File: ligand_scoring_base.py

package info (click to toggle)
openstructure 2.11.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 206,240 kB
  • sloc: cpp: 188,571; python: 36,686; ansic: 34,298; fortran: 3,275; sh: 312; xml: 146; makefile: 29
file content (1554 lines) | stat: -rw-r--r-- 70,307 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
from contextlib import contextmanager
import numpy as np
import networkx

import ost
from ost import mol
from ost import conop
from ost import LogWarning, LogScript, LogInfo, LogVerbose, LogDebug, GetVerbosityLevel, PushVerbosityLevel, PopVerbosityLevel
from ost.mol.alg import chain_mapping

@contextmanager
def _SinkVerbosityLevel(n=1):
    """ Context manager to temporarily reduce the verbosity level by n.

    Example usage:
        with _SinkVerbosityLevel(2):
            LogVerbose("Test")
    Will only write "Test" in script level (2 above)
    """
    PushVerbosityLevel(GetVerbosityLevel() - n)
    try:
        yield
    except:
        raise
    finally:
        PopVerbosityLevel()


def _QualifiedAtomNotation(a):
    """Return a parsable string of the atom in the format:
    ChainName.ResidueNumber.InsertionCode.AtomName."""
    resnum = a.residue.number
    return "{cname}.{rnum}.{ins_code}.{aname}".format(
        cname=a.chain.name,
        rnum=resnum.num,
        ins_code=resnum.ins_code.strip("\u0000"),
        aname=a.name,
    )


def _QualifiedResidueNotation(r):
    """Return a parsable string of the residue in the format:
    ChainName.ResidueNumber.InsertionCode."""
    resnum = r.number
    return "{cname}.{rnum}.{ins_code}".format(
        cname=r.chain.name,
        rnum=resnum.num,
        ins_code=resnum.ins_code.strip("\u0000"),
    )

class LigandScorer:
    """ Scorer to compute various small molecule ligand (non polymer) scores.

    :class:`LigandScorer` is an abstract base class dealing with all the setup,
    data storage, enumerating ligand symmetries and target/model ligand
    matching/assignment. But actual score computation is delegated to child
    classes.

    At the moment, two such classes are available:

    * :class:`ost.mol.alg.ligand_scoring_lddtpli.LDDTPLIScorer`
      that assesses the conservation of protein-ligand
      contacts (LDDT-PLI);
    * :class:`ost.mol.alg.ligand_scoring_scrmsd.SCRMSDScorer`
      that computes a binding-site superposed, symmetry-corrected RMSD
      (BiSyRMSD) and ligand pocket LDDT (LDDT-LP).

    All versus all scores are available through the lazily computed
    :attr:`score_matrix`. However, many things can go wrong... be it even
    something as simple as two ligands not matching. Error states therefore
    encode scoring issues. An Issue for a particular ligand is indicated by a
    non-zero state in :attr:`model_ligand_states`/:attr:`target_ligand_states`.
    This invalidates pairwise scores of such a ligand with all other ligands.
    This and other issues in pairwise score computation are reported in
    :attr:`state_matrix` which has the same size as :attr:`score_matrix`.
    Only if the respective location is 0, a valid pairwise score can be
    expected. The states and their meaning can be explored with code::

      for state_code, (short_desc, desc) in scorer_obj.state_decoding.items():
          print(state_code)
          print(short_desc)
          print(desc)

    A common use case is to derive a one-to-one mapping between ligands in
    the model and the target for which :class:`LigandScorer` provides an
    automated :attr:`assignment` procedure.
    By default, only exact matches between target and model ligands are
    considered. This is a problem when the target only contains a subset
    of the expected atoms (for instance if atoms are missing in an
    experimental structure, which often happens in the PDB). With
    `substructure_match=True`, complete model ligands can be scored against
    partial target ligands. One problem with this approach is that it is
    very easy to find good matches to small, irrelevant ligands like EDO, CO2
    or GOL. The assignment algorithm therefore considers the coverage,
    expressed as the fraction of atoms of the model ligand atoms covered in the
    target. Higher coverage matches are prioritized, but a match with a better
    score will be preferred if it falls within a window of `coverage_delta`
    (by default 0.2) of a worse-scoring match. As a result, for instance,
    with a delta of 0.2, a low-score match with coverage 0.96 would be
    preferred over a high-score match with coverage 0.70.

    Assumptions:

    Unlike most of OpenStructure, this class does not assume that the ligands
    (either for the model or the target) are part of the PDB component
    dictionary. They may have arbitrary residue names. Residue names do not
    have to match between the model and the target. Matching is based on
    the calculation of isomorphisms which depend on the atom element name and
    atom connectivity (bond order is ignored).
    It is up to the caller to ensure that the connectivity of atoms is properly
    set before passing any ligands to this class. Ligands with improper
    connectivity will lead to bogus results.

    This only applies to the ligand. The rest of the model and target
    structures (protein, nucleic acids) must still follow the usual rules and
    contain only residues from the compound library. Structures are cleaned up
    according to constructor documentation. We advise to
    use the :func:`ost.mol.alg.scoring_base.MMCIFPrep` and
    :func:`ost.mol.alg.scoring_base.PDBPrep` for loading which already
    clean hydrogens and, in the case of MMCIF, optionally extract ligands ready
    to be used by the :class:`LigandScorer` based on "non-polymer" entity types.
    In case of PDB file format, ligands must be loaded separately as SDF files.

    Only polymers (protein and nucleic acids) of model and target are considered
    for ligand binding sites. The
    :class:`ost.mol.alg.chain_mapping.ChainMapper` is used to enumerate possible
    mappings of these chains. In short: identical chains in the target are
    grouped based on pairwise sequence identity
    (see pep_seqid_thr/nuc_seqid_thr param). Each model chain is assigned to
    one of these groups (see mdl_map_pep_seqid_thr/mdl_map_nuc_seqid_thr param).
    To avoid spurious matches, only polymers of a certain length are considered
    in this matching procedure (see min_pep_length/min_nuc_length param).
    Shorter polymers are never mapped and do not contribute to scoring.

    Here is an example of how to setup a scorer::

        from ost.mol.alg.ligand_scoring_scrmsd import SCRMSDScorer
        from ost.mol.alg.scoring_base import MMCIFPrep
        from ost.mol.alg.scoring_base import PDBPrep

        # Load data
        # Structure model in PDB format, containing the receptor only
        model = PDBPrep("path_to_model.pdb")
        # Ligand model as SDF file
        model_ligand = io.LoadEntity("path_to_ligand.sdf", format="sdf")
        # Target loaded from mmCIF, containing the ligand
        target, target_ligands = MMCIFPrep("path_to_target.cif",
                                           extract_nonpoly=True)

        # Setup scorer object and compute SCRMSD
        model_ligands = [model_ligand.Select("ele != H")]
        sc = SCRMSDScorer(model, target, model_ligands, target_ligands)

        # Perform assignment and read respective scores
        for lig_pair in sc.assignment:
            trg_lig = sc.target_ligands[lig_pair[0]]
            mdl_lig = sc.model_ligands[lig_pair[1]]
            score = sc.score_matrix[lig_pair[0], lig_pair[1]]
            print(f"Score for {trg_lig} and {mdl_lig}: {score}")

        # check cleanup in model and target structure:
        print("model cleanup:", sc.model_cleanup_log)
        print("target cleanup:", sc.target_cleanup_log)


    :param model: Model structure - a deep copy is available as :attr:`model`.
                  The model undergoes the following cleanup steps which are
                  dependent on :class:`ost.conop.CompoundLib` returned by
                  :func:`ost.conop.GetDefaultLib`: 1) removal
                  of hydrogens, 2) removal of residues for which there is no
                  entry in :class:`ost.conop.CompoundLib`, 3) removal of
                  residues that are not peptide linking or nucleotide linking
                  according to :class:`ost.conop.CompoundLib` 4) removal of
                  atoms that are not defined for respective residues in
                  :class:`ost.conop.CompoundLib`. Except step 1), every cleanup
                  is logged with :class:`ost.LogLevel` Warning and a report is
                  available as :attr:`model_cleanup_log`.
    :type model: :class:`ost.mol.EntityHandle`/:class:`ost.mol.EntityView`
    :param target: Target structure - same processing as *model*. 
    :type target: :class:`ost.mol.EntityHandle`/:class:`ost.mol.EntityView`
    :param model_ligands: Model ligands, as a list of
                          :class:`ost.mol.ResidueHandle`/
                          :class:`ost.mol.ResidueView`/
                          :class:`ost.mol.EntityHandle`/
                          :class:`ost.mol.EntityView`. For
                          :class:`ost.mol.EntityHandle`/
                          :class:`ost.mol.EntityView`, each residue is
                          considered to be an individual ligand.
                          All ligands are copied into a separate
                          :class:`ost.mol.EntityHandle` available as
                          :attr:`model_ligand_ent` and the respective
                          list of ligands is available as :attr:`model_ligands`.
    :type model_ligands: :class:`list`
    :param target_ligands: Target ligands, same processing as model ligands. 
    :type target_ligands: :class:`list`
    :param resnum_alignments: Whether alignments between chemically equivalent
                              chains in *model* and *target* can be computed
                              based on residue numbers. This can be assumed in
                              benchmarking setups such as CAMEO/CASP.
    :type resnum_alignments: :class:`bool`
    :param substructure_match: Set this to True to allow incomplete (i.e.
                               partially resolved) target ligands.
    :type substructure_match: :class:`bool`
    :param coverage_delta: the coverage delta for partial ligand assignment.
    :type coverage_delta: :class:`float`
    :param max_symmetries: If more than that many isomorphisms exist for
                           a target-ligand pair, it will be ignored and reported
                           as unassigned.
    :type max_symmetries: :class:`int`
    :param min_pep_length: Relevant parameter if short peptides are involved in
                           the polymer binding site. Minimum peptide length for
                           a chain to be considered in chain mapping.
                           The chain mapping algorithm first performs an all vs.
                           all pairwise sequence alignment to identify \"equal\"
                           chains within the target structure. We go for simple
                           sequence identity there. Short sequences can be
                           problematic as they may produce high sequence identity
                           alignments by pure chance.
    :type min_pep_length: :class:`int`
    :param min_nuc_length: Same for nucleotides
    :type min_nuc_length: :class:`int`
    :param pep_seqid_thr: Parameter that affects identification of identical
                          chains in target - see 
                          :class:`ost.mol.alg.chain_mapping.ChainMapper`
    :type pep_seqid_thr: :class:`float`
    :param nuc_seqid_thr: Parameter that affects identification of identical
                          chains in target - see 
                          :class:`ost.mol.alg.chain_mapping.ChainMapper`
    :type nuc_seqid_thr: :class:`float`
    :param mdl_map_pep_seqid_thr: Parameter that affects mapping of model chains
                                  to target chains - see 
                                  :class:`ost.mol.alg.chain_mapping.ChainMapper`
    :type mdl_map_pep_seqid_thr: :class:`float`
    :param mdl_map_nuc_seqid_thr: Parameter that affects mapping of model chains
                                  to target chains - see 
                                  :class:`ost.mol.alg.chain_mapping.ChainMapper`
    :type mdl_map_nuc_seqid_thr: :class:`float`
    :param seqres: Parameter that affects identification of identical chains in
                   target - see :class:`ost.mol.alg.chain_mapping.ChainMapper`
    :type seqres: :class:`ost.seq.SequenceList`
    :param trg_seqres_mapping: Parameter that affects identification of identical
                               chains in target - see 
                               :class:`ost.mol.alg.chain_mapping.ChainMapper`
    :type trg_seqres_mapping: :class:`dict`
    """

    def __init__(self, model, target, model_ligands, target_ligands,
                 resnum_alignments=False, substructure_match=False,
                 coverage_delta=0.2, max_symmetries=1e5,
                 rename_ligand_chain=False, min_pep_length = 6,
                 min_nuc_length = 4, pep_seqid_thr = 95.,
                 nuc_seqid_thr = 95.,
                 mdl_map_pep_seqid_thr = 0.,
                 mdl_map_nuc_seqid_thr = 0.,
                 seqres = None,
                 trg_seqres_mapping = None):

        if isinstance(model, mol.EntityView):
            self._model = mol.CreateEntityFromView(model, False)
        elif isinstance(model, mol.EntityHandle):
            self._model = model.Copy()
        else:
            raise RuntimeError("model must be of type EntityView/EntityHandle")

        if isinstance(target, mol.EntityView):
            self._target = mol.CreateEntityFromView(target, False)
        elif isinstance(target, mol.EntityHandle):
            self._target = target.Copy()
        else:
            raise RuntimeError("target must be of type EntityView/EntityHandle")

        clib = conop.GetDefaultLib()
        if not clib:
            ost.LogError("A compound library is required. "
                         "Please refer to the OpenStructure website: "
                         "https://openstructure.org/docs/conop/compoundlib/.")
            raise RuntimeError("No compound library found")
        self._target, self._target_cleanup_log = \
        self._cleanup_polymer_ent(self._target, clib)
        self._model, self._model_cleanup_log = \
        self._cleanup_polymer_ent(self._model, clib)

        # keep ligands separate from polymer entities
        self._target_ligand_ent = mol.CreateEntity()
        self._model_ligand_ent = mol.CreateEntity()
        target_ligand_ent_ed = self._target_ligand_ent.EditXCS(mol.BUFFERED_EDIT)
        model_ligand_ent_ed = self._model_ligand_ent.EditXCS(mol.BUFFERED_EDIT)

        self._target_ligands = list()
        for l in target_ligands:
            if isinstance(l, mol.EntityView) or isinstance(l, mol.EntityHandle):
                for r in l.residues:
                    self._target_ligands.append(self._copy_ligand(r, self._target_ligand_ent,
                                                                  target_ligand_ent_ed,
                                                                  rename_ligand_chain))
            elif isinstance(l, mol.ResidueHandle) or isinstance(l, mol.ResidueView):
                self._target_ligands.append(self._copy_ligand(l, self._target_ligand_ent,
                                                              target_ligand_ent_ed,
                                                              rename_ligand_chain))  
            else:
                raise RuntimeError("ligands must be of type EntityView/"
                                   "EntityHandle/ResidueView/ResidueHandle")
            
        self._model_ligands = list()
        for l in model_ligands:
            if isinstance(l, mol.EntityView) or isinstance(l, mol.EntityHandle):
                for r in l.residues:
                    self._model_ligands.append(self._copy_ligand(r, self._model_ligand_ent,
                                                                 model_ligand_ent_ed,
                                                                 rename_ligand_chain))
            elif isinstance(l, mol.ResidueHandle) or isinstance(l, mol.ResidueView):
                self._model_ligands.append(self._copy_ligand(l, self._model_ligand_ent,
                                                             model_ligand_ent_ed,
                                                             rename_ligand_chain))  
            else:
                raise RuntimeError("ligands must be of type EntityView/"
                                   "EntityHandle/ResidueView/ResidueHandle")


        if len(self.model_ligands) == 0:
            LogWarning("No ligands in the model")
            if len(self.target_ligands) == 0:
                raise ValueError("No ligand in the model and in the target")

        self._resnum_alignments = resnum_alignments
        self._substructure_match = substructure_match
        self._coverage_delta = coverage_delta
        self._max_symmetries = max_symmetries
        self._min_pep_length = min_pep_length
        self._min_nuc_length = min_nuc_length
        self._pep_seqid_thr = pep_seqid_thr
        self._nuc_seqid_thr = nuc_seqid_thr
        self._mdl_map_pep_seqid_thr = mdl_map_pep_seqid_thr
        self._mdl_map_nuc_seqid_thr = mdl_map_nuc_seqid_thr
        self._seqres = seqres
        self._trg_seqres_mapping = trg_seqres_mapping

        # lazily computed attributes
        self.__chain_mapper = None
        self.__chem_mapping = None
        self.__chem_group_alns = None
        self.__ref_mdl_alns = None
        self.__mdl_chains_without_chem_mapping = None
        self.__chain_mapping_mdl = None

        # keep track of states
        # simple integers instead of enums - encoding available in
        # self.state_decoding
        self._state_matrix = None
        self._model_ligand_states = None
        self._target_ligand_states = None

        # score matrices
        self._score_matrix = None
        self._coverage_matrix = None
        self._aux_matrix = None

        # assignment and derived data
        self._assignment = None
        self._score_dict = None
        self._aux_dict = None

        # human readable description of states - child class must extend with
        # with child class specific states
        # each state code comes with a tuple of two elements:
        # 1) short description 2) human readable description
        # The actual states are set in _compute_scores in :class:`LigandScorer`
        # or _compute_score of the child class.
        if self.substructure_match:
            iso = "subgraph isomorphism"
        else:
            iso = "full graph isomorphism"

        self.state_decoding = \
        {0: ("OK", "OK"),
         1: ("identity", f"Ligands could not be matched (by {iso})"),
         2: ("symmetries", "Too many symmetries between ligand atoms were "
             "found - increasing max_symmetries might help"),
         3: ("no_iso", "No full isomorphic match could be found - enabling "
             "substructure_match might allow a match"),
         4: ("disconnected", "Ligand graph is disconnected"),
         5: ("stoichiometry", "Ligand was already assigned to another ligand "
             "(different stoichiometry)"),
         6: ("single_ligand_issue", "Cannot compute valid pairwise score as "
             "either model or target ligand have non-zero state."),
         9: ("unknown", "An unknown error occured in LigandScorer")}


    @property
    def model(self):
        """ Model receptor structure

        Processed according to docs in :class:`LigandScorer` constructor
        """
        return self._model

    @property
    def target(self):
        """ Target receptor structure

        Processed according to docs in :class:`LigandScorer` constructor
        """
        return self._target

    @property
    def model_cleanup_log(self):
        """ Reports residues/atoms that were removed in model during cleanup

        Residues and atoms are described as :class:`str` in format
        <chain_name>.<resnum>.<ins_code> (residue) and
        <chain_name>.<resnum>.<ins_code>.<aname> (atom).

        :class:`dict` with keys:
        
        * 'cleaned_residues': another :class:`dict` with keys:

          * 'no_clib': residues that have been removed because no entry could be
            found in :class:`ost.conop.CompoundLib`
          * 'not_linking': residues that have been removed because they're not
            peptide or nucleotide linking according to
            :class:`ost.conop.CompoundLib`

        * 'cleaned_atoms': another :class:`dict` with keys:

          * 'unknown_atoms': atoms that have been removed as they're not part
            of their respective residue according to
            :class:`ost.conop.CompoundLib`
        """
        return self._model_cleanup_log

    @property
    def target_cleanup_log(self):
        """ Same for target
        """
        return self._target_cleanup_log  

    @property
    def model_ligands(self):
        """ Residues representing model ligands

        :class:`list` of :class:`ost.mol.ResidueHandle`
        """
        return self._model_ligands    

    @property
    def target_ligands(self):
        """ Residues representing target ligands

        :class:`list` of :class:`ost.mol.ResidueHandle`
        """
        return self._target_ligands 

    @property
    def resnum_alignments(self):
        """ Given at :class:`LigandScorer` construction
        """
        return self._resnum_alignments

    @property
    def min_pep_length(self):
        """ Given at :class:`LigandScorer` construction
        """
        return self._min_pep_length
    
    @property
    def min_nuc_length(self):
        """ Given at :class:`LigandScorer` construction
        """
        return self._min_nuc_length

    @property
    def pep_seqid_thr(self):
        """ Given at :class:`LigandScorer` construction
        """
        return self._pep_seqid_thr
    
    @property
    def nuc_seqid_thr(self):
        """ Given at :class:`LigandScorer` construction
        """
        return self._nuc_seqid_thr

    @property
    def mdl_map_pep_seqid_thr(self):
        """ Given at :class:`LigandScorer` construction
        """
        return self._mdl_map_pep_seqid_thr
    
    @property
    def mdl_map_nuc_seqid_thr(self):
        """ Given at :class:`LigandScorer` construction
        """
        return self._mdl_map_nuc_seqid_thr

    @property
    def seqres(self):
        """ Given at :class:`LigandScorer` construction
        """
        return self._seqres

    @property
    def trg_seqres_mapping(self):
        """ Given at :class:`LigandScorer` construction
        """
        return self._trg_seqres_mapping

    @property
    def substructure_match(self):
        """ Given at :class:`LigandScorer` construction
        """
        return self._substructure_match

    @property
    def coverage_delta(self):
        """ Given at :class:`LigandScorer` construction
        """
        return self._coverage_delta

    @property
    def max_symmetries(self):
        """ Given at :class:`LigandScorer` construction
        """
        return self._max_symmetries

    @property
    def state_matrix(self):
        """ Encodes states of ligand pairs

        Ligand pairs can be matched and a valid score can be expected if
        respective location in this matrix is 0.
        Target ligands are in rows, model ligands in columns. States are encoded
        as integers <= 9. Larger numbers encode errors for child classes.
        Use something like ``self.state_decoding[3]`` to get a decscription.

        :rtype: :class:`~numpy.ndarray`
        """
        if self._state_matrix is None:
            self._compute_scores()
        return self._state_matrix

    @property
    def model_ligand_states(self):
        """ Encodes states of model ligands

        Non-zero state in any of the model ligands invalidates the full
        respective column in :attr:`~state_matrix`.

        :rtype: :class:`~numpy.ndarray`
        """
        if self._model_ligand_states is None:
            self._compute_scores()
        return self._model_ligand_states

    @property
    def target_ligand_states(self):
        """ Encodes states of target ligands

        Non-zero state in any of the target ligands invalidates the full
        respective row in :attr:`~state_matrix`.

        :rtype: :class:`~numpy.ndarray`
        """
        if self._target_ligand_states is None:
            self._compute_scores()
        return self._target_ligand_states

    @property
    def score_matrix(self):
        """ Get the matrix of scores.

        Target ligands are in rows, model ligands in columns.

        NaN values indicate that no value could be computed (i.e. different
        ligands). In other words: values are only valid if the respective
        location in :attr:`~state_matrix` is 0. 

        :rtype: :class:`~numpy.ndarray`
        """
        if self._score_matrix is None:
            self._compute_scores() 
        return self._score_matrix

    @property
    def coverage_matrix(self):
        """ Get the matrix of model ligand atom coverage in the target.

        Target ligands are in rows, model ligands in columns.

        NaN values indicate that no value could be computed (i.e. different
        ligands). In other words: values are only valid if the respective
        location in :attr:`~state_matrix` is 0. If `substructure_match=False`,
        only full match isomorphisms are considered, and therefore only values
        of 1.0 can be observed.

        :rtype: :class:`~numpy.ndarray`
        """
        if self._coverage_matrix is None:
            self._compute_scores()
        return self._coverage_matrix

    @property
    def aux_matrix(self):
        """ Get the matrix of scorer specific auxiliary data.

        Target ligands are in rows, model ligands in columns.

        Auxiliary data consists of arbitrary data dicts which allow a child
        class to provide additional information for a scored ligand pair.
        empty dictionaries indicate that the child class simply didn't return
        anything or that no value could be computed (e.g. different ligands).
        In other words: values are only valid if respective location in the
        :attr:`~state_matrix` is 0.

        :rtype: :class:`~numpy.ndarray`
        """
        if self._aux_matrix is None:
            self._compute_scores()
        return self._aux_matrix

    @property
    def assignment(self):
        """ Ligand assignment based on computed scores

        Implements a greedy algorithm to assign target and model ligands
        with each other. Starts from each valid ligand pair as indicated
        by a state of 0 in :attr:`state_matrix`. Each iteration first selects
        high coverage pairs. Given max_coverage defined as the highest
        coverage observed in the available pairs, all pairs with coverage
        in [max_coverage-*coverage_delta*, max_coverage] are selected.
        The best scoring pair among those is added to the assignment
        and the whole process is repeated until there are no ligands to
        assign anymore.

        :rtype: :class:`list` of :class:`tuple` (trg_lig_idx, mdl_lig_idx)
        """
        if self._assignment is None:
            self._assignment = list()
            # Build working array that contains tuples for all mdl/trg ligand
            # pairs with valid score as indicated by a state of 0:
            # (score, coverage, trg_ligand_idx, mdl_ligand_idx)
            tmp = list()
            for trg_idx in range(self.score_matrix.shape[0]):
                for mdl_idx in range(self.score_matrix.shape[1]):
                    if self.state_matrix[trg_idx, mdl_idx] == 0:
                        tmp.append((self.score_matrix[trg_idx, mdl_idx],
                                    self.coverage_matrix[trg_idx, mdl_idx],
                                    trg_idx, mdl_idx))

            # sort by score, such that best scoring item is in front
            if self._score_dir() == '+':
                tmp.sort(reverse=True)
            elif self._score_dir() == '-':
                tmp.sort()
            else:
                raise RuntimeError("LigandScorer._score_dir must return one in "
                                   "['+', '-']")

            LogScript("Computing ligand assignment")
            while len(tmp) > 0:
                # select high coverage ligand pairs in working array
                coverage_thresh = max([x[1] for x in tmp]) - self.coverage_delta
                top_coverage = [x for x in tmp if x[1] >= coverage_thresh]

                # working array is sorted by score => just pick first one
                a = top_coverage[0][2] # selected trg_ligand_idx
                b = top_coverage[0][3] # selected mdl_ligand_idx
                self._assignment.append((a, b))

                # kick out remaining pairs involving these ligands
                tmp = [x for x in tmp if (x[2] != a and x[3] != b)]

        return self._assignment

    @property
    def score(self):
        """ Get a dictionary of score values, keyed by model ligand

        Extract score with something like:
        ``scorer.score[lig.GetChain().GetName()][lig.GetNumber()]``.
        The returned scores are based on :attr:`~assignment`.

        :rtype: :class:`dict`
        """
        if self._score_dict is None:
            self._score_dict = dict()
            for (trg_lig_idx, mdl_lig_idx) in self.assignment:
                mdl_lig = self.model_ligands[mdl_lig_idx]
                cname = mdl_lig.GetChain().GetName()
                rnum = mdl_lig.GetNumber()
                if cname not in self._score_dict:
                    self._score_dict[cname] = dict()
                score = self.score_matrix[trg_lig_idx, mdl_lig_idx]
                self._score_dict[cname][rnum] = score
        return self._score_dict

    @property
    def aux(self):
        """ Get a dictionary of score details, keyed by model ligand
 
        Extract dict with something like:
        ``scorer.score[lig.GetChain().GetName()][lig.GetNumber()]``.
        The returned info dicts are based on :attr:`~assignment`. The content is
        documented in the respective child class.

        :rtype: :class:`dict`
        """
        if self._aux_dict is None:
            self._aux_dict = dict()
            for (trg_lig_idx, mdl_lig_idx) in self.assignment:
                mdl_lig = self.model_ligands[mdl_lig_idx]
                cname = mdl_lig.GetChain().GetName()
                rnum = mdl_lig.GetNumber()
                if cname not in self._aux_dict:
                    self._aux_dict[cname] = dict()
                d = self.aux_matrix[trg_lig_idx, mdl_lig_idx]
                self._aux_dict[cname][rnum] = d
        return self._aux_dict


    @property
    def unassigned_target_ligands(self):
        """ Get indices of target ligands which are not assigned 

        :rtype: :class:`list` of :class:`int`
        """
        # compute on-the-fly, no need for caching
        assigned = set([x[0] for x in self.assignment])
        return [x for x in range(len(self.target_ligands)) if x not in assigned]

    @property
    def unassigned_model_ligands(self):
        """ Get indices of model ligands which are not assigned 

        :rtype: :class:`list` of :class:`int`
        """
        # compute on-the-fly, no need for caching
        assigned = set([x[1] for x in self.assignment])
        return [x for x in range(len(self.model_ligands)) if x not in assigned]

    def get_target_ligand_state_report(self, trg_lig_idx):
        """ Get summary of states observed with respect to all model ligands

        Mainly for debug purposes 

        :param trg_lig_idx: Index of target ligand for which report should be
                            generated
        :type trg_lig_idx: :class:`int`
        """
        return self._get_report(self.target_ligand_states[trg_lig_idx],
                                self.state_matrix[trg_lig_idx,:])

    def get_model_ligand_state_report(self, mdl_lig_idx):
        """ Get summary of states observed with respect to all target ligands

        Mainly for debug purposes 

        :param mdl_lig_idx: Index of model ligand for which report should be
                            generated
        :type mdl_lig_idx: :class:`int`
        """
        return self._get_report(self.model_ligand_states[mdl_lig_idx],
                                self.state_matrix[:, mdl_lig_idx])

    def _get_report(self, ligand_state, pair_states):
        """ Helper
        """
        pair_report = list()
        for s in np.unique(pair_states):
            desc = self.state_decoding[s]
            indices = np.flatnonzero(pair_states == s).tolist()
            pair_report.append({"state": s,
                                "short desc": desc[0],
                                "desc": desc[1],
                                "indices": indices})

        desc = self.state_decoding[ligand_state]
        ligand_report = {"state": ligand_state,
                         "short desc": desc[0],
                         "desc": desc[1]}

        return (ligand_report, pair_report)

    def guess_target_ligand_unassigned_reason(self, trg_lig_idx):
        """ Makes an educated guess why target ligand is not assigned

        This either returns actual error states or custom states that are
        derived from them. Currently, the following reasons are reported:

        * `no_ligand`: there was no ligand in the model.
        * `disconnected`: the ligand graph was disconnected.
        * `identity`: the ligand was not found in the model (by graph
          isomorphism). Check your ligand connectivity.
        * `no_iso`: no full isomorphic match could be found. Try enabling
          `substructure_match=True` if the target ligand is incomplete.
        * `symmetries`: too many symmetries were found (by graph isomorphisms).
          Try to increase `max_symmetries`.
        * `stoichiometry`: there was a possible assignment in the model, but
          the model ligand was already assigned to a different target ligand.
          This indicates different stoichiometries.
        * `no_contact` (LDDT-PLI only): There were no LDDT contacts between
          the binding site and the ligand, and LDDT-PLI is undefined.
        * `target_binding_site` (SCRMSD only): no polymer residues were in
          proximity of the target ligand.
        * `model_binding_site` (SCRMSD only): the binding site was not found
          in the model. Either the binding site was not modeled or the model
          ligand was positioned too far in combination with
          `full_bs_search=False`.

        :param trg_lig_idx: Index of target ligand
        :type trg_lig_idx: :class:`int`
        :returns: :class:`tuple` with two elements: 1) keyword 2) human readable
                  sentence describing the issue, (\"unknown\",\"unknown\") if
                  nothing obvious can be found.
        :raises: :class:`RuntimeError` if specified target ligand is assigned
        """
        if trg_lig_idx not in self.unassigned_target_ligands:
            raise RuntimeError("Specified target ligand is not unassigned")

        # hardcoded tuple if there is simply nothing we can assign it to
        if len(self.model_ligands) == 0:
            return ("no_ligand", "No ligand in the model")

        # if something with the ligand itself is wrong, we can be pretty sure
        # thats why the ligand is unassigned
        if self.target_ligand_states[trg_lig_idx] != 0:
            return self.state_decoding[self.target_ligand_states[trg_lig_idx]]

        # The next best guess comes from looking at pair states
        tmp = np.unique(self.state_matrix[trg_lig_idx,:])

        # In case of any 0, it could have been assigned so it's probably 
        # just not selected due to different stoichiometry - this is no
        # defined state, we just return a hardcoded tuple in this case
        if 0 in tmp:
            return ("stoichiometry",
                    "Ligand was already assigned to an other "
                    "model ligand (different stoichiometry)")

        # maybe it's a symmetry issue?
        if 2 in tmp:
            return self.state_decoding[2]

        # if the state is 6 (single_ligand_issue), there is an issue with its
        # target counterpart.
        if 6 in tmp:
            mdl_idx = np.where(self.state_matrix[trg_lig_idx,:]==6)[0]
            for i in mdl_idx:
                if self.model_ligand_states[i] == 0:
                    raise RuntimeError("This should never happen")
                if self.model_ligand_states[i] != 4 or len(tmp) == 1:
                    # Don't report disconnected if only 1 model ligand is
                    # disconnected, unless that's the only reason
                    return self.state_decoding[self.model_ligand_states[i]]

        # get rid of remaining single ligand issues (only disconnected error)
        if 6 in tmp and len(tmp) > 1:
            tmp = tmp[tmp!=6]

        # prefer everything over identity state
        if 1 in tmp and len(tmp) > 1:
            tmp = tmp[tmp!=1]

        # just return whatever is left
        return self.state_decoding[tmp[0]]


    def guess_model_ligand_unassigned_reason(self, mdl_lig_idx):
        """ Makes an educated guess why model ligand is not assigned

        This either returns actual error states or custom states that are
        derived from them. Currently, the following reasons are reported:

        * `no_ligand`: there was no ligand in the target.
        * `disconnected`: the ligand graph is disconnected.
        * `identity`: the ligand was not found in the target (by graph or
          subgraph isomorphism). Check your ligand connectivity.
        * `no_iso`: no full isomorphic match could be found. Try enabling
          `substructure_match=True` if the target ligand is incomplete.
        * `symmetries`: too many symmetries were found (by graph isomorphisms).
          Try to increase `max_symmetries`.
        * `stoichiometry`: there was a possible assignment in the target, but
          the model target was already assigned to a different model ligand.
          This indicates different stoichiometries.
        * `no_contact` (LDDT-PLI only): There were no LDDT contacts between
          the binding site and the ligand, and LDDT-PLI is undefined.
        * `target_binding_site` (SCRMSD only): a potential assignment was found
          in the target, but there were no polymer residues in proximity of the
          ligand in the target.
        * `model_binding_site` (SCRMSD only): a potential assignment was
          found in the target, but no binding site was found in the model.
          Either the binding site was not modeled or the model ligand was
          positioned too far in combination with `full_bs_search=False`.

        :param mdl_lig_idx: Index of model ligand
        :type mdl_lig_idx: :class:`int`
        :returns: :class:`tuple` with two elements: 1) keyword 2) human readable
                  sentence describing the issue, (\"unknown\",\"unknown\") if
                  nothing obvious can be found.
        :raises: :class:`RuntimeError` if specified model ligand is assigned
        """
        if mdl_lig_idx not in self.unassigned_model_ligands:
            raise RuntimeError("Specified model ligand is not unassigned")

        # hardcoded tuple if there is simply nothing we can assign it to
        if len(self.target_ligands) == 0:
            return ("no_ligand", "No ligand in the target")

        # if something with the ligand itself is wrong, we can be pretty sure
        # thats why the ligand is unassigned
        if self.model_ligand_states[mdl_lig_idx] != 0:
            return self.state_decoding[self.model_ligand_states[mdl_lig_idx]]

        # The next best guess comes from looking at pair states
        tmp = np.unique(self.state_matrix[:,mdl_lig_idx])

        # In case of any 0, it could have been assigned so it's probably 
        # just not selected due to different stoichiometry - this is no
        # defined state, we just return a hardcoded tuple in this case
        if 0 in tmp:
            return ("stoichiometry",
                    "Ligand was already assigned to an other "
                    "model ligand (different stoichiometry)")

        # maybe its a symmetry issue?
        if 2 in tmp:
            return self.state_decoding[2]

        # if the state is 6 (single_ligand_issue), there is an issue with its
        # target counterpart.
        if 6 in tmp:
            trg_idx = np.where(self.state_matrix[:,mdl_lig_idx]==6)[0]
            for i in trg_idx:
                if self.target_ligand_states[i] == 0:
                    raise RuntimeError("This should never happen")
                if self.target_ligand_states[i] != 4 or len(tmp) == 1:
                    # Don't report disconnected if only 1 target ligand is
                    # disconnected, unless that's the only reason
                    return self.state_decoding[self.target_ligand_states[i]]

        # get rid of remaining single ligand issues (only disconnected error)
        if 6 in tmp and len(tmp) > 1:
            tmp = tmp[tmp!=6]

        # prefer everything over identity state
        if 1 in tmp and len(tmp) > 1:
            tmp = tmp[tmp!=1]

        # just return whatever is left
        return self.state_decoding[tmp[0]]

    @property
    def unassigned_model_ligands_reasons(self):
        return_dict = dict()
        for i in self.unassigned_model_ligands:
            lig = self.model_ligands[i]
            cname = lig.GetChain().GetName()
            rnum = lig.GetNumber()
            if cname not in return_dict:
                return_dict[cname] = dict()
            return_dict[cname][rnum] = \
            self.guess_model_ligand_unassigned_reason(i)[0]
        return return_dict
    
    @property
    def unassigned_target_ligands_reasons(self):
        return_dict = dict()
        for i in self.unassigned_target_ligands:
            lig = self.target_ligands[i]
            cname = lig.GetChain().GetName()
            rnum = lig.GetNumber()
            if cname not in return_dict:
                return_dict[cname] = dict()
            return_dict[cname][rnum] = \
            self.guess_target_ligand_unassigned_reason(i)[0]
        return return_dict

    @property
    def _chain_mapper(self):
        """ Chain mapper object for the given :attr:`target`.

        Can be used by child classes if needed, constructed with
        *resnum_alignments* flag

        :type: :class:`ost.mol.alg.chain_mapping.ChainMapper`
        """
        if self.__chain_mapper is None:
            with _SinkVerbosityLevel():
                self.__chain_mapper = \
                chain_mapping.ChainMapper(self.target,
                                          n_max_naive=1e9,
                                          resnum_alignments=self.resnum_alignments,
                                          min_pep_length=self.min_pep_length,
                                          min_nuc_length=self.min_nuc_length,
                                          pep_seqid_thr=self.pep_seqid_thr,
                                          nuc_seqid_thr=self.nuc_seqid_thr,
                                          mdl_map_pep_seqid_thr=self.mdl_map_pep_seqid_thr,
                                          mdl_map_nuc_seqid_thr=self.mdl_map_nuc_seqid_thr,
                                          seqres = self.seqres,
                                          trg_seqres_mapping = self.trg_seqres_mapping)
        return self.__chain_mapper

    @property
    def _chem_mapping(self):
        if self.__chem_mapping is None:
            self.__chem_mapping, self.__chem_group_alns, \
            self.__mdl_chains_without_chem_mapping, self.__chain_mapping_mdl = \
            self._chain_mapper.GetChemMapping(self.model)
        return self.__chem_mapping

    @property
    def _chem_group_alns(self):
        if self.__chem_group_alns is None:   
            self.__chem_mapping, self.__chem_group_alns, \
            self.__mdl_chains_without_chem_mapping, self.__chain_mapping_mdl = \
            self._chain_mapper.GetChemMapping(self.model)
        return self.__chem_group_alns

    @property
    def _ref_mdl_alns(self):
        if self.__ref_mdl_alns is None:
            self.__ref_mdl_alns = \
            chain_mapping._GetRefMdlAlns(self._chain_mapper.chem_groups,
                                    self._chain_mapper.chem_group_alignments,
                                    self._chem_mapping,
                                    self._chem_group_alns)
        return self.__ref_mdl_alns
  
    @property
    def _chain_mapping_mdl(self):
        if self.__chain_mapping_mdl is None:
            with _SinkVerbosityLevel():
                self.__chem_mapping, self.__chem_group_alns, \
                self.__mdl_chains_without_chem_mapping, self.__chain_mapping_mdl = \
                self._chain_mapper.GetChemMapping(self.model)
        return self.__chain_mapping_mdl

    @property
    def _mdl_chains_without_chem_mapping(self):
        if self.__mdl_chains_without_chem_mapping is None:
            self.__chem_mapping, self.__chem_group_alns, \
            self.__mdl_chains_without_chem_mapping, self.__chain_mapping_mdl = \
            self._chain_mapper.GetChemMapping(self.model)
        return self.__mdl_chains_without_chem_mapping

    def _compute_scores(self):
        """
        Compute score for every possible target-model ligand pair and store the
        result in internal matrices.
        """
        ##############################
        # Create the result matrices #
        ##############################
        shape = (len(self.target_ligands), len(self.model_ligands))
        self._score_matrix = np.full(shape, np.nan, dtype=np.float32)
        self._coverage_matrix = np.full(shape, np.nan, dtype=np.float32)
        self._state_matrix = np.full(shape, 0, dtype=np.int32)
        self._model_ligand_states = np.zeros(len(self.model_ligands))
        self._target_ligand_states = np.zeros(len(self.target_ligands))
        self._aux_matrix = np.empty(shape, dtype=dict)

        # precompute ligand graphs
        target_graphs = \
        [_ResidueToGraph(l, by_atom_index=True) for l in self.target_ligands]
        model_graphs = \
        [_ResidueToGraph(l, by_atom_index=True) for l in self.model_ligands]

        for g_idx, g in enumerate(target_graphs):
            if not networkx.is_connected(g):
                self._target_ligand_states[g_idx] = 4
                self._state_matrix[g_idx,:] = 6
                msg = "Disconnected graph observed for target ligand "
                msg += str(self.target_ligands[g_idx])
                LogWarning(msg)

        for g_idx, g in enumerate(model_graphs):
            if not networkx.is_connected(g):
                self._model_ligand_states[g_idx] = 4
                self._state_matrix[:,g_idx] = 6
                msg = "Disconnected graph observed for model ligand "
                msg += str(self.model_ligands[g_idx])
                LogWarning(msg)


        LogScript("Computing pairwise scores for all %s x %s ligands" % shape)
        for target_id, target_ligand in enumerate(self.target_ligands):
            LogInfo("Analyzing target ligand %s" % target_ligand)

            if self._target_ligand_states[target_id] == 4:
                # Disconnected graph - already updated states and reported
                # to LogVerbose
                continue 

            for model_id, model_ligand in enumerate(self.model_ligands):
                LogInfo("Comparing to model ligand %s" % model_ligand)

                #########################################################
                # Compute symmetries for given target/model ligand pair #
                #########################################################

                if self._model_ligand_states[model_id] == 4:
                    # Disconnected graph - already updated states and reported
                    # to LogVerbose
                    continue 

                try:
                    symmetries = ComputeSymmetries(
                        model_ligand, target_ligand,
                        substructure_match=self.substructure_match,
                        by_atom_index=True,
                        max_symmetries=self.max_symmetries,
                        model_graph = model_graphs[model_id],
                        target_graph = target_graphs[target_id])
                    LogInfo("Ligands %s and %s symmetry match" % (
                        str(model_ligand), str(target_ligand)))
                except NoSymmetryError:
                    # Ligands are different - skip
                    LogInfo("No symmetry between %s and %s" % (
                        str(model_ligand), str(target_ligand)))
                    self._state_matrix[target_id, model_id] = 1
                    continue
                except TooManySymmetriesError:
                    # Ligands are too symmetrical - skip
                    LogWarning("Too many symmetries between %s and %s" % (
                        str(model_ligand), str(target_ligand)))
                    self._state_matrix[target_id, model_id] = 2
                    continue
                except NoIsomorphicSymmetryError:
                    # Ligands are different - skip
                    LogInfo("No isomorphic symmetry between %s and %s" % (
                        str(model_ligand), str(target_ligand)))
                    self._state_matrix[target_id, model_id] = 3
                    continue
                except DisconnectedGraphError:
                    # this should never happen as we guard against
                    # DisconnectedGraphError when precomputing the graph
                    LogError("Disconnected graph observed for %s and %s" % (
                        str(model_ligand), str(target_ligand)))
                    # just set both ligand states to 4
                    self._model_ligand_states[model_id] = 4
                    self._model_ligand_states[target_id] = 4
                    self._state_matrix[target_id, model_id] = 6
                    continue

                #####################################################
                # Compute score by calling the child class _compute #
                #####################################################
                score, pair_state, target_ligand_state, model_ligand_state, aux\
                 = self._compute(symmetries, target_ligand, model_ligand)

                ############
                # Finalize #
                ############

                # Ensure that returned states are associated with a
                # description. This is a requirement when subclassing
                # LigandScorer => state_decoding dict from base class must
                # be modified in subclass constructor
                if pair_state not in self.state_decoding or \
                   target_ligand_state not in self.state_decoding or \
                   model_ligand_state not in self.state_decoding:
                    raise RuntimeError(f"Subclass returned state "
                                       f"\"{state}\" for which no "
                                       f"description is available. Point "
                                       f"the developer of the used scorer "
                                       f"to this error message.")

                # if any of the ligand states is non-zero, this must be marked
                # by the scorer subclass by specifying a specific pair state
                if target_ligand_state != 0 and pair_state != 6:
                    raise RuntimeError("Observed non-zero target-ligand "
                                       "state which must trigger certain "
                                       "pair state. Point the developer of "
                                       "the used scorer to this error message")

                if model_ligand_state != 0 and pair_state != 6:
                    raise RuntimeError("Observed non-zero model-ligand "
                                       "state which must trigger certain "
                                       "pair state. Point the developer of "
                                       "the used scorer to this error message")

                self._state_matrix[target_id, model_id] = pair_state
                self._target_ligand_states[target_id] = target_ligand_state
                self._model_ligand_states[model_id] = model_ligand_state
                if pair_state == 0:
                    if score is None or np.isnan(score):
                        raise RuntimeError("LigandScorer returned invalid "
                                           "score despite 0 error state")
                    # it's a valid score!
                    self._score_matrix[target_id, model_id] = score
                    cvg = len(symmetries[0][0]) / len(model_ligand.atoms)
                    self._coverage_matrix[target_id, model_id] = cvg
                    self._aux_matrix[target_id, model_id] = aux

    def _compute(self, symmetries, target_ligand, model_ligand):
        """ Compute score for specified ligand pair - defined by child class

        Raises :class:`NotImplementedError` if not implemented by child class.

        :param symmetries: Defines symmetries between *target_ligand* and
                           *model_ligand*. Return value of
                           :func:`ComputeSymmetries`
        :type symmetries: :class:`list` of :class:`tuple` with two elements
                          each: 1) :class:`list` of atom indices in
                          *target_ligand* 2) :class:`list` of respective atom
                          indices in *model_ligand*
        :param target_ligand: The target ligand
        :type target_ligand: :class:`ost.mol.ResidueHandle` or
                             :class:`ost.mol.ResidueView`
        :param model_ligand: The model ligand
        :type model_ligand: :class:`ost.mol.ResidueHandle` or
                            :class:`ost.mol.ResidueView`

        :returns: A :class:`tuple` with three elements: 1) a score
                  (:class:`float`) 2) state (:class:`int`).
                  3) auxiliary data for this ligand pair (:class:`dict`).
                  If state is 0, the score and auxiliary data will be
                  added to :attr:`~score_matrix` and :attr:`~aux_matrix` as well
                  as the respective value in :attr:`~coverage_matrix`.
                  Returned score must be valid in this case (not None/NaN).
                  Child specific non-zero states must be >= 10.
        """
        raise NotImplementedError("_compute must be implemented by child "
                                  "class")

    def _score_dir(self):
        """ Return direction of score - defined by child class

        Relevant for ligand assignment. Must return a string in ['+', '-'].
        '+' for ascending scores, i.e. higher is better (lddt etc.)
        '-' for descending scores, i.e. lower is better (rmsd etc.)
        """
        raise NotImplementedError("_score_dir must be implemented by child "
                                  "class")

    def _copy_ligand(self, l, ent, ed, rename_ligand_chain):
        """ Copies ligand into entity and returns residue handle
        """
        new_chain = ent.FindChain(l.chain.name)
        if not new_chain.IsValid():
            new_chain = ed.InsertChain(l.chain.name)
            ed.SetChainType(new_chain, mol.ChainType.CHAINTYPE_NON_POLY)
        else:
            # Does a residue with the same name already exist?
            already_exists = new_chain.FindResidue(l.number).IsValid()
            if already_exists:
                if rename_ligand_chain:
                    chain_ext = 2  # Extend the chain name by this
                    while True:
                        new_chain_name = \
                        l.chain.name + "_" + str(chain_ext)
                        new_chain = ent.FindChain(new_chain_name)
                        if new_chain.IsValid():
                            chain_ext += 1
                            continue
                        else:
                            new_chain = \
                            ed.InsertChain(new_chain_name)
                            break
                    LogInfo("Moved ligand residue %s to new chain %s" % (
                            l.qualified_name, new_chain.name))
                else:
                    msg = \
                    "A residue number %s already exists in chain %s" % (
                        l.number, l.chain.name)
                    raise RuntimeError(msg)

        # Add the residue with its original residue number
        new_res = ed.AppendResidue(new_chain, l.name, l.number)
        # Add atoms
        for old_atom in l.atoms:
            ed.InsertAtom(new_res, old_atom.name, old_atom.pos, 
                element=old_atom.element, occupancy=old_atom.occupancy,
                b_factor=old_atom.b_factor, is_hetatm=old_atom.is_hetatom)
        # Add bonds
        for old_atom in l.atoms:
            for old_bond in old_atom.bonds:
                new_first = new_res.FindAtom(old_bond.first.name)
                new_second = new_res.FindAtom(old_bond.second.name)
                ed.Connect(new_first, new_second, old_bond.bond_order)
        new_res.SetIsLigand(True)
        return new_res

    def _cleanup_polymer_ent(self, ent, clib):
        """ In principle molck light but logs LigandScorer specific warnings

        Only to be applied to polymer entity

        1) removes atoms with elements set to H or D (not logged as there is no
           effect on scoring)
        2) removes residues with no entry in component dictionary
        3) removes all residues that are not peptide_liking or
           nucleotide_linking according component dictionary
        4) removes unknown atoms according to component dictionary
        5) reruns processor
        """

        cleanup_log = {"cleaned_residues": {"no_clib": [],
                                            "not_linking": []},
                       "cleaned_atoms": {"unknown_atoms": []}}

        # 1)
        hydrogen_sel = ent.Select("ele == H or ele == D")
        if hydrogen_sel.GetAtomCount() > 0:
            # just do, no logging as it has no effect on scoring
            ent = ost.mol.CreateEntityFromView(ent.Select(
                      "ele != H and ele != D"), include_exlusive_atoms=False)

        # extract residues/atoms for 2), 3) and 4) 
        not_in_clib = list()
        not_linking = list()
        unknown_atom = list()

        for r in ent.residues:
            comp = clib.FindCompound(r.GetName())
            if comp is None:
                not_in_clib.append(r)
                continue
            if not (comp.IsPeptideLinking() or comp.IsNucleotideLinking()):
                not_linking.append(r)
                continue
            comp_anames = set([a.name for a in comp.atom_specs])
            for a in r.atoms:
                if a.name not in comp_anames:
                    unknown_atom.append(a)

        # 2)
        if len(not_in_clib) > 0:
            cleanup_log["cleaned_residues"]["no_clib"] = \
            [_QualifiedResidueNotation(r) for r in not_in_clib]
            msg = ("Expected all residues in receptor structure to be defined in "
                   "compound library but this is not the case. "
                   "Please refer to the OpenStructure website if an updated "
                   "library is sufficient to solve the problem: "
                   "https://openstructure.org/docs/conop/compoundlib/ "
                   "These residues will not be considered for scoring (which "
                   "may also affect pre-processing steps such as alignments): ")
            msg += ','.join(cleanup_log["cleaned_residues"]["no_clib"])
            ost.LogWarning(msg)
            for r in not_in_clib:
                r.SetIntProp("clib", 1)
            ent = ost.mol.CreateEntityFromView(ent.Select("grclib:0!=1"),
                      include_exlusive_atoms=False)

        # 3)
        if len(not_linking) > 0:
            cleanup_log["cleaned_residues"]["not_linking"] = \
            [_QualifiedResidueNotation(r) for r in not_linking]
            msg = ("Expected all residues in receptor structure to be peptide "
                   "linking or nucleotide linking according to the compound "
                   "library but this is not the case. "
                   "Please refer to the OpenStructure website if an updated "
                   "library is sufficient to solve the problem: "
                   "https://openstructure.org/docs/conop/compoundlib/ "
                   "These residues will not be considered for scoring (which "
                   "may also affect pre-processing steps such as alignments): ")
            msg += ','.join(cleanup_log["cleaned_residues"]["not_linking"])
            ost.LogWarning(msg)
            for r in not_linking:
                r.SetIntProp("linking", 1)
            ent = ost.mol.CreateEntityFromView(ent.Select("grlinking:0!=1"),
                      include_exlusive_atoms=False)

        # 4)
        if len(unknown_atom) > 0:
            cleanup_log["cleaned_atoms"]["unknown_atoms"] = \
            [_QualifiedAtomNotation(a) for a in unknown_atom]
            msg = ("Expected atom names according to the compound library but "
                   "this is not the case."
                   "Please refer to the OpenStructure website if an updated "
                   "library is sufficient to solve the problem: "
                   "https://openstructure.org/docs/conop/compoundlib/ "
                   "These atoms will not be considered for scoring: ")
            msg += ','.join(cleanup_log["cleaned_atoms"]["unknown_atoms"])
            ost.LogWarning(msg)
            for a in unknown_atom:
                a.SetIntProp("unknown", 1)
            ent = ost.mol.CreateEntityFromView(ent.Select("gaunknown:0!=1"),
                      include_exlusive_atoms=False)

        # 5)
        processor = conop.RuleBasedProcessor(clib)
        processor.Process(ent)

        return (ent, cleanup_log)


def _ResidueToGraph(residue, by_atom_index=False):
    """Return a NetworkX graph representation of the residue.

    :param residue: the residue from which to derive the graph
    :type residue: :class:`ost.mol.ResidueHandle` or
                   :class:`ost.mol.ResidueView`
    :param by_atom_index: Set this parameter to True if you need the nodes to
                          be labeled by atom index (within the residue).
                          Otherwise, if False, the nodes will be labeled by
                          atom names.
    :type by_atom_index: :class:`bool`
    :rtype: :class:`~networkx.classes.graph.Graph`

    Nodes are labeled with the Atom's uppercase
    :attr:`~ost.mol.AtomHandle.element`.
    """
    nxg = networkx.Graph()

    for atom in residue.atoms:
        nxg.add_node(atom.name, element=atom.element.upper())

    # This will list all edges twice - once for every atom of the pair.
    # But as of NetworkX 3.0 adding the same edge twice has no effect,
    # so we're good.
    nxg.add_edges_from([(
        b.first.name,
        b.second.name) for a in residue.atoms for b in a.GetBondList()])

    if by_atom_index:
        nxg = networkx.relabel_nodes(nxg,
                                     {a: b for a, b in zip(
                                         [a.name for a in residue.atoms],
                                         range(len(residue.atoms)))},
                                     True)
    return nxg

def ComputeSymmetries(model_ligand, target_ligand, substructure_match=False,
                      by_atom_index=False, return_symmetries=True,
                      max_symmetries=1e6, model_graph = None,
                      target_graph = None):
    """Return a list of symmetries (isomorphisms) of the model onto the target
    residues.

    :param model_ligand: The model ligand
    :type model_ligand: :class:`ost.mol.ResidueHandle` or
                        :class:`ost.mol.ResidueView`
    :param target_ligand: The target ligand
    :type target_ligand: :class:`ost.mol.ResidueHandle` or
                         :class:`ost.mol.ResidueView`
    :param substructure_match: Set this to True to allow partial ligands
                               in the reference.
    :type substructure_match: :class:`bool`
    :param by_atom_index: Set this parameter to True if you need the symmetries
                          to refer to atom index (within the residue).
                          Otherwise, if False, the symmetries refer to atom
                          names.
    :type by_atom_index: :class:`bool`
    :type return_symmetries: If Truthy, return the mappings, otherwise simply
                             return True if a mapping is found (and raise if
                             no mapping is found). This is useful to quickly
                             find out if a mapping exist without the expensive
                             step to find all the mappings.
    :type return_symmetries: :class:`bool`
    :param max_symmetries: If more than that many isomorphisms exist, raise
      a :class:`TooManySymmetriesError`. This can only be assessed by
      generating at least that many isomorphisms and can take some time.
    :type max_symmetries: :class:`int`
    :raises: :class:`NoSymmetryError` when no symmetry can be found;
             :class:`NoIsomorphicSymmetryError` in case of isomorphic
             subgraph but *substructure_match* is False;
             :class:`TooManySymmetriesError` when more than `max_symmetries`
             isomorphisms are found; :class:`DisconnectedGraphError` if
             graph for *model_ligand*/*target_ligand* is disconnected.
    """

    # Get the Graphs of the ligands
    if model_graph is None:
        model_graph = _ResidueToGraph(model_ligand,
                                      by_atom_index=by_atom_index)

    if not networkx.is_connected(model_graph):
        msg = "Disconnected graph for model ligand %s" % model_ligand
        raise DisconnectedGraphError(msg)


    if target_graph is None:
        target_graph = _ResidueToGraph(target_ligand,
                                       by_atom_index=by_atom_index)

    if not networkx.is_connected(target_graph):
        msg = "Disconnected graph for target ligand %s" % target_ligand
        raise DisconnectedGraphError(msg)

    # Note the argument order (model, target) which differs from spyrmsd.
    # This is because a subgraph of model is isomorphic to target - but not the
    # opposite as we only consider partial ligands in the reference.
    # Make sure to generate the symmetries correctly in the end
    gm = networkx.algorithms.isomorphism.GraphMatcher(
        model_graph, target_graph, node_match=lambda x, y:
        x["element"] == y["element"])
    if gm.is_isomorphic():
        if not return_symmetries:
            return True
        symmetries = []
        for i, isomorphism in enumerate(gm.isomorphisms_iter()):
            if i >= max_symmetries:
                raise TooManySymmetriesError(
                    "Too many symmetries between %s and %s" % (
                        str(model_ligand), str(target_ligand)))
            symmetries.append((list(isomorphism.values()),
                               list(isomorphism.keys())))
        assert len(symmetries) > 0
        LogVerbose("Found %s isomorphic mappings (symmetries)" % len(symmetries))
    elif gm.subgraph_is_isomorphic() and substructure_match:
        if not return_symmetries:
            return True
        symmetries = []
        for i, isomorphism in enumerate(gm.subgraph_isomorphisms_iter()):
            if i >= max_symmetries:
                raise TooManySymmetriesError(
                    "Too many symmetries between %s and %s" % (
                        str(model_ligand), str(target_ligand)))
            symmetries.append((list(isomorphism.values()),
                               list(isomorphism.keys())))
        assert len(symmetries) > 0
        # Assert that all the atoms in the target are part of the substructure
        assert len(symmetries[0][0]) == len(target_ligand.atoms)
        n_sym = len(symmetries)
        LogVerbose("Found %s subgraph isomorphisms (symmetries)" % n_sym)
    elif gm.subgraph_is_isomorphic():
        LogVerbose("Found subgraph isomorphisms (symmetries), but"
                 " ignoring because substructure_match=False")
        raise NoIsomorphicSymmetryError("No symmetry between %s and %s" % (
            str(model_ligand), str(target_ligand)))
    else:
        LogVerbose("Found no isomorphic mappings (symmetries)")
        raise NoSymmetryError("No symmetry between %s and %s" % (
            str(model_ligand), str(target_ligand)))

    return symmetries

class NoSymmetryError(ValueError):
    """ Exception raised when no symmetry can be found.
    """
    pass

class NoIsomorphicSymmetryError(ValueError):
    """ Exception raised when no isomorphic symmetry can be found

    There would be isomorphic subgraphs for which symmetries can
    be found, but substructure_match is disabled
    """
    pass

class TooManySymmetriesError(ValueError):
    """ Exception raised when too many symmetries are found.
    """
    pass

class DisconnectedGraphError(Exception):
    """ Exception raised when the ligand graph is disconnected.
    """
    pass

# specify public interface
__all__ = ('LigandScorer', 'ComputeSymmetries', 'NoSymmetryError',
           'NoIsomorphicSymmetryError', 'TooManySymmetriesError',
           'DisconnectedGraphError')