max}")
# one iterator per mapping representing all mdl combinations relative to
# reference
iterators = list()
for ref, mdl in zip(ref_chains, mdl_chains):
if len(ref) == 0:
iterators.append(_RefEmptyGenerator(ref, mdl))
elif len(ref) == len(mdl):
iterators.append(_RefEqualGenerator(ref, mdl))
elif len(ref) < len(mdl):
iterators.append(_RefSmallerGenerator(ref, mdl))
else:
iterators.append(_RefLargerGenerator(ref, mdl))
return _ConcatIterators(iterators)
def _GetSuperposition(pos_one, pos_two, iterative):
""" Computes minimal RMSD superposition for pos_one onto pos_two
:param pos_one: Positions that should be superposed onto *pos_two*
:type pos_one: :class:`geom.Vec3List`
:param pos_two: Reference positions
:type pos_two: :class:`geom.Vec3List`
:iterative: Whether iterative superposition should be used. Iterative
potentially raises, uses standard superposition as fallback.
:type iterative: :class:`bool`
:returns: Transformation matrix to superpose *pos_one* onto *pos_two*
:rtype: :class:`ost.mol.alg.SuperpositionResult`
"""
res = None
if iterative:
try:
res = mol.alg.IterativeSuperposeSVD(pos_one, pos_two)
except:
pass # triggers fallback below
if res is None:
res = mol.alg.SuperposeSVD(pos_one, pos_two)
return res
# specify public interface
__all__ = ('ChainMapper', 'ReprResult', 'MappingResult')
|