File: ligand_scoring_lddtpli.py

package info (click to toggle)
openstructure 2.11.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 206,240 kB
  • sloc: cpp: 188,571; python: 36,686; ansic: 34,298; fortran: 3,275; sh: 312; xml: 146; makefile: 29
file content (935 lines) | stat: -rw-r--r-- 45,430 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
import numpy as np

from ost import LogWarning, LogInfo
from ost import geom
from ost import mol
from ost import seq

from ost.mol.alg import lddt
from ost.mol.alg import chain_mapping
from ost.mol.alg import ligand_scoring_base

class LDDTPLIScorer(ligand_scoring_base.LigandScorer):
    """ :class:`LigandScorer` implementing LDDT-PLI.

    LDDT-PLI is an LDDT score considering contacts between ligand and
    receptor. Where receptor consists of protein and nucleic acid chains that
    pass the criteria for :class:`chain mapping <ost.mol.alg.chain_mapping>`.
    This means ignoring other ligands, waters, short polymers as well as any
    incorrectly connected chains that may be in proximity.

    :class:`LDDTPLIScorer` computes a score for a specific pair of target/model
    ligands. Given a target/model ligand pair, all possible mappings of
    model chains onto their chemically equivalent target chains are enumerated.
    For each of these enumerations, all possible symmetries, i.e. atom-atom
    assignments of the ligand as given by :class:`LigandScorer`, are evaluated
    and an LDDT-PLI score is computed. The best possible LDDT-PLI score is
    returned.

    The LDDT-PLI score is a variant of LDDT with a custom inclusion radius
    (`lddt_pli_radius`), no stereochemistry checks, and which penalizes
    contacts added in the model within `lddt_pli_radius` by default
    (can be changed with the `add_mdl_contacts` flag) but only if the involved
    atoms can be mapped to the target. This is a requirement to
    1) extract the respective reference distance from the target
    2) avoid usage of contacts for which we have no experimental evidence.
    One special case are contacts from chains that are not mapped to the target
    binding site. It is very well possible that we have experimental evidence
    for this chain though its just too far away from the target binding site.
    We therefore try to map these contacts to the chain in the target with
    equivalent sequence that is closest to the target binding site. If the
    respective atoms can be mapped there, the contact is considered not
    fulfilled and added as penalty.

    Populates :attr:`LigandScorer.aux_data` with following :class:`dict` keys:

    * lddt_pli: The LDDT-PLI score
    * lddt_pli_n_contacts: Number of contacts considered in LDDT computation
    * target_ligand: The actual target ligand for which the score was computed
    * model_ligand: The actual model ligand for which the score was computed
    * chain_mapping: :class:`dict` with a chain mapping of chains involved in
      binding site - key: trg chain name, value: mdl chain name

    :param model: Passed to parent constructor - see :class:`LigandScorer`.
    :type model: :class:`ost.mol.EntityHandle`/:class:`ost.mol.EntityView`
    :param target: Passed to parent constructor - see :class:`LigandScorer`.
    :type target: :class:`ost.mol.EntityHandle`/:class:`ost.mol.EntityView`
    :param model_ligands: Passed to parent constructor - see
                          :class:`LigandScorer`.
    :type model_ligands: :class:`list`
    :param target_ligands: Passed to parent constructor - see
                           :class:`LigandScorer`.
    :type target_ligands: :class:`list`
    :param resnum_alignments: Passed to parent constructor - see
                              :class:`LigandScorer`.
    :type resnum_alignments: :class:`bool`
    :param rename_ligand_chain: Passed to parent constructor - see
                                :class:`LigandScorer`.
    :type rename_ligand_chain: :class:`bool`
    :param substructure_match: Passed to parent constructor - see
                               :class:`LigandScorer`.
    :type substructure_match: :class:`bool`
    :param coverage_delta: Passed to parent constructor - see
                           :class:`LigandScorer`.
    :type coverage_delta: :class:`float`
    :param max_symmetries: Passed to parent constructor - see
                           :class:`LigandScorer`.
    :type max_symmetries: :class:`int`
    :param lddt_pli_radius: LDDT inclusion radius for LDDT-PLI.
    :type lddt_pli_radius: :class:`float`
    :param add_mdl_contacts: Whether to penalize added model contacts.
    :type add_mdl_contacts: :class:`bool`
    :param lddt_pli_thresholds: Distance difference thresholds for LDDT.
    :type lddt_pli_thresholds: :class:`list` of :class:`float`
    :param lddt_pli_binding_site_radius: Pro param - dont use. Providing a value
                                         Restores behaviour from previous
                                         implementation that first extracted a
                                         binding site with strict distance
                                         threshold and computed LDDT-PLI only on
                                         those target residues whereas the
                                         current implementation includes every
                                         atom within *lddt_pli_radius*.
    :type lddt_pli_binding_site_radius: :class:`float`
    :param min_pep_length: See :class:`ost.mol.alg.ligand_scoring_base.LigandScorer`.
    :type min_pep_length: :class:`int`
    :param min_nuc_length: See :class:`ost.mol.alg.ligand_scoring_base.LigandScorer`
    :type min_nuc_length: :class:`int`
    :param pep_seqid_thr: See :class:`ost.mol.alg.ligand_scoring_base.LigandScorer`
    :type pep_seqid_thr: :class:`float`
    :param nuc_seqid_thr: See :class:`ost.mol.alg.ligand_scoring_base.LigandScorer`
    :type nuc_seqid_thr: :class:`float`
    :param mdl_map_pep_seqid_thr: See :class:`ost.mol.alg.ligand_scoring_base.LigandScorer`
    :type mdl_map_pep_seqid_thr: :class:`float`
    :param mdl_map_nuc_seqid_thr: See :class:`ost.mol.alg.ligand_scoring_base.LigandScorer`
    :type mdl_map_nuc_seqid_thr: :class:`float`
    """

    def __init__(self, model, target, model_ligands, target_ligands,
                 resnum_alignments=False, rename_ligand_chain=False,
                 substructure_match=False, coverage_delta=0.2,
                 max_symmetries=1e4, lddt_pli_radius=6.0,
                 add_mdl_contacts=True,
                 lddt_pli_thresholds = [0.5, 1.0, 2.0, 4.0],
                 lddt_pli_binding_site_radius=None,
                 min_pep_length = 6,
                 min_nuc_length = 4, pep_seqid_thr = 95.,
                 nuc_seqid_thr = 95.,
                 mdl_map_pep_seqid_thr = 0.,
                 mdl_map_nuc_seqid_thr = 0.,
                 seqres=None,
                 trg_seqres_mapping=None):

        super().__init__(model, target, model_ligands, target_ligands,
                         resnum_alignments = resnum_alignments,
                         rename_ligand_chain = rename_ligand_chain,
                         substructure_match = substructure_match,
                         coverage_delta = coverage_delta,
                         max_symmetries = max_symmetries,
                         min_pep_length = min_pep_length,
                         min_nuc_length = min_nuc_length,
                         pep_seqid_thr = pep_seqid_thr,
                         nuc_seqid_thr = nuc_seqid_thr,
                         mdl_map_pep_seqid_thr = mdl_map_pep_seqid_thr,
                         mdl_map_nuc_seqid_thr = mdl_map_nuc_seqid_thr,
                         seqres = seqres,
                         trg_seqres_mapping = trg_seqres_mapping)

        self.lddt_pli_radius = lddt_pli_radius
        self.add_mdl_contacts = add_mdl_contacts
        self.lddt_pli_thresholds = lddt_pli_thresholds
        self.lddt_pli_binding_site_radius = lddt_pli_binding_site_radius

        # lazily precomputed variables to speedup lddt-pli computation
        self._lddt_pli_target_data = dict()
        self._lddt_pli_model_data = dict()
        self.__mappable_atoms = None

        # update state decoding from parent with subclass specific stuff
        self.state_decoding[10] = ("no_contact",
                                   "There were no LDDT contacts between the "
                                   "binding site and the ligand, and LDDT-PLI "
                                   "is undefined.")
        self.state_decoding[20] = ("unknown",
                                   "Unknown error occured in LDDTPLIScorer")

    def _compute(self, symmetries, target_ligand, model_ligand):
        """ Implements interface from parent
        """
        if self.add_mdl_contacts:
            LogInfo("Computing LDDT-PLI with added model contacts")
            result = self._compute_lddt_pli_add_mdl_contacts(symmetries,
                                                             target_ligand,
                                                             model_ligand)
        else:
            LogInfo("Computing LDDT-PLI without added model contacts")
            result = self._compute_lddt_pli_classic(symmetries,
                                                    target_ligand,
                                                    model_ligand)

        pair_state = 0
        score = result["lddt_pli"]

        if score is None or np.isnan(score):
            if result["lddt_pli_n_contacts"] == 0:
                # it's a space ship!
                pair_state = 10
            else:
                # unknwon error state
                pair_state = 20

        # the ligands get a zero-state...
        target_ligand_state = 0
        model_ligand_state = 0

        return (score, pair_state, target_ligand_state, model_ligand_state,
                result)

    def _score_dir(self):
        """ Implements interface from parent
        """
        return '+'

    def _compute_lddt_pli_add_mdl_contacts(self, symmetries, target_ligand,
                                           model_ligand):

        ###############################
        # Get stuff from model/target #
        ###############################

        trg_residues, trg_bs, trg_chains, trg_ligand_chain, \
        trg_ligand_res, scorer, chem_groups = \
        self._lddt_pli_get_trg_data(target_ligand)

        trg_bs_center = trg_bs.geometric_center

        # Copy to make sure that we don't change anything on underlying
        # references
        # This is not strictly necessary in the current implementation but
        # hey, maybe it avoids hard to debug errors when someone changes things
        ref_indices = [a.copy() for a in scorer.ref_indices_ic]
        ref_distances = [a.copy() for a in scorer.ref_distances_ic]

        # distance hacking... remove any interchain distance except the ones
        # with the ligand
        ligand_start_idx = scorer.chain_start_indices[-1]
        for at_idx in range(ligand_start_idx):
            mask = ref_indices[at_idx] >= ligand_start_idx
            ref_indices[at_idx] = ref_indices[at_idx][mask]
            ref_distances[at_idx] = ref_distances[at_idx][mask]

        mdl_residues, mdl_bs, mdl_chains, mdl_ligand_chain, mdl_ligand_res, \
        chem_mapping = self._lddt_pli_get_mdl_data(model_ligand)

        ####################
        # Setup alignments #
        ####################

        # ref_mdl_alns refers to full chain mapper trg and mdl structures
        # => need to adapt mdl sequence that only contain residues in contact
        #    with ligand
        cut_ref_mdl_alns = self._lddt_pli_cut_ref_mdl_alns(chem_groups,
                                                           chem_mapping,
                                                           mdl_bs, trg_bs)

        ########################################
        # Setup cache for added model contacts #
        ########################################

        # get each chain mapping that we ever observe in scoring
        chain_mappings = list(chain_mapping._ChainMappings(chem_groups,
                                                           chem_mapping))

        # for each mdl ligand atom, we collect all trg ligand atoms that are
        # ever mapped onto it given *symmetries*
        ligand_atom_mappings = [set() for a in mdl_ligand_res.atoms]
        for (trg_sym, mdl_sym) in symmetries:
            for trg_i, mdl_i in zip(trg_sym, mdl_sym):
                ligand_atom_mappings[mdl_i].add(trg_i)

        mdl_ligand_pos = np.zeros((mdl_ligand_res.GetAtomCount(), 3))
        for a_idx, a in enumerate(mdl_ligand_res.atoms):
            p = a.GetPos()
            mdl_ligand_pos[a_idx, 0] = p[0]
            mdl_ligand_pos[a_idx, 1] = p[1]
            mdl_ligand_pos[a_idx, 2] = p[2]

        trg_ligand_pos = np.zeros((trg_ligand_res.GetAtomCount(), 3))
        for a_idx, a in enumerate(trg_ligand_res.atoms):
            p = a.GetPos()
            trg_ligand_pos[a_idx, 0] = p[0]
            trg_ligand_pos[a_idx, 1] = p[1]
            trg_ligand_pos[a_idx, 2] = p[2]

        mdl_lig_hashes = [a.hash_code for a in mdl_ligand_res.atoms]

        symmetric_atoms = np.asarray(sorted(list(scorer.symmetric_atoms)),
                                     dtype=np.int64)

        # two caches to cache things for each chain mapping => lists
        # of len(chain_mappings)
        # 
        # In principle we're caching for each trg/mdl ligand atom pair all
        # information to update ref_indices/ref_distances and resolving the
        # symmetries of the binding site.
        # in detail: each list entry in *scoring_cache* is a dict with
        # key: (mdl_lig_at_idx, trg_lig_at_idx)
        # value: tuple with 4 elements - 1: indices of atoms representing added
        # contacts relative to overall inexing scheme in scorer 2: the
        # respective distances 3: the same but only containing indices towards
        # atoms of the binding site that are considered symmetric 4: the
        # respective indices.
        # each list entry in *penalty_cache* is a list of len N mdl lig atoms.
        # For each mdl lig at it contains a penalty for this mdl lig at. That
        # means the number of contacts in the mdl binding site that can
        # directly be mapped to the target given the local chain mapping but
        # are not present in the target binding site, i.e. interacting atoms are
        # too far away.
        scoring_cache = list()
        penalty_cache = list()

        for mapping in chain_mappings:

            # flat mapping with mdl chain names as key
            flat_mapping = dict()
            for trg_chem_group, mdl_chem_group in zip(chem_groups, mapping):
                for a,b in zip(trg_chem_group, mdl_chem_group):
                    if a is not None and b is not None:
                        flat_mapping[b] = a

            # for each mdl bs atom (as atom hash), the trg bs atoms (as index in
            # scorer)
            bs_atom_mapping = dict()
            for mdl_cname, ref_cname in flat_mapping.items():
                aln = cut_ref_mdl_alns[(ref_cname, mdl_cname)]
                ref_ch = trg_bs.Select(f"cname={mol.QueryQuoteName(ref_cname)}")
                mdl_ch = mdl_bs.Select(f"cname={mol.QueryQuoteName(mdl_cname)}")
                aln.AttachView(0, ref_ch)
                aln.AttachView(1, mdl_ch)
                for col in aln:
                    ref_r = col.GetResidue(0)
                    mdl_r = col.GetResidue(1)
                    if ref_r.IsValid() and mdl_r.IsValid():
                        for mdl_a in mdl_r.atoms:
                            ref_a = ref_r.FindAtom(mdl_a.GetName())
                            if ref_a.IsValid():
                                ref_h = ref_a.handle.hash_code
                                if ref_h in scorer.atom_indices:
                                    mdl_h = mdl_a.handle.hash_code
                                    bs_atom_mapping[mdl_h] = \
                                    scorer.atom_indices[ref_h]

            cache = dict()
            n_penalties = list()

            for mdl_a_idx, mdl_a in enumerate(mdl_ligand_res.atoms):
                n_penalty = 0
                trg_bs_indices = list()
                close_a = mdl_bs.FindWithin(mdl_a.GetPos(),
                                            self.lddt_pli_radius)
                for a in close_a:
                    mdl_a_hash_code = a.hash_code
                    if mdl_a_hash_code in bs_atom_mapping:
                        trg_bs_indices.append(bs_atom_mapping[mdl_a_hash_code])
                    elif mdl_a_hash_code not in mdl_lig_hashes:
                        if a.GetChain().GetName() in flat_mapping:
                            # Its in a mapped chain
                            at_key = (a.GetResidue().GetNumber(), a.name)
                            cname = a.GetChain().name
                            cname_key = (flat_mapping[cname], cname)
                            if at_key in self._mappable_atoms[cname_key]:
                                # Its a contact in the model but not part of
                                # trg_bs. It can still be mapped using the
                                # global mdl_ch/ref_ch alignment
                                # d in ref > self.lddt_pli_radius + max_thresh
                                # => guaranteed to be non-fulfilled contact
                                n_penalty += 1

                n_penalties.append(n_penalty)

                trg_bs_indices = np.asarray(sorted(trg_bs_indices))

                for trg_a_idx in ligand_atom_mappings[mdl_a_idx]:
                    # mask selects entries in trg_bs_indices that are not yet
                    # part of classic LDDT ref_indices for atom at trg_a_idx
                    # => added mdl contacts
                    mask = np.isin(trg_bs_indices,
                                   ref_indices[ligand_start_idx + trg_a_idx],
                                   assume_unique=True, invert=True)
                    added_indices = np.asarray([], dtype=np.int64)
                    added_distances = np.asarray([], dtype=np.float64)
                    if np.sum(mask) > 0:
                        # compute ref distances on reference positions
                        added_indices = trg_bs_indices[mask]
                        tmp = scorer.positions.take(added_indices, axis=0)
                        np.subtract(tmp, trg_ligand_pos[trg_a_idx][None, :],
                                    out=tmp)
                        np.square(tmp, out=tmp)
                        tmp = tmp.sum(axis=1)
                        np.sqrt(tmp, out=tmp)
                        added_distances = tmp

                    # extract the distances towards bs atoms that are symmetric
                    sym_mask = np.isin(added_indices, symmetric_atoms,
                                       assume_unique=True)

                    cache[(mdl_a_idx, trg_a_idx)] = (added_indices,
                                                     added_distances,
                                                     added_indices[sym_mask],
                                                     added_distances[sym_mask])

            scoring_cache.append(cache)
            penalty_cache.append(n_penalties)

        # cache for model contacts towards non mapped trg chains - this is
        # relevant for self._lddt_pli_unmapped_chain_penalty
        # key: tuple in form (trg_ch, mdl_ch)
        # value: yet another dict with
        #   key: ligand_atom_hash
        #   value: n contacts towards respective trg chain that can be mapped
        non_mapped_cache = dict()

        ###############################################################
        # compute LDDT for all possible chain mappings and symmetries #
        ###############################################################

        best_score = -1.0
        best_result = {"lddt_pli": None,
                       "lddt_pli_n_contacts": 0,
                       "chain_mapping": None}

        # dummy alignment for ligand chains which is needed as input later on
        ligand_aln = seq.CreateAlignment()
        trg_s = seq.CreateSequence(trg_ligand_chain.name,
                                   trg_ligand_res.GetOneLetterCode())
        mdl_s = seq.CreateSequence(mdl_ligand_chain.name,
                                   mdl_ligand_res.GetOneLetterCode())
        ligand_aln.AddSequence(trg_s)
        ligand_aln.AddSequence(mdl_s)
        ligand_at_indices =  list(range(ligand_start_idx, scorer.n_atoms))

        sym_idx_collector = [None] * scorer.n_atoms
        sym_dist_collector = [None] * scorer.n_atoms

        for mapping, s_cache, p_cache in zip(chain_mappings, scoring_cache,
                                             penalty_cache):

            lddt_chain_mapping = dict()
            lddt_alns = dict()
            for ref_chem_group, mdl_chem_group in zip(chem_groups, mapping):
                for ref_ch, mdl_ch in zip(ref_chem_group, mdl_chem_group):
                    # some mdl chains can be None
                    if mdl_ch is not None:
                        lddt_chain_mapping[mdl_ch] = ref_ch
                        lddt_alns[mdl_ch] = cut_ref_mdl_alns[(ref_ch, mdl_ch)]

            # add ligand to lddt_chain_mapping/lddt_alns
            lddt_chain_mapping[mdl_ligand_chain.name] = trg_ligand_chain.name
            lddt_alns[mdl_ligand_chain.name] = ligand_aln

            # already process model, positions will be manually hacked for each
            # symmetry - small overhead for variables that are thrown away here
            pos, _, _, _, _, _, lddt_symmetries = \
            scorer._ProcessModel(mdl_bs, lddt_chain_mapping,
                                 residue_mapping = lddt_alns,
                                 nirvana_dist = self.lddt_pli_radius + max(self.lddt_pli_thresholds),
                                 check_resnames = False)

            # estimate a penalty for unsatisfied model contacts from chains
            # that are not in the local trg binding site, but can be mapped in
            # the target.
            # We're using the trg chain with the closest geometric center to
            # the trg binding site that can be mapped to the mdl chain
            # according the chem mapping. An alternative would be to search for
            # the target chain with the minimal number of additional contacts.
            # There is not good solution for this problem...
            unmapped_chains = list()
            already_mapped = set()
            for mdl_ch in mdl_chains:
                if mdl_ch not in lddt_chain_mapping:

                    if mdl_ch in self._mdl_chains_without_chem_mapping:
                        # this mdl chain does not map to any trg chain
                        continue

                    # check which chain in trg is closest
                    chem_grp_idx = None
                    for i, m in enumerate(self._chem_mapping):
                        if mdl_ch in m:
                            chem_grp_idx = i
                            break
                    if chem_grp_idx is None:
                        raise RuntimeError("This should never happen... "
                                           "ask Gabriel...")
                    closest_ch = None
                    closest_dist = None
                    for trg_ch in self._chain_mapper.chem_groups[chem_grp_idx]:
                        if trg_ch not in lddt_chain_mapping.values():
                            if trg_ch not in already_mapped:
                                ch = self._chain_mapper.target.FindChain(trg_ch) 
                                c = ch.geometric_center
                                d = geom.Distance(trg_bs_center, c)
                                if closest_dist is None or d < closest_dist:
                                    closest_dist = d
                                    closest_ch = trg_ch
                    if closest_ch is not None:
                        unmapped_chains.append((closest_ch, mdl_ch))
                        already_mapped.add(closest_ch)

            for (trg_sym, mdl_sym) in symmetries:

                # update positions
                for mdl_i, trg_i in zip(mdl_sym, trg_sym):
                    pos[ligand_start_idx + trg_i, :] = mdl_ligand_pos[mdl_i, :]

                # start new ref_indices/ref_distances from original values
                funky_ref_indices = [np.copy(a) for a in ref_indices]
                funky_ref_distances = [np.copy(a) for a in ref_distances]

                # The only distances from the binding site towards the ligand
                # we care about are the ones from the symmetric atoms to
                # correctly compute scorer._ResolveSymmetries.
                # We collect them while updating distances from added mdl
                # contacts
                for idx in symmetric_atoms:
                    sym_idx_collector[idx] = list()
                    sym_dist_collector[idx] = list()

                # add data from added mdl contacts cache
                added_penalty = 0
                for mdl_i, trg_i in zip(mdl_sym, trg_sym):
                    added_penalty += p_cache[mdl_i]
                    cache = s_cache[mdl_i, trg_i]
                    full_trg_i = ligand_start_idx + trg_i
                    funky_ref_indices[full_trg_i] = \
                    np.append(funky_ref_indices[full_trg_i], cache[0])
                    funky_ref_distances[full_trg_i] = \
                    np.append(funky_ref_distances[full_trg_i], cache[1])
                    for idx, d in zip(cache[2], cache[3]):
                        sym_idx_collector[idx].append(full_trg_i)
                        sym_dist_collector[idx].append(d)

                for idx in symmetric_atoms:
                    funky_ref_indices[idx] = \
                    np.append(funky_ref_indices[idx],
                              np.asarray(sym_idx_collector[idx],
                                         dtype=np.int64))
                    funky_ref_distances[idx] = \
                    np.append(funky_ref_distances[idx],
                              np.asarray(sym_dist_collector[idx],
                                         dtype=np.float64))

                # we can pass funky_ref_indices/funky_ref_distances as
                # sym_ref_indices/sym_ref_distances in
                # scorer._ResolveSymmetries as we only have distances of the bs
                # to the ligand and ligand atoms are "non-symmetric"
                scorer._ResolveSymmetries(pos, self.lddt_pli_thresholds,
                                          lddt_symmetries,
                                          funky_ref_indices,
                                          funky_ref_distances)

                N = sum([len(funky_ref_indices[i]) for i in ligand_at_indices])
                N += added_penalty

                # collect number of expected contacts which can be mapped
                if len(unmapped_chains) > 0:
                    N += self._lddt_pli_unmapped_chain_penalty(unmapped_chains,
                                                               non_mapped_cache,
                                                               mdl_bs,
                                                               mdl_ligand_res,
                                                               mdl_sym)

                conserved = np.sum(scorer._EvalAtoms(pos, ligand_at_indices,
                                                     self.lddt_pli_thresholds,
                                                     funky_ref_indices,
                                                     funky_ref_distances),
                                   axis=0)
                score = None
                if N > 0:
                    score = np.mean(conserved/N)

                if score is not None and score > best_score:
                    best_score = score
                    save_chain_mapping = dict(lddt_chain_mapping)
                    del save_chain_mapping[mdl_ligand_chain.name]
                    best_result = {"lddt_pli": score,
                                   "lddt_pli_n_contacts": N,
                                   "chain_mapping": save_chain_mapping}

        # fill misc info to result object
        best_result["target_ligand"] = target_ligand
        best_result["model_ligand"] = model_ligand

        return best_result


    def _compute_lddt_pli_classic(self, symmetries, target_ligand,
                                  model_ligand):

        ###############################
        # Get stuff from model/target #
        ###############################

        max_r = None
        if self.lddt_pli_binding_site_radius:
            max_r = self.lddt_pli_binding_site_radius

        trg_residues, trg_bs, trg_chains, trg_ligand_chain, \
        trg_ligand_res, scorer, chem_groups = \
        self._lddt_pli_get_trg_data(target_ligand, max_r = max_r)

        # Copy to make sure that we don't change anything on underlying
        # references
        # This is not strictly necessary in the current implementation but
        # hey, maybe it avoids hard to debug errors when someone changes things
        ref_indices = [a.copy() for a in scorer.ref_indices_ic]
        ref_distances = [a.copy() for a in scorer.ref_distances_ic]

        # no matter what mapping/symmetries, the number of expected
        # contacts stays the same
        ligand_start_idx = scorer.chain_start_indices[-1]
        ligand_at_indices = list(range(ligand_start_idx, scorer.n_atoms))
        n_exp = sum([len(ref_indices[i]) for i in ligand_at_indices])

        mdl_residues, mdl_bs, mdl_chains, mdl_ligand_chain, mdl_ligand_res, \
        chem_mapping = self._lddt_pli_get_mdl_data(model_ligand)

        if n_exp == 0:
            # no contacts... nothing to compute...
            return {"lddt_pli": None,
                    "lddt_pli_n_contacts": 0,
                    "chain_mapping": None,
                    "target_ligand": target_ligand,
                    "model_ligand": model_ligand}

        # Distance hacking... remove any interchain distance except the ones
        # with the ligand
        for at_idx in range(ligand_start_idx):
            mask = ref_indices[at_idx] >= ligand_start_idx
            ref_indices[at_idx] = ref_indices[at_idx][mask]
            ref_distances[at_idx] = ref_distances[at_idx][mask]

        ####################
        # Setup alignments #
        ####################

        # ref_mdl_alns refers to full chain mapper trg and mdl structures
        # => need to adapt mdl sequence that only contain residues in contact
        #    with ligand
        cut_ref_mdl_alns = self._lddt_pli_cut_ref_mdl_alns(chem_groups,
                                                           chem_mapping,
                                                           mdl_bs, trg_bs)

        ###############################################################
        # compute LDDT for all possible chain mappings and symmetries #
        ###############################################################

        best_score = -1.0

        # dummy alignment for ligand chains which is needed as input later on
        l_aln = seq.CreateAlignment()
        l_aln.AddSequence(seq.CreateSequence(trg_ligand_chain.name,
                                             trg_ligand_res.GetOneLetterCode()))
        l_aln.AddSequence(seq.CreateSequence(mdl_ligand_chain.name,
                                             mdl_ligand_res.GetOneLetterCode()))

        mdl_ligand_pos = np.zeros((model_ligand.GetAtomCount(), 3))
        for a_idx, a in enumerate(model_ligand.atoms):
            p = a.GetPos()
            mdl_ligand_pos[a_idx, 0] = p[0]
            mdl_ligand_pos[a_idx, 1] = p[1]
            mdl_ligand_pos[a_idx, 2] = p[2]

        for mapping in chain_mapping._ChainMappings(chem_groups, chem_mapping):

            lddt_chain_mapping = dict()
            lddt_alns = dict()
            for ref_chem_group, mdl_chem_group in zip(chem_groups, mapping):
                for ref_ch, mdl_ch in zip(ref_chem_group, mdl_chem_group):
                    # some mdl chains can be None
                    if mdl_ch is not None:
                        lddt_chain_mapping[mdl_ch] = ref_ch
                        lddt_alns[mdl_ch] = cut_ref_mdl_alns[(ref_ch, mdl_ch)]

            # add ligand to lddt_chain_mapping/lddt_alns
            lddt_chain_mapping[mdl_ligand_chain.name] = trg_ligand_chain.name
            lddt_alns[mdl_ligand_chain.name] = l_aln

            # already process model, positions will be manually hacked for each
            # symmetry - small overhead for variables that are thrown away here
            pos, _, _, _, _, _, lddt_symmetries = \
            scorer._ProcessModel(mdl_bs, lddt_chain_mapping,
                                 residue_mapping = lddt_alns,
                                 nirvana_dist = self.lddt_pli_radius + max(self.lddt_pli_thresholds),
                                 check_resnames = False)

            for (trg_sym, mdl_sym) in symmetries:
                for mdl_i, trg_i in zip(mdl_sym, trg_sym):
                    pos[ligand_start_idx + trg_i, :] = mdl_ligand_pos[mdl_i, :]
                # we can pass ref_indices/ref_distances as
                # sym_ref_indices/sym_ref_distances in
                # scorer._ResolveSymmetries as we only have distances of the bs
                # to the ligand and ligand atoms are "non-symmetric"
                scorer._ResolveSymmetries(pos, self.lddt_pli_thresholds,
                                          lddt_symmetries,
                                          ref_indices,
                                          ref_distances)
                # compute number of conserved distances for ligand atoms
                conserved = np.sum(scorer._EvalAtoms(pos, ligand_at_indices,
                                                     self.lddt_pli_thresholds,
                                                     ref_indices,
                                                     ref_distances), axis=0)
                score = np.mean(conserved/n_exp)

                if score > best_score:
                    best_score = score
                    save_chain_mapping = dict(lddt_chain_mapping)
                    del save_chain_mapping[mdl_ligand_chain.name]
                    best_result = {"lddt_pli": score,
                                   "chain_mapping": save_chain_mapping}

        # fill misc info to result object
        best_result["lddt_pli_n_contacts"] = n_exp
        best_result["target_ligand"] = target_ligand
        best_result["model_ligand"] = model_ligand

        return best_result

    def _lddt_pli_unmapped_chain_penalty(self, unmapped_chains,
                                         non_mapped_cache,
                                         mdl_bs,
                                         mdl_ligand_res,
                                         mdl_sym):

        n_exp = 0
        for ch_tuple in unmapped_chains:
            if ch_tuple not in non_mapped_cache:
                # for each ligand atom, we count the number of mappable atoms
                # within lddt_pli_radius
                counts = dict()
                # the select statement also excludes the ligand in mdl_bs
                # as it resides in a separate chain
                mdl_cname = ch_tuple[1]
                query = "cname=" + mol.QueryQuoteName(mdl_cname)
                mdl_bs_ch = mdl_bs.Select(query)
                for a in mdl_ligand_res.atoms:
                    close_atoms = \
                    mdl_bs_ch.FindWithin(a.GetPos(), self.lddt_pli_radius)
                    N = 0
                    for close_a in close_atoms:
                        at_key = (close_a.GetResidue().GetNumber(),
                                  close_a.GetName())
                        if at_key in self._mappable_atoms[ch_tuple]:
                            N += 1
                    counts[a.hash_code] = N

                # fill cache
                non_mapped_cache[ch_tuple] = counts

            # add number of mdl contacts which can be mapped to target
            # as non-fulfilled contacts
            counts = non_mapped_cache[ch_tuple]
            lig_hash_codes = [a.hash_code for a in mdl_ligand_res.atoms]
            for i in mdl_sym:
                n_exp += counts[lig_hash_codes[i]]

        return n_exp


    def _lddt_pli_get_mdl_data(self, model_ligand):
        if model_ligand not in self._lddt_pli_model_data:

            mdl = self._chain_mapping_mdl

            mdl_residues = set()
            for at in model_ligand.atoms:
                close_atoms = mdl.FindWithin(at.GetPos(), self.lddt_pli_radius)
                for close_at in close_atoms:
                    mdl_residues.add(close_at.GetResidue())

            max_r = self.lddt_pli_radius + max(self.lddt_pli_thresholds)
            for r in mdl.residues:
                r.SetIntProp("bs", 0)
            for at in model_ligand.atoms:
                close_atoms = mdl.FindWithin(at.GetPos(), max_r)
                for close_at in close_atoms:
                    close_at.GetResidue().SetIntProp("bs", 1)

            mdl_bs = mol.CreateEntityFromView(mdl.Select("grbs:0=1"), True)
            mdl_chains = set([ch.name for ch in mdl_bs.chains])

            mdl_editor = mdl_bs.EditXCS(mol.BUFFERED_EDIT)
            mdl_ligand_chain = None
            for cname in ["hugo_the_cat_terminator", "ida_the_cheese_monster"]:
                try:
                    # I'm pretty sure, one of these chain names is not there...
                    mdl_ligand_chain = mdl_editor.InsertChain(cname)
                    break
                except:
                    pass
            if mdl_ligand_chain is None:
                raise RuntimeError("Fuck this, I'm out...")
            mdl_ligand_res = mdl_editor.AppendResidue(mdl_ligand_chain,
                                                      model_ligand,
                                                      deep=True)
            mdl_editor.RenameResidue(mdl_ligand_res, "LIG")
            mdl_editor.SetResidueNumber(mdl_ligand_res, mol.ResNum(1))

            chem_mapping = list()
            for m in self._chem_mapping:
                chem_mapping.append([x for x in m if x in mdl_chains])

            self._lddt_pli_model_data[model_ligand] = (mdl_residues,
                                                       mdl_bs,
                                                       mdl_chains,
                                                       mdl_ligand_chain,
                                                       mdl_ligand_res,
                                                       chem_mapping)

        return self._lddt_pli_model_data[model_ligand]


    def _lddt_pli_get_trg_data(self, target_ligand, max_r = None):
        if target_ligand not in self._lddt_pli_target_data:

            trg = self._chain_mapper.target

            if max_r is None:
                max_r = self.lddt_pli_radius + max(self.lddt_pli_thresholds)

            trg_residues = set()
            for at in target_ligand.atoms:
                close_atoms = trg.FindWithin(at.GetPos(), max_r)
                for close_at in close_atoms:
                    trg_residues.add(close_at.GetResidue())

            for r in trg.residues:
                r.SetIntProp("bs", 0)

            for r in trg_residues:
                r.SetIntProp("bs", 1)

            trg_bs = mol.CreateEntityFromView(trg.Select("grbs:0=1"), True)
            trg_chains = set([ch.name for ch in trg_bs.chains])

            trg_editor = trg_bs.EditXCS(mol.BUFFERED_EDIT)
            trg_ligand_chain = None
            for cname in ["hugo_the_cat_terminator", "ida_the_cheese_monster"]:
                try:
                    # I'm pretty sure, one of these chain names is not there yet
                    trg_ligand_chain = trg_editor.InsertChain(cname)
                    break
                except:
                    pass
            if trg_ligand_chain is None:
                raise RuntimeError("Fuck this, I'm out...")

            trg_ligand_res = trg_editor.AppendResidue(trg_ligand_chain,
                                                      target_ligand,
                                                      deep=True)
            trg_editor.RenameResidue(trg_ligand_res, "LIG")
            trg_editor.SetResidueNumber(trg_ligand_res, mol.ResNum(1))

            compound_name = trg_ligand_res.name
            compound = lddt.CustomCompound.FromResidue(trg_ligand_res)
            custom_compounds = {compound_name: compound}

            scorer = lddt.lDDTScorer(trg_bs,
                                     custom_compounds = custom_compounds,
                                     inclusion_radius = self.lddt_pli_radius)

            chem_groups = list()
            for g in self._chain_mapper.chem_groups:
                chem_groups.append([x for x in g if x in trg_chains])

            self._lddt_pli_target_data[target_ligand] = (trg_residues,
                                                         trg_bs,
                                                         trg_chains,
                                                         trg_ligand_chain,
                                                         trg_ligand_res,
                                                         scorer,
                                                         chem_groups)

        return self._lddt_pli_target_data[target_ligand]


    def _lddt_pli_cut_ref_mdl_alns(self, chem_groups, chem_mapping, mdl_bs,
                                   ref_bs):
        cut_ref_mdl_alns = dict()
        for ref_chem_group, mdl_chem_group in zip(chem_groups, chem_mapping):
            for ref_ch in ref_chem_group:

                ref_bs_chain = ref_bs.FindChain(ref_ch)
                query = "cname=" + mol.QueryQuoteName(ref_ch)
                ref_view = self._chain_mapper.target.Select(query)

                for mdl_ch in mdl_chem_group:
                    aln = self._ref_mdl_alns[(ref_ch, mdl_ch)]

                    aln.AttachView(0, ref_view)

                    mdl_bs_chain = mdl_bs.FindChain(mdl_ch)
                    query = "cname=" + mol.QueryQuoteName(mdl_ch)
                    aln.AttachView(1, self._chain_mapping_mdl.Select(query))

                    cut_mdl_seq = ['-'] * aln.GetLength()
                    cut_ref_seq = ['-'] * aln.GetLength()
                    for i, col in enumerate(aln):

                       # check ref residue
                        r = col.GetResidue(0)
                        if r.IsValid():
                            bs_r = ref_bs_chain.FindResidue(r.GetNumber())
                            if bs_r.IsValid():
                                cut_ref_seq[i] = col[0]

                        # check mdl residue
                        r = col.GetResidue(1)
                        if r.IsValid():
                            bs_r = mdl_bs_chain.FindResidue(r.GetNumber())
                            if bs_r.IsValid():
                                cut_mdl_seq[i] = col[1]

                    cut_ref_seq = ''.join(cut_ref_seq)         
                    cut_mdl_seq = ''.join(cut_mdl_seq)         
                    cut_aln = seq.CreateAlignment()
                    cut_aln.AddSequence(seq.CreateSequence(ref_ch, cut_ref_seq))
                    cut_aln.AddSequence(seq.CreateSequence(mdl_ch, cut_mdl_seq))
                    cut_ref_mdl_alns[(ref_ch, mdl_ch)] = cut_aln
        return cut_ref_mdl_alns

    @property
    def _mappable_atoms(self):
        """ Stores mappable atoms given a chain mapping

        Store for each ref_ch,mdl_ch pair all mdl atoms that can be
        mapped. Don't store mappable atoms as hashes but rather as tuple
        (mdl_r.GetNumber(), mdl_a.GetName()). Reason for that is that one might
        operate on Copied EntityHandle objects without corresponding hashes.
        Given a tuple defining c_pair: (ref_cname, mdl_cname), one
        can check if a certain atom is mappable by evaluating:
        if (mdl_r.GetNumber(), mdl_a.GetName()) in self._mappable_atoms(c_pair)
        """
        if self.__mappable_atoms is None:
            self.__mappable_atoms = dict()
            for (ref_cname, mdl_cname), aln in self._ref_mdl_alns.items():
                self._mappable_atoms[(ref_cname, mdl_cname)] = set()
                ref_query = f"cname={mol.QueryQuoteName(ref_cname)}"
                mdl_query = f"cname={mol.QueryQuoteName(mdl_cname)}"
                ref_ch = self._chain_mapper.target.Select(ref_query)
                mdl_ch = self._chain_mapping_mdl.Select(mdl_query)
                aln.AttachView(0, ref_ch)
                aln.AttachView(1, mdl_ch)
                for col in aln:
                    ref_r = col.GetResidue(0)
                    mdl_r = col.GetResidue(1)
                    if ref_r.IsValid() and mdl_r.IsValid():
                        for mdl_a in mdl_r.atoms:
                            if ref_r.FindAtom(mdl_a.name).IsValid():
                                c_key = (ref_cname, mdl_cname)
                                at_key = (mdl_r.GetNumber(), mdl_a.name)
                                self.__mappable_atoms[c_key].add(at_key)

        return self.__mappable_atoms

# specify public interface
__all__ = ('LDDTPLIScorer',)