File: lddt.py

package info (click to toggle)
openstructure 2.11.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 206,240 kB
  • sloc: cpp: 188,571; python: 36,686; ansic: 34,298; fortran: 3,275; sh: 312; xml: 146; makefile: 29
file content (1681 lines) | stat: -rw-r--r-- 79,627 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
import itertools
import numpy as np

from ost import mol
from ost import conop

# use cdist of scipy, fallback to (slower) numpy implementation if scipy is not
# available
try:
    from scipy.spatial.distance import cdist
except:
    def cdist(p1, p2):
        x2 = np.sum(p1**2, axis=1) # (m)
        y2 = np.sum(p2**2, axis=1) # (n)
        xy = np.matmul(p1, p2.T) # (m, n)
        x2 = x2.reshape(-1, 1)
        return np.sqrt(x2 - 2*xy + y2) # (m, n)  

def blockwise_cdist(A, B, block_size=1000):
    """ Memory efficient cdist implementation that performs blockwise operations

    scipy cdist uses 64 bit floats (double) which can scratch at the upper
    memory end for most machines when number of positions become larger.
    E.g. ~4000 residues might for example have 35000 atom positions. That's
    Almost 10GB to hold all pairwise distances in 64bit floats. This function
    calls cdist blockwise and stores the results in a 32bit float matrix.

    This function is adapted from chatgpt output
    """
    A = A.astype(np.float32)
    B = B.astype(np.float32)
    M, N = A.shape[0], B.shape[0]
    D = np.empty((M, N), dtype=np.float32)  # Output in float32 to save memory
    for i in range(0, M, block_size):
        A_block = A[i:i+block_size]
        D[i:i+block_size, :] = cdist(A_block, B).astype(np.float32)
    return D

class CustomCompound:
    """ Defines atoms for custom compounds

    LDDT requires the reference atoms of a compound which are typically
    extracted from a :class:`ost.conop.CompoundLib`. This lightweight
    container allows to handle arbitrary compounds which are not
    necessarily in the compound library.

    :param atom_names: Names of atoms of custom compound
    :type atom_names: :class:`list` of :class:`str`
    """
    def __init__(self, atom_names):
        self.atom_names = atom_names

    @staticmethod
    def FromResidue(res):
        """ Construct custom compound from residue

        :param res: Residue from which reference atom names are extracted,
                    hydrogen/deuterium atoms are filtered out
        :type res: :class:`ost.mol.ResidueView`/:class:`ost.mol.ResidueHandle`
        :returns: :class:`CustomCompound`
        """
        at_names = [a.name for a in res.atoms if a.element not in ["H", "D"]]
        if len(at_names) != len(set(at_names)):
            raise RuntimeError("Duplicate atoms detected in CustomCompound")
        compound = CustomCompound(at_names)
        return compound

class SymmetrySettings:
    """Container for symmetric compounds

    LDDT considers symmetries and selects the one resulting in the highest
    possible score.

    A symmetry is defined as a renaming operation on one or more atoms that
    leads to a chemically equivalent residue. Example would be OD1 and OD2 in
    ASP => renaming OD1 to OD2 and vice versa gives a chemically equivalent
    residue.

    Use :func:`AddSymmetricCompound` to define a symmetry which can then
    directly be accessed through the *symmetric_compounds* member.
    """
    def __init__(self):
        self.symmetric_compounds = dict()

    def AddSymmetricCompound(self, name, symmetric_atoms):
        """Adds symmetry for compound with *name*

        :param name: Name of compound with symmetry
        :type name: :class:`str`
        :param symmetric_atoms: Pairs of atom names that define renaming
                                operation, i.e. after applying all switches
                                defined in the tuples, the resulting residue
                                should be chemically equivalent. Atom names
                                must refer to the PDB component dictionary.
        :type symmetric_atoms: :class:`list` of :class:`tuple`
        """
        for pair in symmetric_atoms:
            if len(pair) != 2:
                raise RuntimeError("Expect pairs when defining symmetries")
        self.symmetric_compounds[name] = symmetric_atoms


def GetDefaultSymmetrySettings():
    """Constructs and returns :class:`SymmetrySettings` object for natural amino
    acids
    """
    symmetry_settings = SymmetrySettings()

    # ASP
    symmetry_settings.AddSymmetricCompound("ASP", [("OD1", "OD2")])

    # GLU
    symmetry_settings.AddSymmetricCompound("GLU", [("OE1", "OE2")])

    # LEU
    symmetry_settings.AddSymmetricCompound("LEU", [("CD1", "CD2")])

    # VAL
    symmetry_settings.AddSymmetricCompound("VAL", [("CG1", "CG2")])

    # ARG
    symmetry_settings.AddSymmetricCompound("ARG", [("NH1", "NH2")])

    # PHE
    symmetry_settings.AddSymmetricCompound(
        "PHE", [("CD1", "CD2"), ("CE1", "CE2")]
    )

    # TYR
    symmetry_settings.AddSymmetricCompound(
        "TYR", [("CD1", "CD2"), ("CE1", "CE2")]
    )

    # nucleotides
    nuc_names = ["A", "C", "G", "U", "DA", "DC", "DG", "DT"]
    for nuc_name in nuc_names:
        symmetry_settings.AddSymmetricCompound(
            nuc_name, [("OP1","OP2")]
        )

    return symmetry_settings


class lDDTScorer:
    """LDDT scorer object for a specific target

    Sets up everything to score models of that target. LDDT (local distance
    difference test) is defined as fraction of pairwise distances which exhibit
    a difference < threshold when considering target and model. In case of
    multiple thresholds, the average is returned. See

    V. Mariani, M. Biasini, A. Barbato, T. Schwede, lDDT : A local
    superposition-free score for comparing protein structures and models using
    distance difference tests, Bioinformatics, 2013

    :param target: The target
    :type target: :class:`ost.mol.EntityHandle`/:class:`ost.mol.EntityView`
    :param compound_lib: Compound library from which a compound for each residue
                         is extracted based on its name. Uses
                         :func:`ost.conop.GetDefaultLib` if not given, raises
                         if this returns no valid compound library. Atoms
                         defined in the compound are searched in the residue and
                         build the reference for scoring. If the residue has
                         atoms with names ["A", "B", "C"] but the corresponding
                         compound only has ["A", "B"], "A" and "B" are
                         considered for scoring. If the residue has atoms
                         ["A", "B"] but the compound has ["A", "B", "C"], "C" is
                         considered missing and does not influence scoring, even
                         if present in the model.
    :param custom_compounds: Custom compounds defining reference atoms. If
                             given, *custom_compounds* take precedent over
                             *compound_lib*.
    :type custom_compounds: :class:`dict` with residue names (:class:`str`) as
                            key and :class:`CustomCompound` as value.
    :type compound_lib: :class:`ost.conop.CompoundLib`
    :param inclusion_radius: All pairwise distances < *inclusion_radius* are
                             considered for scoring
    :type inclusion_radius: :class:`float`
    :param sequence_separation: Only pairwise distances between atoms of
                                residues which are further apart than this
                                threshold are considered. Residue distance is
                                based on resnum. The default (0) considers all
                                pairwise distances except intra-residue
                                distances.
    :type sequence_separation: :class:`int`
    :param symmetry_settings: Define residues exhibiting internal symmetry, uses
                              :func:`GetDefaultSymmetrySettings` if not given.
    :type symmetry_settings: :class:`SymmetrySettings`
    :param seqres_mapping: Mapping of model residues at the scoring stage
                           happens with residue numbers defining their location
                           in a reference sequence (SEQRES) using one based
                           indexing. If the residue numbers in *target* don't
                           correspond to that SEQRES, you can specify the
                           mapping manually. You can provide a dictionary to
                           specify a reference sequence (SEQRES) for one or more
                           chain(s). Key: chain name, value: alignment
                           (seq1: SEQRES, seq2: sequence of residues in chain).
                           Example: The residues in a chain with name "A" have
                           sequence "YEAH" and residue numbers [42,43,44,45].
                           You can provide an alignment with seq1 "``HELLYEAH``"
                           and seq2 "``----YEAH``". "Y" gets assigned residue
                           number 5, "E" gets assigned 6 and so on no matter
                           what the original residue numbers were. 
    :type seqres_mapping: :class:`dict` (key: :class:`str`, value:
                          :class:`ost.seq.AlignmentHandle`)
    :param bb_only: Only consider atoms with name "CA" in case of amino acids and
                    "C3'" for Nucleotides. this invalidates *compound_lib*.
                    Raises if any residue in *target* is not
                    `r.chem_class.IsPeptideLinking()` or
                    `r.chem_class.IsNucleotideLinking()`
    :type bb_only: :class:`bool`
    :raises: :class:`RuntimeError` if *target* contains compound which is not in
             *compound_lib*, :class:`RuntimeError` if *symmetry_settings*
             specifies symmetric atoms that are not present in the according
             compound in *compound_lib*, :class:`RuntimeError` if
             *seqres_mapping* is not provided and *target* contains residue
             numbers with insertion codes or the residue numbers for each chain
             are not monotonically increasing, :class:`RuntimeError` if
             *seqres_mapping* is provided but an alignment is invalid
             (seq1 contains gaps, mismatch in seq1/seq2, seq2 does not match
             residues in corresponding chains).
    """
    def __init__(
        self,
        target,
        compound_lib=None,
        custom_compounds=None,
        inclusion_radius=15,
        sequence_separation=0,
        symmetry_settings=None,
        seqres_mapping=dict(),
        bb_only=False
    ):

        self.target = target
        self.inclusion_radius = inclusion_radius
        self.sequence_separation = sequence_separation
        if compound_lib is None:
            compound_lib = conop.GetDefaultLib()
        if compound_lib is None:
            raise RuntimeError("No compound_lib given and conop.GetDefaultLib "
                               "returns no valid compound library")
        self.compound_lib = compound_lib
        self.custom_compounds = custom_compounds
        if symmetry_settings is None:
            self.symmetry_settings = GetDefaultSymmetrySettings()
        else:
            self.symmetry_settings = symmetry_settings

        # whether to only consider atoms with name "CA" (amino acids) or C3'
        # (nucleotides), invalidates *compound_lib*
        self.bb_only=bb_only

        # names of heavy atoms of each unique compound present in *target* as
        # extracted from *compound_lib*, e.g.
        # self.compound_anames["GLY"] = ["N", "CA", "C", "O"]
        self.compound_anames = dict()

        # stores symmetry information for those compounds as defined in
        # *symmetry_settings*
        self.compound_symmetric_atoms = dict()

        # list of len(target.chains) containing all chain names in *target*
        self.chain_names = list()

        # list of len(target.residues) containing all compound names in *target*
        self.compound_names = list()

        # list of len(target.residues) defining start pos in internal reference
        # positions for each residue
        self.res_start_indices = list()

        # list of len(target.residues) defining residue numbers in target
        self.res_resnums = list()

        # list of len(target.chains) defining start pos in internal reference
        # positions for each chain     
        self.chain_start_indices = list()

        # list of len(target.chains) defining start pos in self.compound_names
        # for each chain     
        self.chain_res_start_indices = list()

        # maps residues in *target* to indices in
        # self.compound_names/self.res_start_indices. A residue gets identified
        # by a tuple (first element: chain name, second element: residue number,
        # residue number is either the actual residue number in *target* or
        # given by *seqres_mapping*)
        self.res_mapper = dict()

        # number of atoms as specified in compounds. not all are necessarily
        # covered by structure
        self.n_atoms = None

        # stores an index for each AtomHandle in *target*
        # (atom hashcode => index)
        self.atom_indices = dict()

        # store indices of all atoms that have symmetry properties
        self.symmetric_atoms = set()

        # the actual target positions in a numpy array of shape (self.n_atoms,3)
        self.positions = None

        # setup members defined above
        self._SetupEnv(self.compound_lib, self.custom_compounds,
                       self.symmetry_settings, seqres_mapping, self.bb_only)

        # distance related members are lazily computed as they're affected
        # by different flavours of LDDT (e.g. LDDT including inter-chain
        # contacts or not etc.)

        # stores for each atom the other atoms within inclusion_radius
        self._ref_indices = None
        # the corresponding distances
        self._ref_distances = None

        # The following lists will be sparsely populated. We keep for each
        # symmetry related atom the distances towards all atoms which are NOT
        # affected by symmetry. So we can evaluate two symmetric versions
        # against the fixed stuff later on and select the better scoring one.
        self._sym_ref_indices = None
        self._sym_ref_distances = None

        # exactly the same as above but without interchain contacts
        # => single-chain (sc)
        self._ref_indices_sc = None
        self._ref_distances_sc = None
        self._sym_ref_indices_sc = None
        self._sym_ref_distances_sc = None

        # exactly the same as above but without intrachain contacts
        # => inter-chain (ic)
        self._ref_indices_ic = None
        self._ref_distances_ic = None
        self._sym_ref_indices_ic = None
        self._sym_ref_distances_ic = None

        # input parameter checking
        self._ProcessSequenceSeparation()

    @property
    def ref_indices(self):
        if self._ref_indices is None:
            self._ref_indices, self._ref_distances = \
            lDDTScorer._SetupDistances(self.target, self.n_atoms,
                                       self.atom_indices,
                                       self.inclusion_radius)
        return self._ref_indices

    @property
    def ref_distances(self):
        if self._ref_distances is None:
            self._ref_indices, self._ref_distances = \
            lDDTScorer._SetupDistances(self.target, self.n_atoms,
                                       self.atom_indices,
                                       self.inclusion_radius)
        return self._ref_distances
    
    @property
    def sym_ref_indices(self):
        if self._sym_ref_indices is None:
            self._sym_ref_indices, self._sym_ref_distances = \
            lDDTScorer._NonSymDistances(self.n_atoms, self.symmetric_atoms,
                                        self.ref_indices, self.ref_distances)
        return self._sym_ref_indices

    @property
    def sym_ref_distances(self):
        if self._sym_ref_distances is None:
            self._sym_ref_indices, self._sym_ref_distances = \
            lDDTScorer._NonSymDistances(self.n_atoms, self.symmetric_atoms,
                                        self.ref_indices, self.ref_distances)
        return self._sym_ref_distances

    @property
    def ref_indices_sc(self):
        if self._ref_indices_sc is None:
            self._ref_indices_sc, self._ref_distances_sc = \
            lDDTScorer._SetupDistancesSC(self.n_atoms,
                                         self.chain_start_indices,
                                         self.ref_indices,
                                         self.ref_distances)
        return self._ref_indices_sc

    @property
    def ref_distances_sc(self):
        if self._ref_distances_sc is None:
            self._ref_indices_sc, self._ref_distances_sc = \
            lDDTScorer._SetupDistancesSC(self.n_atoms,
                                         self.chain_start_indices,
                                         self.ref_indices,
                                         self.ref_distances)
        return self._ref_distances_sc
    
    @property
    def sym_ref_indices_sc(self):
        if self._sym_ref_indices_sc is None:
            self._sym_ref_indices_sc, self._sym_ref_distances_sc = \
            lDDTScorer._NonSymDistances(self.n_atoms,
                                        self.symmetric_atoms,
                                        self.ref_indices_sc,
                                        self.ref_distances_sc)
        return self._sym_ref_indices_sc

    @property
    def sym_ref_distances_sc(self):
        if self._sym_ref_distances_sc is None:
            self._sym_ref_indices_sc, self._sym_ref_distances_sc = \
            lDDTScorer._NonSymDistances(self.n_atoms,
                                        self.symmetric_atoms,
                                        self.ref_indices_sc,
                                        self.ref_distances_sc)
        return self._sym_ref_distances_sc

    @property
    def ref_indices_ic(self):
        if self._ref_indices_ic is None:
            self._ref_indices_ic, self._ref_distances_ic = \
            lDDTScorer._SetupDistancesIC(self.n_atoms,
                                         self.chain_start_indices,
                                         self.ref_indices,
                                         self.ref_distances)
        return self._ref_indices_ic

    @property
    def ref_distances_ic(self):
        if self._ref_distances_ic is None:
            self._ref_indices_ic, self._ref_distances_ic = \
            lDDTScorer._SetupDistancesIC(self.n_atoms,
                                         self.chain_start_indices,
                                         self.ref_indices,
                                         self.ref_distances)
        return self._ref_distances_ic
    
    @property
    def sym_ref_indices_ic(self):
        if self._sym_ref_indices_ic is None:
            self._sym_ref_indices_ic, self._sym_ref_distances_ic = \
            lDDTScorer._NonSymDistances(self.n_atoms,
                                        self.symmetric_atoms,
                                        self.ref_indices_ic,
                                        self.ref_distances_ic)
        return self._sym_ref_indices_ic

    @property
    def sym_ref_distances_ic(self):
        if self._sym_ref_distances_ic is None:
            self._sym_ref_indices_ic, self._sym_ref_distances_ic = \
            lDDTScorer._NonSymDistances(self.n_atoms,
                                        self.symmetric_atoms,
                                        self.ref_indices_ic,
                                        self.ref_distances_ic)
        return self._sym_ref_distances_ic

    def lDDT(self, model, thresholds = [0.5, 1.0, 2.0, 4.0],
             local_lddt_prop=None, local_contact_prop=None,
             chain_mapping=None, no_interchain=False,
             no_intrachain=False, penalize_extra_chains=False,
             residue_mapping=None, return_dist_test=False,
             check_resnames=True, add_mdl_contacts=False,
             interaction_data=None, set_atom_props=False):
        """Computes LDDT of *model* - globally and per-residue

        :param model: Model to be scored - models are preferably scored upon
                      performing stereo-chemistry checks in order to punish for
                      non-sensical irregularities. This must be done separately
                      as a pre-processing step. Target contacts that are not
                      covered by *model* are considered not conserved, thus
                      decreasing LDDT score. This also includes missing model
                      chains or model chains for which no mapping is provided in
                      *chain_mapping*.
        :type model: :class:`ost.mol.EntityHandle`/:class:`ost.mol.EntityView`
        :param thresholds: Thresholds of distance differences to be considered
                           as correct - see docs in constructor for more info.
                           default: [0.5, 1.0, 2.0, 4.0]
        :type thresholds: :class:`list` of :class:`floats`
        :param local_lddt_prop: If set, per-residue scores will be assigned as
                                generic float property of that name
        :type local_lddt_prop: :class:`str`
        :param local_contact_prop: If set, number of expected contacts as well
                                   as number of conserved contacts will be
                                   assigned as generic int property.
                                   Excected contacts will be set as
                                   <local_contact_prop>_exp, conserved contacts
                                   as <local_contact_prop>_cons. Values
                                   are summed over all thresholds.
        :type local_contact_prop: :class:`str`
        :param chain_mapping: Mapping of model chains (key) onto target chains
                              (value). This is required if target or model have
                              more than one chain.
        :type chain_mapping: :class:`dict` with :class:`str` as keys/values
        :param no_interchain: Whether to exclude interchain contacts
        :type no_interchain: :class:`bool`
        :param no_intrachain: Whether to exclude intrachain contacts (i.e. only
                              consider interface related contacts)
        :type no_intrachain: :class:`bool`
        :param penalize_extra_chains: Whether to include a fixed penalty for
                                      additional chains in the model that are
                                      not mapped to the target. ONLY AFFECTS
                                      RETURNED GLOBAL SCORE. In detail: adds the
                                      number of intra-chain contacts of each
                                      extra chain to the expected contacts, thus
                                      adding a penalty.
        :type penalize_extra_chains: :class:`bool`
        :param residue_mapping: By default, residue mapping is based on residue
                                numbers. That means, a model chain and the
                                respective target chain map to the same
                                underlying reference sequence (SEQRES).
                                Alternatively, you can specify one or
                                several alignment(s) between model and target
                                chains by providing a dictionary. key: Name
                                of chain in model (respective target chain is
                                extracted from *chain_mapping*),
                                value: Alignment with first sequence
                                corresponding to target chain and second
                                sequence to model chain. There is NO reference
                                sequence involved, so the two sequences MUST
                                exactly match the actual residues observed in
                                the respective target/model chains (ATOMSEQ).
        :type residue_mapping: :class:`dict` with key: :class:`str`,
                               value: :class:`ost.seq.AlignmentHandle`
        :param return_dist_test: Whether to additionally return the underlying
                                 per-residue data for the distance difference
                                 test. Adds five objects to the return tuple.
                                 First: Number of total contacts summed over all
                                 thresholds
                                 Second: Number of conserved contacts summed
                                 over all thresholds
                                 Third: list with length of scored residues.
                                 Contains indices referring to model.residues.
                                 Fourth: numpy array of size
                                 len(scored_residues) containing the number of
                                 total contacts,
                                 Fifth: numpy matrix of shape 
                                 (len(scored_residues), len(thresholds))
                                 specifying how many for each threshold are
                                 conserved.
        :param check_resnames: On by default. Enforces residue name matches
                               between mapped model and target residues.
        :type check_resnames: :class:`bool`
        :param add_mdl_contacts: Adds model contacts - Only using contacts that
                                 are within a certain distance threshold in the
                                 target does not penalize for added model
                                 contacts. If set to True, this flag will also
                                 consider target contacts that are within the
                                 specified distance threshold in the model but
                                 not necessarily in the target. No contact will
                                 be added if the respective atom pair is not
                                 resolved in the target.
        :type add_mdl_contacts: :class:`bool`
        :param interaction_data: Pro param - don't use
        :type interaction_data: :class:`tuple`
        :param set_atom_props: If True, sets generic properties on a per atom
                               level if *local_lddt_prop*/*local_contact_prop*
                               are set as well.
                               In other words: this is the only way you can
                               get per-atom LDDT values.
        :type set_atom_props: :class:`bool`

        :returns: global and per-residue LDDT scores as a tuple -
                  first element is global LDDT score (None if *target* has no
                  contacts) and second element a list of per-residue scores with
                  length len(*model*.residues). None is assigned to residues that
                  are not covered by target. If a residue is covered but has no
                  contacts in *target*, 0.0 is assigned.
        """
        if chain_mapping is None:
            if len(self.chain_names) > 1 or len(model.chains) > 1:
                raise NotImplementedError("Must provide chain mapping if "
                                          "target or model have > 1 chains.")
            chain_mapping = {model.chains[0].GetName(): self.chain_names[0]}
        else:
            # check whether chains specified in mapping exist
            for model_chain, target_chain in chain_mapping.items():
                if target_chain not in self.chain_names:
                    raise RuntimeError(f"Target chain specified in "
                                       f"chain_mapping ({target_chain}) does "
                                       f"not exist. Target has chains: "
                                       f"{self.chain_names}")
                ch = model.FindChain(model_chain)
                if not ch.IsValid():
                    raise RuntimeError(f"Model chain specified in "
                                       f"chain_mapping ({model_chain}) does "
                                       f"not exist. Model has chains: "
                                       f"{[c.GetName() for c in model.chains]}")

        # data objects defining model data - see _ProcessModel for rough
        # description
        pos, res_ref_atom_indices, res_atom_indices, res_atom_hashes, \
        res_indices, ref_res_indices, symmetries = \
        self._ProcessModel(model, chain_mapping,
                           residue_mapping = residue_mapping,
                           nirvana_dist = self.inclusion_radius + max(thresholds),
                           check_resnames = check_resnames)

        if no_interchain and no_intrachain:
            raise RuntimeError("no_interchain and no_intrachain flags are "
                               "mutually exclusive")

        sym_ref_indices = None
        sym_ref_distances = None
        ref_indices = None
        ref_distances = None

        if interaction_data is None:
            if no_interchain:
                sym_ref_indices = self.sym_ref_indices_sc
                sym_ref_distances = self.sym_ref_distances_sc
                ref_indices = self.ref_indices_sc
                ref_distances = self.ref_distances_sc
            elif no_intrachain:
                sym_ref_indices = self.sym_ref_indices_ic
                sym_ref_distances = self.sym_ref_distances_ic
                ref_indices = self.ref_indices_ic
                ref_distances = self.ref_distances_ic
            else:
                sym_ref_indices = self.sym_ref_indices
                sym_ref_distances = self.sym_ref_distances
                ref_indices = self.ref_indices
                ref_distances = self.ref_distances

            if add_mdl_contacts:
                ref_indices, ref_distances = \
                self._AddMdlContacts(model, res_atom_indices, res_atom_hashes,
                                     ref_indices, ref_distances,
                                     no_interchain, no_intrachain)
                # recompute symmetry related indices/distances
                sym_ref_indices, sym_ref_distances = \
                lDDTScorer._NonSymDistances(self.n_atoms, self.symmetric_atoms,
                                            ref_indices, ref_distances)
        else:
            sym_ref_indices, sym_ref_distances, ref_indices, ref_distances = \
            interaction_data

        self._ResolveSymmetries(pos, thresholds, symmetries, sym_ref_indices,
                                sym_ref_distances)

        atom_indices = list(itertools.chain.from_iterable(res_atom_indices))

        per_atom_exp = np.asarray([self._GetNExp(i, ref_indices)
            for i in atom_indices], dtype=np.int32)
        per_res_exp = np.asarray([self._GetNExp(res_ref_atom_indices[idx],
            ref_indices) for idx in range(len(res_indices))], dtype=np.int32)

        per_atom_conserved = self._EvalAtoms(pos, atom_indices, thresholds,
                                             ref_indices, ref_distances)
        per_res_conserved = np.zeros((len(res_atom_indices), len(thresholds)),
                                     dtype=np.int32)
        start_idx = 0
        for r_idx in range(len(res_atom_indices)):
            end_idx = start_idx + len(res_atom_indices[r_idx])
            per_res_conserved[r_idx] = np.sum(per_atom_conserved[start_idx:end_idx,:],
                                              axis=0)
            start_idx = end_idx

        n_thresh = len(thresholds)

        # do per-residue scores
        per_res_lDDT = [None] * model.GetResidueCount()
        for idx in range(len(res_indices)):
            n_exp = n_thresh * per_res_exp[idx]
            if n_exp > 0:
                score = np.sum(per_res_conserved[idx,:]) / n_exp
                per_res_lDDT[res_indices[idx]] = score
            else:
                per_res_lDDT[res_indices[idx]] = 0.0

        # do full model score
        n_distances = sum([len(x) for x in ref_indices])
        if penalize_extra_chains:
            n_distances += self._GetExtraModelChainPenalty(model, chain_mapping)

        lDDT_tot = int(n_thresh * n_distances)
        lDDT_cons = int(np.sum(per_res_conserved))
        lDDT = None
        if lDDT_tot > 0:
            lDDT = float(lDDT_cons) / lDDT_tot

        # set properties if necessary
        if local_lddt_prop:
            residues = model.residues
            for idx in res_indices:
                residues[idx].SetFloatProp(local_lddt_prop, per_res_lDDT[idx])

        if local_contact_prop:
            residues = model.residues
            exp_prop = local_contact_prop + "_exp"
            conserved_prop = local_contact_prop + "_cons"

            for i, r_idx in enumerate(res_indices):
                residues[r_idx].SetIntProp(exp_prop,
                                           n_thresh * int(per_res_exp[i]))
                residues[r_idx].SetIntProp(conserved_prop,
                                           int(np.sum(per_res_conserved[i,:])))

        if set_atom_props and (local_lddt_prop or local_contact_prop):
            atom_list = list()
            residues = model.residues
            for i, indices in enumerate(res_atom_indices):
                r = residues[res_indices[i]]
                r_idx = ref_res_indices[i]
                res_start_idx = self.res_start_indices[r_idx]
                anames = self.compound_anames[self.compound_names[r_idx]]
                for a_i in indices:
                    a = r.FindAtom(anames[a_i - res_start_idx])
                    assert(a.IsValid())
                    atom_list.append(a)

            summed_per_atom_conserved = per_atom_conserved.sum(axis=1)
            if local_lddt_prop:
                # the only place where actually need to compute per-atom LDDT
                # scores
                for a_idx in range(len(atom_list)):
                    if per_atom_exp[a_idx] != 0:
                        tmp = summed_per_atom_conserved[a_idx] / per_atom_exp[a_idx]
                        tmp = tmp / n_thresh
                        atom_list[a_idx].SetFloatProp(local_lddt_prop, tmp)

            if local_contact_prop:
                conserved_prop = local_contact_prop + "_cons"
                exp_prop = local_contact_prop + "_exp"
                for a_idx in range(len(atom_list)):
                    # do number of conserved contacts
                    tmp = summed_per_atom_conserved[a_idx]
                    atom_list[a_idx].SetIntProp(conserved_prop, tmp)
                    # do number of expected contacts
                    tmp = per_atom_exp[a_idx] * n_thresh
                    atom_list[a_idx].SetIntProp(exp_prop, tmp)

        if return_dist_test:
            return lDDT, per_res_lDDT, lDDT_tot, lDDT_cons, res_indices, \
            per_res_exp, per_res_conserved
        else:
            return lDDT, per_res_lDDT

    def DRMSD(self, model, dist_cap = 5,
              chain_mapping=None, no_interchain=False,
              no_intrachain=False, residue_mapping=None,
              check_resnames=True, add_mdl_contacts=False,
              interaction_data=None):
        """ DRMSD of *model* - globally and per-residue

        Very similar to LDDT as we operate on distance differences for all
        interatomic distances within the same inclusion radius as in LDDT.
        DRMSD is the distance rmsd, i.e. the RMSD of distance differences.
        Distance differences are capped at *dist_cap* which is also the default
        value for missing distances.

        :param model: Model to be scored - models are preferably scored upon
                      performing stereo-chemistry checks in order to punish for
                      non-sensical irregularities. This must be done separately
                      as a pre-processing step. Target contacts that are not
                      covered by *model* are considered not conserved, thus
                      increasing DRMSD score. This also includes missing model
                      chains or model chains for which no mapping is provided in
                      *chain_mapping*.
        :type model: :class:`ost.mol.EntityHandle`/:class:`ost.mol.EntityView`
        :param dist_cap: Cap for distance differences.
        :type dist_cap: :class:`float`
        :param chain_mapping: Mapping of model chains (key) onto target chains
                              (value). This is required if target or model have
                              more than one chain.
        :type chain_mapping: :class:`dict` with :class:`str` as keys/values
        :param no_interchain: Whether to exclude interchain contacts
        :type no_interchain: :class:`bool`
        :param no_intrachain: Whether to exclude intrachain contacts (i.e. only
                              consider interface related contacts)
        :type no_intrachain: :class:`bool`
        :param residue_mapping: By default, residue mapping is based on residue
                                numbers. That means, a model chain and the
                                respective target chain map to the same
                                underlying reference sequence (SEQRES).
                                Alternatively, you can specify one or
                                several alignment(s) between model and target
                                chains by providing a dictionary. key: Name
                                of chain in model (respective target chain is
                                extracted from *chain_mapping*),
                                value: Alignment with first sequence
                                corresponding to target chain and second
                                sequence to model chain. There is NO reference
                                sequence involved, so the two sequences MUST
                                exactly match the actual residues observed in
                                the respective target/model chains (ATOMSEQ).
        :type residue_mapping: :class:`dict` with key: :class:`str`,
                               value: :class:`ost.seq.AlignmentHandle`
        :param check_resnames: On by default. Enforces residue name matches
                               between mapped model and target residues.
        :type check_resnames: :class:`bool`
        :param add_mdl_contacts: Adds model contacts - Only using contacts that
                                 are within a certain distance threshold in the
                                 target does not penalize for added model
                                 contacts. If set to True, this flag will also
                                 consider target contacts that are within the
                                 specified distance threshold in the model but
                                 not necessarily in the target. No contact will
                                 be added if the respective atom pair is not
                                 resolved in the target.
        :type add_mdl_contacts: :class:`bool`
        :param interaction_data: Pro param - don't use
        :type interaction_data: :class:`tuple`

        :returns: global and per-residue DRMSD scores as a tuple -
                  first element is global DRMSD score (None if *target* has no
                  contacts) and second element a list of per-residue scores with
                  length len(*model*.residues). None is assigned to residues that
                  are not covered by target. If a residue is covered but has no
                  contacts in *target*, None is assigned.
        """
        if chain_mapping is None:
            if len(self.chain_names) > 1 or len(model.chains) > 1:
                raise NotImplementedError("Must provide chain mapping if "
                                          "target or model have > 1 chains.")
            chain_mapping = {model.chains[0].GetName(): self.chain_names[0]}
        else:
            # check whether chains specified in mapping exist
            for model_chain, target_chain in chain_mapping.items():
                if target_chain not in self.chain_names:
                    raise RuntimeError(f"Target chain specified in "
                                       f"chain_mapping ({target_chain}) does "
                                       f"not exist. Target has chains: "
                                       f"{self.chain_names}")
                ch = model.FindChain(model_chain)
                if not ch.IsValid():
                    raise RuntimeError(f"Model chain specified in "
                                       f"chain_mapping ({model_chain}) does "
                                       f"not exist. Model has chains: "
                                       f"{[c.GetName() for c in model.chains]}")

        # data objects defining model data - see _ProcessModel for rough
        # description
        pos, res_ref_atom_indices, res_atom_indices, res_atom_hashes, \
        res_indices, ref_res_indices, symmetries = \
        self._ProcessModel(model, chain_mapping,
                           residue_mapping = residue_mapping,
                           nirvana_dist = self.inclusion_radius + dist_cap,
                           check_resnames = check_resnames)

        if no_interchain and no_intrachain:
            raise RuntimeError("no_interchain and no_intrachain flags are "
                               "mutually exclusive")

        sym_ref_indices = None
        sym_ref_distances = None
        ref_indices = None
        ref_distances = None

        if interaction_data is None:
            if no_interchain:
                sym_ref_indices = self.sym_ref_indices_sc
                sym_ref_distances = self.sym_ref_distances_sc
                ref_indices = self.ref_indices_sc
                ref_distances = self.ref_distances_sc
            elif no_intrachain:
                sym_ref_indices = self.sym_ref_indices_ic
                sym_ref_distances = self.sym_ref_distances_ic
                ref_indices = self.ref_indices_ic
                ref_distances = self.ref_distances_ic
            else:
                sym_ref_indices = self.sym_ref_indices
                sym_ref_distances = self.sym_ref_distances
                ref_indices = self.ref_indices
                ref_distances = self.ref_distances

            if add_mdl_contacts:
                ref_indices, ref_distances = \
                self._AddMdlContacts(model, res_atom_indices, res_atom_hashes,
                                     ref_indices, ref_distances,
                                     no_interchain, no_intrachain)
                # recompute symmetry related indices/distances
                sym_ref_indices, sym_ref_distances = \
                lDDTScorer._NonSymDistances(self.n_atoms, self.symmetric_atoms,
                                            ref_indices, ref_distances)
        else:
            sym_ref_indices, sym_ref_distances, ref_indices, ref_distances = \
            interaction_data

        self._ResolveSymmetriesSSD(pos, dist_cap, symmetries, sym_ref_indices,
                                   sym_ref_distances)

        atom_indices = list(itertools.chain.from_iterable(res_atom_indices))

        per_atom_exp = np.asarray([self._GetNExp(i, ref_indices)
            for i in atom_indices], dtype=np.int32)
        per_res_exp = np.asarray([self._GetNExp(res_ref_atom_indices[idx],
            ref_indices) for idx in range(len(res_indices))], dtype=np.int32)
        per_atom_ssd = self._EvalAtomsSSD(pos, atom_indices, dist_cap,
                                          ref_indices, ref_distances)

        # do per residue scores
        start_idx = 0
        per_res_drmsd = [None] * model.GetResidueCount()
        for r_idx in range(len(res_atom_indices)):
            end_idx = start_idx + len(res_atom_indices[r_idx])
            n_tot = per_res_exp[r_idx]
            if n_tot > 0:
                ssd = np.sum(per_atom_ssd[start_idx:end_idx])
                # add penalties from distances involving atoms that are not
                # present in the model
                n_missing = n_tot - np.sum(per_atom_exp[start_idx:end_idx])
                ssd += n_missing*dist_cap*dist_cap
                per_res_drmsd[res_indices[r_idx]] = np.sqrt(ssd/n_tot)
            start_idx = end_idx

        # do full model score
        drmsd = None
        n_tot = sum([len(x) for x in ref_indices])
        if n_tot > 0:
            ssd = np.sum(per_atom_ssd)
            # add penalties from distances involving atoms that are not
            # present in the model
            n_missing = n_tot - np.sum(per_atom_exp)
            ssd += (dist_cap*dist_cap*n_missing)
            drmsd = np.sqrt(ssd/n_tot)

        return drmsd, per_res_drmsd

    def GetNChainContacts(self, target_chain, no_interchain=False):
        """Returns number of contacts expected for a certain chain in *target*

        :param target_chain: Chain in *target* for which you want the number
                             of expected contacts
        :type target_chain: :class:`str`
        :param no_interchain: Whether to exclude interchain contacts
        :type no_interchain: :class:`bool`
        :raises: :class:`RuntimeError` if specified chain doesnt exist
        """
        if target_chain not in self.chain_names:
            raise RuntimeError(f"Specified chain name ({target_chain}) not in "
                               f"target")
        ch_idx = self.chain_names.index(target_chain)
        s = self.chain_start_indices[ch_idx]
        e = self.n_atoms
        if ch_idx + 1 < len(self.chain_names):
            e = self.chain_start_indices[ch_idx+1]
        if no_interchain:
            return self._GetNExp(list(range(s, e)), self.ref_indices_sc)
        else:
            return self._GetNExp(list(range(s, e)), self.ref_indices)

    def _ProcessModel(self, model, chain_mapping, residue_mapping = None,
                      nirvana_dist = 100,
                      check_resnames = True):
        """ Helper that generates data structures from model
        """

        # initialize positions with values far in nirvana. If a position is not
        # set, it should be far away from any position in model.
        max_pos = model.bounds.GetMax()
        max_coordinate = abs(max(max_pos[0], max_pos[1], max_pos[2]))
        max_coordinate += 42 * nirvana_dist
        pos = np.ones((self.n_atoms, 3), dtype=np.float32) * max_coordinate

        # for each scored residue in model a list of indices describing the
        # atoms from the reference that should be there
        res_ref_atom_indices = list()

        # for each scored residue in model a list of indices of atoms that are
        # actually there
        res_atom_indices = list()

        # and the respective hash codes
        # this is required if add_mdl_contacts is set to True
        res_atom_hashes = list()

        # indices of the scored residues
        res_indices = list()

        # respective residue indices in reference
        ref_res_indices = list()

        # Will contain one element per symmetry group
        symmetries = list()

        current_model_res_idx = -1
        for ch in model.chains:
            model_ch_name = ch.GetName()
            if model_ch_name not in chain_mapping:
                current_model_res_idx += len(ch.residues)
                continue # additional model chain which is not mapped
            target_ch_name = chain_mapping[model_ch_name]

            rnums = self._GetChainRNums(ch, residue_mapping, model_ch_name,
                                        target_ch_name)

            for r, rnum in zip(ch.residues, rnums):
                current_model_res_idx += 1
                res_mapper_key = (target_ch_name, rnum)
                if res_mapper_key not in self.res_mapper:
                    continue
                r_idx = self.res_mapper[res_mapper_key]
                if check_resnames and r.name != self.compound_names[r_idx]:
                    raise RuntimeError(
                        f"Residue name mismatch for {r}, "
                        f" expect {self.compound_names[r_idx]}"
                    )
                res_start_idx = self.res_start_indices[r_idx]
                rname = self.compound_names[r_idx]
                anames = self.compound_anames[rname]
                atoms = [r.FindAtom(aname) for aname in anames]
                res_ref_atom_indices.append(
                    list(range(res_start_idx, res_start_idx + len(anames)))
                )
                res_atom_indices.append(list())
                res_atom_hashes.append(list())
                res_indices.append(current_model_res_idx)
                ref_res_indices.append(r_idx)
                for a_idx, a in enumerate(atoms):
                    if a.IsValid():
                        p = a.GetPos()
                        pos[res_start_idx + a_idx][0] = p[0]
                        pos[res_start_idx + a_idx][1] = p[1]
                        pos[res_start_idx + a_idx][2] = p[2]
                        res_atom_indices[-1].append(res_start_idx + a_idx)
                        res_atom_hashes[-1].append(a.handle.GetHashCode())
                if rname in self.compound_symmetric_atoms:
                    sym_indices = list()
                    for sym_tuple in self.compound_symmetric_atoms[rname]:
                        a_one = atoms[sym_tuple[0]]
                        a_two = atoms[sym_tuple[1]]
                        if a_one.IsValid() and a_two.IsValid():
                            sym_indices.append(
                                (
                                    res_start_idx + sym_tuple[0],
                                    res_start_idx + sym_tuple[1],
                                )
                            )
                    if len(sym_indices) > 0:
                        symmetries.append(sym_indices)

        return (pos, res_ref_atom_indices, res_atom_indices, res_atom_hashes,
                res_indices, ref_res_indices, symmetries)


    def _GetExtraModelChainPenalty(self, model, chain_mapping):
        """Counts n distances in extra model chains to be added as penalty
        """
        penalty = 0
        for chain in model.chains:
            ch_name = chain.GetName()
            if ch_name not in chain_mapping:
                sm = self.symmetry_settings
                mdl_sel = model.Select(f"cname={mol.QueryQuoteName(ch_name)}")
                dummy_scorer = lDDTScorer(mdl_sel, self.compound_lib,
                                          symmetry_settings = sm,
                                          inclusion_radius = self.inclusion_radius,
                                          bb_only = self.bb_only)
                penalty += sum([len(x) for x in dummy_scorer.ref_indices])
        return penalty

    def _GetChainRNums(self, ch, residue_mapping, model_ch_name,
                       target_ch_name):
        """Map residues in model chain to target residues

        There are two options: one is simply using residue numbers,
        the other is a custom mapping as given in *residue_mapping*
        """
        if residue_mapping and model_ch_name in residue_mapping:
            # extract residue numbers from target chain
            ch_idx = self.chain_names.index(target_ch_name)
            start_idx = self.chain_res_start_indices[ch_idx]
            if ch_idx < len(self.chain_names) - 1:
                end_idx = self.chain_res_start_indices[ch_idx+1]
            else:
                end_idx = len(self.compound_names)
            target_rnums = self.res_resnums[start_idx:end_idx]
            # get sequences from alignment and do consistency checks
            target_seq = residue_mapping[model_ch_name].GetSequence(0)
            model_seq = residue_mapping[model_ch_name].GetSequence(1)
            if len(target_seq.GetGaplessString()) != len(target_rnums):
                raise RuntimeError(f"Try to perform residue mapping for "
                                   f"model chain {model_ch_name} which "
                                   f"maps to {target_ch_name} in target. "
                                   f"Target sequence in alignment suggests "
                                   f"{len(target_seq.GetGaplessString())} "
                                   f"residues but {len(target_rnums)} are "
                                   f"expected.")
            if len(model_seq.GetGaplessString()) != len(ch.residues):
                raise RuntimeError(f"Try to perform residue mapping for "
                                   f"model chain {model_ch_name} which "
                                   f"maps to {target_ch_name} in target. "
                                   f"Model sequence in alignment suggests "
                                   f"{len(model_seq.GetGaplessString())} "
                                   f"residues but {len(ch.residues)} are "
                                   f"expected.")
            rnums = list()
            target_idx = -1
            for col in residue_mapping[model_ch_name]:
                if col[0] != '-':
                    target_idx += 1
                # handle match
                if col[0] != '-' and col[1] != '-':
                    rnums.append(target_rnums[target_idx])
                # insertion in model adds None to rnum
                if col[0] == '-' and col[1] != '-':
                    rnums.append(None)
        else:
            rnums = [r.GetNumber() for r in ch.residues]

        return rnums


    def _SetupEnv(self, compound_lib, custom_compounds, symmetry_settings,
                  seqres_mapping, bb_only):
        """Sets target related lDDTScorer members defined in constructor

        No distance related members - see _SetupDistances
        """
        residue_numbers = self._GetTargetResidueNumbers(self.target,
                                                        seqres_mapping)
        current_idx = 0
        positions = list()
        for chain in self.target.chains:
            ch_name = chain.GetName()
            self.chain_names.append(ch_name)
            self.chain_start_indices.append(current_idx)
            self.chain_res_start_indices.append(len(self.compound_names))
            for r, rnum in zip(chain.residues, residue_numbers[ch_name]):
                if r.name not in self.compound_anames:
                    # sets compound info in self.compound_anames and
                    # self.compound_symmetric_atoms
                    self._SetupCompound(r, compound_lib, custom_compounds,
                                        symmetry_settings, bb_only)

                self.res_start_indices.append(current_idx)
                self.res_mapper[(ch_name, rnum)] = len(self.compound_names)
                self.compound_names.append(r.name)
                self.res_resnums.append(rnum)

                atoms = [r.FindAtom(an) for an in self.compound_anames[r.name]]
                for a in atoms:
                    if a.IsValid():
                        self.atom_indices[a.handle.GetHashCode()] = current_idx
                        p = a.GetPos()
                        positions.append(np.asarray([p[0], p[1], p[2]],
                                                     dtype=np.float32))
                    else:
                        positions.append(np.zeros(3, dtype=np.float32))
                    current_idx += 1
                
                if r.name in self.compound_symmetric_atoms:
                    for sym_tuple in self.compound_symmetric_atoms[r.name]:
                        for a_idx in sym_tuple:
                            a = atoms[a_idx]
                            if a.IsValid():
                                hashcode = a.handle.GetHashCode()
                                self.symmetric_atoms.add(
                                    self.atom_indices[hashcode]
                                )
        self.positions = np.vstack(positions)
        self.n_atoms = current_idx

    def _GetTargetResidueNumbers(self, target, seqres_mapping):
        """Returns residue numbers for each chain in target as dict

        They're either directly extracted from the raw residue number
        from the structure or from user provided alignments
        """
        residue_numbers = dict()
        for ch in target.chains:
            ch_name = ch.GetName()
            rnums = list()
            if ch_name in seqres_mapping:
                seqres = seqres_mapping[ch_name].GetSequence(0).GetString()
                atomseq = seqres_mapping[ch_name].GetSequence(1).GetString()
                # SEQRES must not contain gaps
                if "-" in seqres:
                    raise RuntimeError(
                        "SEQRES in seqres_mapping must not " "contain gaps"
                    )
                atomseq_from_chain = [r.one_letter_code for r in ch.residues]
                if atomseq.replace("-", "") != atomseq_from_chain:
                    raise RuntimeError(
                        "ATOMSEQ in seqres_mapping must match "
                        "raw sequence extracted from chain "
                        "residues"
                    )
                rnum = 0
                for seqres_olc, atomseq_olc in zip(seqres, atomseq):
                    if seqres_olc != "-":
                        rnum += 1
                    if atomseq_olc != "-":
                        if seqres_olc != atomseq_olc:
                            raise RuntimeError(
                                f"Residue with number {rnum} in "
                                f"chain {ch_name} has SEQRES "
                                f"ATOMSEQ mismatch"
                            )
                        rnums.append(mol.ResNum(rnum))
            else:
                rnums = [r.GetNumber() for r in ch.residues]
            assert len(rnums) == len(ch.residues)
            residue_numbers[ch_name] = rnums
        return residue_numbers

    def _SetupCompound(self, r, compound_lib, custom_compounds,
                       symmetry_settings, bb_only):
        """fill self.compound_anames/self.compound_symmetric_atoms
        """
        if bb_only:
            # throw away compound_lib info
            if r.chem_class.IsPeptideLinking():
                self.compound_anames[r.name] = ["CA"]
            elif r.chem_class.IsNucleotideLinking():
                self.compound_anames[r.name] = ["C3'"]
            else:
                raise RuntimeError(f"Only support amino acids and nucleotides "
                                   f"if bb_only is True, failed with {str(r)}")
            self.compound_symmetric_atoms[r.name] = list()
        else:
            atom_names = list()
            symmetric_atoms = list()
            if custom_compounds is not None and r.GetName() in custom_compounds:
                atom_names = list(custom_compounds[r.GetName()].atom_names)
            else:
                compound = compound_lib.FindCompound(r.name)
                if compound is None:
                    raise RuntimeError(f"no entry for {r} in compound_lib")
                for atom_spec in compound.GetAtomSpecs():
                    if atom_spec.element not in ["H", "D"]:
                        atom_names.append(atom_spec.name)
            if r.name in symmetry_settings.symmetric_compounds:
                for pair in symmetry_settings.symmetric_compounds[r.name]:
                    try:
                        a = atom_names.index(pair[0])
                        b = atom_names.index(pair[1])
                    except:
                        msg = f"Could not find symmetric atoms "
                        msg += f"({pair[0]}, {pair[1]}) for {r.name} "
                        msg += f"as specified in SymmetrySettings in "
                        msg += f"compound from component dictionary. "
                        msg += f"Atoms in compound: {atom_names}"
                        raise RuntimeError(msg)
                    symmetric_atoms.append((a, b))
            self.compound_anames[r.name] = atom_names
            if len(symmetric_atoms) > 0:
                self.compound_symmetric_atoms[r.name] = symmetric_atoms

    def _AddMdlContacts(self, model, res_atom_indices, res_atom_hashes,
                        ref_indices, ref_distances, no_interchain,
                        no_intrachain):

        # buildup an index map for mdl atoms that are also present in target
        in_target = np.zeros(self.n_atoms, dtype=bool)
        for i in self.atom_indices.values():
            in_target[i] = True
        mdl_atom_indices = dict()
        for at_indices, at_hashes in zip(res_atom_indices, res_atom_hashes):
            for i, h in zip(at_indices, at_hashes):
                if in_target[i]:
                    mdl_atom_indices[h] = i

        # get contacts for mdl - the contacts are only from atom pairs that
        # are also present in target, as we only provide the respective
        # hashes in mdl_atom_indices
        mdl_ref_indices, mdl_ref_distances = \
        lDDTScorer._SetupDistances(model, self.n_atoms, mdl_atom_indices,
                                   self.inclusion_radius)
        if no_interchain:
            mdl_ref_indices, mdl_ref_distances = \
            lDDTScorer._SetupDistancesSC(self.n_atoms,
                                         self.chain_start_indices,
                                         mdl_ref_indices,
                                         mdl_ref_distances)

        if no_intrachain:
            mdl_ref_indices, mdl_ref_distances = \
            lDDTScorer._SetupDistancesIC(self.n_atoms,
                                         self.chain_start_indices,
                                         mdl_ref_indices,
                                         mdl_ref_distances)

        # update ref_indices/ref_distances => add mdl contacts
        for i in range(self.n_atoms):
            mask = np.isin(mdl_ref_indices[i], ref_indices[i],
                           assume_unique=True, invert=True)
            if np.sum(mask) > 0:
                added_mdl_indices = mdl_ref_indices[i][mask]
                ref_indices[i] = np.append(ref_indices[i],
                                           added_mdl_indices)

                # distances need to be recomputed from ref positions
                tmp = self.positions.take(added_mdl_indices, axis=0)
                np.subtract(tmp, self.positions[i][None, :], out=tmp)
                np.square(tmp, out=tmp)
                tmp = tmp.sum(axis=1)
                np.sqrt(tmp, out=tmp)  # distances against all relevant atoms
                ref_distances[i] = np.append(ref_distances[i], tmp)

        return (ref_indices, ref_distances)



    @staticmethod
    def _SetupDistances(structure, n_atoms, atom_index_mapping,
                        inclusion_radius):

        """Compute distance related members of lDDTScorer

        Brute force all vs all distance computation kills LDDT for large
        complexes. Instead of building some KD tree data structure, we make use
        of expected spatial proximity of atoms in the same chain. Distances are
        computed as follows:

        - process each chain individually
        - perform crude collision detection
        - process potentially interacting chain pairs
        - concatenate distances from all processing steps
        """
        ref_indices = [np.asarray([], dtype=np.int32) for idx in range(n_atoms)]
        ref_distances = [np.asarray([], dtype=np.float32) for idx in range(n_atoms)]

        indices = [list() for _ in range(n_atoms)]
        distances = [list() for _ in range(n_atoms)]
        per_chain_pos = list()
        per_chain_indices = list()

        # Process individual chains
        for ch in structure.chains:
            pos_list = list()
            atom_indices = list()
            mask_start = list()
            mask_end = list()
            r_start_idx = 0
            for r_idx, r in enumerate(ch.residues):
                n_valid_atoms = 0
                for a in r.atoms:
                    hash_code = a.handle.GetHashCode()
                    if hash_code in atom_index_mapping:
                        p = a.GetPos()
                        pos_list.append(np.asarray([p[0], p[1], p[2]], dtype=np.float32))
                        atom_indices.append(atom_index_mapping[hash_code])
                        n_valid_atoms += 1
                mask_start.extend([r_start_idx] * n_valid_atoms)
                mask_end.extend([r_start_idx + n_valid_atoms] * n_valid_atoms)
                r_start_idx += n_valid_atoms

            if len(pos_list) == 0:
                # nothing to do...
                continue

            pos = np.vstack(pos_list)
            atom_indices = np.asarray(atom_indices, dtype=np.int32)

            if atom_indices.shape[0] > 20000:
                dists = blockwise_cdist(pos, pos)
            else:
                dists = cdist(pos, pos)

            # apply masks
            far_away = 2 * inclusion_radius
            for idx in range(atom_indices.shape[0]):
                dists[idx, range(mask_start[idx], mask_end[idx])] = far_away

            # fish out and store close atoms within inclusion radius
            within_mask = dists < inclusion_radius
            for idx in range(atom_indices.shape[0]):
                indices_to_append = atom_indices[within_mask[idx,:]]
                if indices_to_append.shape[0] > 0:
                    full_at_idx = atom_indices[idx]
                    indices[full_at_idx].append(indices_to_append)
                    distances[full_at_idx].append(dists[idx, within_mask[idx,:]])

            dists = None

            per_chain_pos.append(pos)
            per_chain_indices.append(atom_indices)

        # perform crude collision detection
        min_pos = [p.min(0) for p in per_chain_pos]
        max_pos = [p.max(0) for p in per_chain_pos]
        chain_pairs = list()
        for idx_one in range(len(per_chain_pos)):
            for idx_two in range(idx_one + 1, len(per_chain_pos)):
                if np.max(min_pos[idx_one] - max_pos[idx_two]) > inclusion_radius:
                    continue
                if np.max(min_pos[idx_two] - max_pos[idx_one]) > inclusion_radius:
                    continue
                chain_pairs.append((idx_one, idx_two))

        # process potentially interacting chains
        for pair in chain_pairs:
            if per_chain_pos[pair[0]].shape[0] > 20000 or per_chain_pos[pair[1]].shape[0] > 20000:
                dists = blockwise_cdist(per_chain_pos[pair[0]], per_chain_pos[pair[1]])
            else:
                dists = cdist(per_chain_pos[pair[0]], per_chain_pos[pair[1]])
            within = dists <= inclusion_radius

            # process pair[0]
            tmp = within.sum(axis=1)
            for idx in range(tmp.shape[0]):
                if tmp[idx] > 0:
                    # even though not being a strict requirement, we perform an
                    # insertion here such that the indices for each atom will be
                    # sorted after the hstack operation
                    at_idx = per_chain_indices[pair[0]][idx]
                    indices_to_insert = per_chain_indices[pair[1]][within[idx,:]]
                    distances_to_insert = dists[idx, within[idx, :]]
                    insertion_idx = len(indices[at_idx])
                    for i in range(insertion_idx):
                        if indices_to_insert[0] > indices[at_idx][i][0]:
                            insertion_idx = i
                            break
                    indices[at_idx].insert(insertion_idx, indices_to_insert)
                    distances[at_idx].insert(insertion_idx, distances_to_insert)

            # process pair[1]
            tmp = within.sum(axis=0)
            for idx in range(tmp.shape[0]):
                if tmp[idx] > 0:
                    # even though not being a strict requirement, we perform an
                    # insertion here such that the indices for each atom will be
                    # sorted after the hstack operation
                    at_idx = per_chain_indices[pair[1]][idx]
                    indices_to_insert = per_chain_indices[pair[0]][within[:, idx]]
                    distances_to_insert = dists[within[:, idx], idx]
                    insertion_idx = len(indices[at_idx])
                    for i in range(insertion_idx):
                        if indices_to_insert[0] > indices[at_idx][i][0]:
                            insertion_idx = i
                            break
                    indices[at_idx].insert(insertion_idx, indices_to_insert)
                    distances[at_idx].insert(insertion_idx, distances_to_insert)

            dists = None

        # concatenate distances from all processing steps
        for at_idx in range(n_atoms):
            if len(indices[at_idx]) > 0:
                ref_indices[at_idx] = np.hstack(indices[at_idx])
                ref_distances[at_idx] = np.hstack(distances[at_idx])

        return (ref_indices, ref_distances)

    @staticmethod
    def _SetupDistancesSC(n_atoms, chain_start_indices,
                          ref_indices, ref_distances):
        """Select subset of contacts only covering intra-chain contacts
        """
        # init
        ref_indices_sc = [np.asarray([], dtype=np.int32) for idx in range(n_atoms)]
        ref_distances_sc = [np.asarray([], dtype=np.float32) for idx in range(n_atoms)]

        n_chains = len(chain_start_indices)
        for ch_idx in range(n_chains):
            chain_s = chain_start_indices[ch_idx]
            chain_e = n_atoms
            if ch_idx + 1 < n_chains:
                chain_e = chain_start_indices[ch_idx+1]
            for i in range(chain_s, chain_e):
                if len(ref_indices[i]) > 0:
                    intra_idx = np.where(np.logical_and(ref_indices[i]>=chain_s,
                                                  ref_indices[i]<chain_e))[0]
                    ref_indices_sc[i] = ref_indices[i][intra_idx]
                    ref_distances_sc[i] = ref_distances[i][intra_idx]

        return (ref_indices_sc, ref_distances_sc)

    @staticmethod
    def _SetupDistancesIC(n_atoms, chain_start_indices,
                          ref_indices, ref_distances):
        """Select subset of contacts only covering inter-chain contacts
        """
        # init
        ref_indices_ic = [np.asarray([], dtype=np.int32) for idx in range(n_atoms)]
        ref_distances_ic = [np.asarray([], dtype=np.float32) for idx in range(n_atoms)]

        n_chains = len(chain_start_indices)
        for ch_idx in range(n_chains):
            chain_s = chain_start_indices[ch_idx]
            chain_e = n_atoms
            if ch_idx + 1 < n_chains:
                chain_e = chain_start_indices[ch_idx+1]
            for i in range(chain_s, chain_e):
                if len(ref_indices[i]) > 0:
                    inter_idx = np.where(np.logical_or(ref_indices[i]<chain_s,
                                                  ref_indices[i]>=chain_e))[0]
                    ref_indices_ic[i] = ref_indices[i][inter_idx]
                    ref_distances_ic[i] = ref_distances[i][inter_idx]

        return (ref_indices_ic, ref_distances_ic)

    @staticmethod
    def _NonSymDistances(n_atoms, symmetric_atoms, ref_indices, ref_distances):
        """Transfer indices/distances of non-symmetric atoms and return
        """

        sym_ref_indices = [np.asarray([], dtype=np.int32) for idx in range(n_atoms)]
        sym_ref_distances = [np.asarray([], dtype=np.float32) for idx in range(n_atoms)]

        for idx in symmetric_atoms:
            indices = list()
            distances = list()
            for i, d in zip(ref_indices[idx], ref_distances[idx]):
                if i not in symmetric_atoms:
                    indices.append(i)
                    distances.append(d)
            sym_ref_indices[idx] = indices
            sym_ref_distances[idx] = np.asarray(distances)

        return (sym_ref_indices, sym_ref_distances)

    def _EvalAtom(self, pos, atom_idx, thresholds, ref_indices, ref_distances):
        """Computes number of distance differences within given thresholds

        returns np.array with len(thresholds) elements
        """
        a_p = pos[atom_idx, :]
        tmp = pos.take(ref_indices[atom_idx], axis=0)
        np.subtract(tmp, a_p[None, :], out=tmp)
        np.square(tmp, out=tmp)
        tmp = tmp.sum(axis=1)
        np.sqrt(tmp, out=tmp)  # distances against all relevant atoms
        np.subtract(ref_distances[atom_idx], tmp, out=tmp)
        np.absolute(tmp, out=tmp)  # absolute dist diffs
        return np.asarray([(tmp <= thresh).sum() for thresh in thresholds],
                          dtype=np.int32)

    def _EvalAtoms(
        self, pos, atom_indices, thresholds, ref_indices, ref_distances
    ):
        """Calls _EvalAtom for several atoms and sums up the computed number
        of distance differences within given thresholds

        returns numpy matrix of shape (n_atoms, len(threshold))
        """
        conserved = np.zeros((len(atom_indices), len(thresholds)),
                             dtype=np.int32)
        for a_idx, a in enumerate(atom_indices):
            conserved[a_idx, :] = self._EvalAtom(pos, a, thresholds,
                                                 ref_indices, ref_distances)
        return conserved

    def _EvalResidues(self, pos, thresholds, res_atom_indices, ref_indices,
                      ref_distances):
        """Calls _EvalAtoms for a bunch of residues

        residues are defined in *res_atom_indices* as lists of atom indices
        returns numpy matrix of shape (n_residues, len(thresholds)).
        """
        conserved = np.zeros((len(res_atom_indices), len(thresholds)),
                             dtype=np.int32)
        for rai_idx, rai in enumerate(res_atom_indices):
            conserved[rai_idx,:] = np.sum(self._EvalAtoms(pos, rai, thresholds,
                                          ref_indices, ref_distances), axis=0)
        return conserved

    def _ProcessSequenceSeparation(self):
        if self.sequence_separation != 0:
            raise NotImplementedError("Congratulations! You're the first one "
                                      "requesting a non-default "
                                      "sequence_separation in the new and "
                                      "awesome LDDT implementation. A crate of "
                                      "beer for Gabriel and he'll implement "
                                      "it.")

    def _GetNExp(self, atom_idx, ref_indices):
        """Returns number of close atoms around one or several atoms
        """
        if isinstance(atom_idx, int):
            return len(ref_indices[atom_idx])
        elif isinstance(atom_idx, list):
            return sum([len(ref_indices[idx]) for idx in atom_idx])
        else:
            raise RuntimeError("invalid input type")

    def _ResolveSymmetries(self, pos, thresholds, symmetries, sym_ref_indices,
                           sym_ref_distances):
        """Swaps symmetric positions in-place in order to maximize LDDT scores
        towards non-symmetric atoms.
        """
        for sym in symmetries:

            atom_indices = list()
            for sym_tuple in sym:
                atom_indices += [sym_tuple[0], sym_tuple[1]]
            tot = self._GetNExp(atom_indices, sym_ref_indices)

            if tot == 0:
                continue  # nothing to do

            # score as is
            sym_one_conserved = self._EvalAtoms(
                pos,
                atom_indices,
                thresholds,
                sym_ref_indices,
                sym_ref_distances,
            )

            # switch positions and score again
            for pair in sym:
                pos[[pair[0], pair[1]]] = pos[[pair[1], pair[0]]]

            sym_two_conserved = self._EvalAtoms(
                pos,
                atom_indices,
                thresholds,
                sym_ref_indices,
                sym_ref_distances,
            )

            sym_one_score = np.sum(sym_one_conserved) / (len(thresholds) * tot)
            sym_two_score = np.sum(sym_two_conserved) / (len(thresholds) * tot)

            if sym_one_score >= sym_two_score:
                # switch back, initial positions were better or equal
                # for the equal case: we still switch back to reproduce the old
                # LDDT behaviour
                for pair in sym:
                    pos[[pair[0], pair[1]]] = pos[[pair[1], pair[0]]]

    def _EvalAtomSSD(self, pos, atom_idx, dist_cap, ref_indices, ref_distances):
        """ Computes summed squared distances

        distances are capped at dist_cap
        """
        a_p = pos[atom_idx, :]
        tmp = pos.take(ref_indices[atom_idx], axis=0)
        np.subtract(tmp, a_p[None, :], out=tmp)
        np.square(tmp, out=tmp)
        tmp = tmp.sum(axis=1)
        np.sqrt(tmp, out=tmp)  # distances against all relevant atoms
        np.subtract(ref_distances[atom_idx], tmp, out=tmp) # distance difference
        np.square(tmp, out=tmp) # squared distance difference
        squared_dist_cap = dist_cap*dist_cap
        tmp[tmp > squared_dist_cap] = squared_dist_cap
        return tmp.sum()

    def _EvalAtomsSSD(
        self, pos, atom_indices, dist_cap, ref_indices, ref_distances
    ):
        """Calls _EvalAtomSSD for several atoms
        """
        return np.asarray([self._EvalAtomSSD(pos, a, dist_cap, ref_indices,
                                             ref_distances) for a in atom_indices],
                          dtype=np.float32)

    def _ResolveSymmetriesSSD(self, pos, dist_cap, symmetries, sym_ref_indices,
                              sym_ref_distances):
        """Swaps symmetric positions in-place in order to maximize summed
        squared distances towards non-symmetric atoms.
        """
        for sym in symmetries:

            atom_indices = list()
            for sym_tuple in sym:
                atom_indices += [sym_tuple[0], sym_tuple[1]]
            tot = self._GetNExp(atom_indices, sym_ref_indices)

            if tot == 0:
                continue  # nothing to do

            # score as is
            sym_one_ssd = self._EvalAtomsSSD(
                pos,
                atom_indices,
                dist_cap,
                sym_ref_indices,
                sym_ref_distances,
            )

            # switch positions and score again
            for pair in sym:
                pos[[pair[0], pair[1]]] = pos[[pair[1], pair[0]]]

            sym_two_ssd = self._EvalAtomsSSD(
                pos,
                atom_indices,
                dist_cap,
                sym_ref_indices,
                sym_ref_distances,
            )

            sym_one_score = np.sum(sym_one_ssd)
            sym_two_score = np.sum(sym_two_ssd)

            if sym_one_score < sym_two_score:
                # switch back, initial positions were better
                for pair in sym:
                    pos[[pair[0], pair[1]]] = pos[[pair[1], pair[0]]]