1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995
|
"""
Scoring of quaternary structures (QS). The QS scoring is according to the paper
by `Bertoni et al. <https://dx.doi.org/10.1038/s41598-017-09654-8>`_.
.. warning::
The `qsscoring` module is deprecated. Consider using the newer implementation
in :mod:`~ost.mol.alg.qsscore` instead.
.. note ::
Requirements for use:
- A default :class:`compound library <ost.conop.CompoundLib>` must be defined
and accessible via :func:`~ost.conop.GetDefaultLib`. This is set by default
when executing scripts with ``ost``. Otherwise, you must set this with
:func:`~ost.conop.SetDefaultLib`.
- ClustalW must be installed (unless you provide chain mappings)
- Python modules `numpy` and `scipy` must be installed and available
(e.g. use ``pip install scipy numpy``)
"""
# Original authors: Gerardo Tauriello, Martino Bertoni
from ost import mol, geom, conop, seq, settings, PushVerbosityLevel
from ost import LogError, LogWarning, LogScript, LogInfo, LogVerbose, LogDebug
from ost.bindings.clustalw import ClustalW
from ost.mol.alg import lDDTScorer
from ost.seq.alg.renumber import Renumber
import numpy as np
from scipy.special import factorial
from scipy.special import binom
from scipy.cluster.hierarchy import fclusterdata
import itertools
###############################################################################
# QS scoring
###############################################################################
class QSscoreError(Exception):
"""Exception to be raised for "acceptable" exceptions in QS scoring.
Those are cases we might want to capture for default behavior.
"""
pass
class QSscorer:
"""Object to compute QS scores.
Simple usage without any precomputed contacts, symmetries and mappings:
.. code-block:: python
import ost
from ost.mol.alg import qsscoring
# load two biounits to compare
ent_full = ost.io.LoadPDB('3ia3', remote=True)
ent_1 = ent_full.Select('cname=A,D')
ent_2 = ent_full.Select('cname=B,C')
# get score
ost.PushVerbosityLevel(3)
try:
qs_scorer = qsscoring.QSscorer(ent_1, ent_2)
ost.LogScript('QSscore:', str(qs_scorer.global_score))
ost.LogScript('Chain mapping used:', str(qs_scorer.chain_mapping))
# commonly you want the QS global score as output
qs_score = qs_scorer.global_score
except qsscoring.QSscoreError as ex:
# default handling: report failure and set score to 0
ost.LogError('QSscore failed:', str(ex))
qs_score = 0
For maximal performance when computing QS scores of the same entity with many
others, it is advisable to construct and reuse :class:`QSscoreEntity` objects.
Any known / precomputed information can be filled into the appropriate
attribute here (no checks done!). Otherwise most quantities are computed on
first access and cached (lazy evaluation). Setters are provided to set values
with extra checks (e.g. :func:`SetSymmetries`).
All necessary seq. alignments are done by global BLOSUM62-based alignment. A
multiple sequence alignment is performed with ClustalW unless
:attr:`chain_mapping` is provided manually. You will need to have an
executable ``clustalw`` or ``clustalw2`` in your ``PATH`` or you must set
:attr:`clustalw_bin` accordingly. Otherwise an exception
(:class:`ost.settings.FileNotFound`) is thrown.
Formulas for QS scores:
::
- QS_best = weighted_scores / (weight_sum + weight_extra_mapped)
- QS_global = weighted_scores / (weight_sum + weight_extra_all)
-> weighted_scores = sum(w(min(d1,d2)) * (1 - abs(d1-d2)/12)) for shared
-> weight_sum = sum(w(min(d1,d2))) for shared
-> weight_extra_mapped = sum(w(d)) for all mapped but non-shared
-> weight_extra_all = sum(w(d)) for all non-shared
-> w(d) = 1 if d <= 5, exp(-2 * ((d-5.0)/4.28)^2) else
In the formulas above:
* "d": CA/CB-CA/CB distance of an "inter-chain contact" ("d1", "d2" for
"shared" contacts).
* "mapped": we could map chains of two structures and align residues in
:attr:`alignments`.
* "shared": pairs of residues which are "mapped" and have
"inter-chain contact" in both structures.
* "inter-chain contact": CB-CB pairs (CA for GLY) with distance <= 12 A
(fallback to CA-CA if :attr:`calpha_only` is True).
* "w(d)": weighting function (prob. of 2 res. to interact given CB distance)
from `Xu et al. 2009 <https://dx.doi.org/10.1016%2Fj.jmb.2008.06.002>`_.
:param ent_1: First structure to be scored.
:type ent_1: :class:`QSscoreEntity`, :class:`~ost.mol.EntityHandle` or
:class:`~ost.mol.EntityView`
:param ent_2: Second structure to be scored.
:type ent_2: :class:`QSscoreEntity`, :class:`~ost.mol.EntityHandle` or
:class:`~ost.mol.EntityView`
:param res_num_alignment: Sets :attr:`res_num_alignment`
:raises: :class:`QSscoreError` if input structures are invalid or are monomers
or have issues that make it impossible for a QS score to be computed.
.. attribute:: qs_ent_1
:class:`QSscoreEntity` object for *ent_1* given at construction.
If entity names (:attr:`~QSscoreEntity.original_name`) are not unique, we
set it to 'pdb_1' using :func:`~QSscoreEntity.SetName`.
.. attribute:: qs_ent_2
:class:`QSscoreEntity` object for *ent_2* given at construction.
If entity names (:attr:`~QSscoreEntity.original_name`) are not unique, we
set it to 'pdb_2' using :func:`~QSscoreEntity.SetName`.
.. attribute:: calpha_only
True if any of the two structures is CA-only (after cleanup).
:type: :class:`bool`
.. attribute:: max_ca_per_chain_for_cm
Maximal number of CA atoms to use in each chain to determine chain mappings.
Setting this to -1 disables the limit. Limiting it speeds up determination
of symmetries and chain mappings. By default it is set to 100.
:type: :class:`int`
.. attribute:: max_mappings_extensive
Maximal number of chain mappings to test for 'extensive'
:attr:`chain_mapping_scheme`. The extensive chain mapping search must in the
worst case check O(N^2) * O(N!) possible mappings for complexes with N
chains. Two octamers without symmetry would require 322560 mappings to be
checked. To limit computations, a :class:`QSscoreError` is thrown if we try
more than the maximal number of chain mappings.
The value must be set before the first use of :attr:`chain_mapping`.
By default it is set to 100000.
:type: :class:`int`
.. attribute:: res_num_alignment
Forces each alignment in :attr:`alignments` to be based on residue numbers
instead of using a global BLOSUM62-based alignment.
:type: :class:`bool`
"""
def __init__(self, ent_1, ent_2, res_num_alignment=False):
# generate QSscoreEntity objects?
if isinstance(ent_1, QSscoreEntity):
self.qs_ent_1 = ent_1
else:
self.qs_ent_1 = QSscoreEntity(ent_1)
if isinstance(ent_2, QSscoreEntity):
self.qs_ent_2 = ent_2
else:
self.qs_ent_2 = QSscoreEntity(ent_2)
# check validity of inputs
if not self.qs_ent_1.is_valid or not self.qs_ent_2.is_valid:
raise QSscoreError("Invalid input in QSscorer!")
# set names for structures
if self.qs_ent_1.original_name == self.qs_ent_2.original_name:
self.qs_ent_1.SetName('pdb_1')
self.qs_ent_2.SetName('pdb_2')
else:
self.qs_ent_1.SetName(self.qs_ent_1.original_name)
self.qs_ent_2.SetName(self.qs_ent_2.original_name)
# set other public attributes
self.res_num_alignment = res_num_alignment
self.calpha_only = self.qs_ent_1.calpha_only or self.qs_ent_2.calpha_only
self.max_ca_per_chain_for_cm = 100
self.max_mappings_extensive = 100000
# init cached stuff
self._chem_mapping = None
self._ent_to_cm_1 = None
self._ent_to_cm_2 = None
self._symm_1 = None
self._symm_2 = None
self._chain_mapping = None
self._chain_mapping_scheme = None
self._alignments = None
self._mapped_residues = None
self._global_score = None
self._best_score = None
self._superposition = None
self._clustalw_bin = None
@property
def chem_mapping(self):
"""Inter-complex mapping of chemical groups.
Each group (see :attr:`QSscoreEntity.chem_groups`) is mapped according to
highest sequence identity. Alignment is between longest sequences in groups.
Limitations:
- If different numbers of groups, we map only the groups for the complex
with less groups (rest considered unmapped and shown as warning)
- The mapping is forced: the "best" mapping will be chosen independently of
how low the seq. identity may be
:getter: Computed on first use (cached)
:type: :class:`dict` with key = :class:`tuple` of chain names in
:attr:`qs_ent_1` and value = :class:`tuple` of chain names in
:attr:`qs_ent_2`.
:raises: :class:`QSscoreError` if we end up having no chains for either
entity in the mapping (can happen if chains do not have CA atoms).
"""
if self._chem_mapping is None:
self._chem_mapping = _GetChemGroupsMapping(self.qs_ent_1, self.qs_ent_2)
return self._chem_mapping
@chem_mapping.setter
def chem_mapping(self, chem_mapping):
self._chem_mapping = chem_mapping
@property
def ent_to_cm_1(self):
"""Subset of :attr:`qs_ent_1` used to compute chain mapping and symmetries.
Properties:
- Includes only residues aligned according to :attr:`chem_mapping`
- Includes only 1 CA atom per residue
- Has at least 5 and at most :attr:`max_ca_per_chain_for_cm` atoms per chain
- All chains of the same chemical group have the same number of atoms
(also in :attr:`ent_to_cm_2` according to :attr:`chem_mapping`)
- All chains appearing in :attr:`chem_mapping` appear in this entity
(so the two can be safely used together)
This entity might be transformed (i.e. all positions rotated/translated by
same transformation matrix) if this can speed up computations. So do not
assume fixed global positions (but relative distances will remain fixed).
:getter: Computed on first use (cached)
:type: :class:`~ost.mol.EntityHandle`
:raises: :class:`QSscoreError` if any chain ends up having less than 5 res.
"""
if self._ent_to_cm_1 is None:
self._ComputeAlignedEntities()
return self._ent_to_cm_1
@ent_to_cm_1.setter
def ent_to_cm_1(self, ent_to_cm_1):
self._ent_to_cm_1 = ent_to_cm_1
@property
def ent_to_cm_2(self):
"""Subset of :attr:`qs_ent_1` used to compute chain mapping and symmetries
(see :attr:`ent_to_cm_1` for details).
"""
if self._ent_to_cm_2 is None:
self._ComputeAlignedEntities()
return self._ent_to_cm_2
@ent_to_cm_2.setter
def ent_to_cm_2(self, ent_to_cm_2):
self._ent_to_cm_2 = ent_to_cm_2
@property
def symm_1(self):
"""Symmetry groups for :attr:`qs_ent_1` used to speed up chain mapping.
This is a list of chain-lists where each chain-list can be used reconstruct
the others via cyclic C or dihedral D symmetry. The first chain-list is used
as a representative symmetry group. For heteromers, the group-members must
contain all different seqres in oligomer.
Example: symm. groups [(A,B,C), (D,E,F), (G,H,I)] means that there are
symmetry transformations to get (D,E,F) and (G,H,I) from (A,B,C).
Properties:
- All symmetry group tuples have the same length (num. of chains)
- All chains in :attr:`ent_to_cm_1` appear (w/o duplicates)
- For heteros: symmetry group tuples have all different chem. groups
- Trivial symmetry group = one tuple with all chains (used if inconsistent
data provided or if no symmetry is found)
- Either compatible to :attr:`symm_2` or trivial symmetry groups used.
Compatibility requires same lengths of symmetry group tuples and it must
be possible to get an overlap (80% of residues covered within 6 A of a
(chem. mapped) chain) of all chains in representative symmetry groups by
superposing one pair of chains.
:getter: Computed on first use (cached)
:type: :class:`list` of :class:`tuple` of :class:`str` (chain names)
"""
if self._symm_1 is None:
self._ComputeSymmetry()
return self._symm_1
@property
def symm_2(self):
"""Symmetry groups for :attr:`qs_ent_2` (see :attr:`symm_1` for details)."""
if self._symm_2 is None:
self._ComputeSymmetry()
return self._symm_2
def SetSymmetries(self, symm_1, symm_2):
"""Set user-provided symmetry groups.
These groups are restricted to chain names appearing in :attr:`ent_to_cm_1`
and :attr:`ent_to_cm_2` respectively. They are only valid if they cover all
chains and both *symm_1* and *symm_2* have same lengths of symmetry group
tuples. Otherwise trivial symmetry group used (see :attr:`symm_1`).
:param symm_1: Value to set for :attr:`symm_1`.
:param symm_2: Value to set for :attr:`symm_2`.
"""
# restrict chain names
self._symm_1 = _CleanUserSymmetry(symm_1, self.ent_to_cm_1)
self._symm_2 = _CleanUserSymmetry(symm_2, self.ent_to_cm_2)
# check that we have reasonable symmetries set (fallback: all chains)
if not _AreValidSymmetries(self._symm_1, self._symm_2):
self._symm_1 = [tuple(ch.name for ch in self.ent_to_cm_1.chains)]
self._symm_2 = [tuple(ch.name for ch in self.ent_to_cm_2.chains)]
@property
def chain_mapping(self):
"""Mapping from :attr:`ent_to_cm_1` to :attr:`ent_to_cm_2`.
Properties:
- Mapping is between chains of same chem. group (see :attr:`chem_mapping`)
- Each chain can appear only once in mapping
- All chains of complex with less chains are mapped
- Symmetry (:attr:`symm_1`, :attr:`symm_2`) is taken into account
Details on algorithms used to find mapping:
- We try all pairs of chem. mapped chains within symmetry group and get
superpose-transformation for them
- First option: check for "sufficient overlap" of other chain-pairs
- For each chain-pair defined above: apply superposition to full oligomer
and map chains based on structural overlap
- Structural overlap = X% of residues in second oligomer covered within Y
Angstrom of a (chem. mapped) chain in first oligomer. We successively
try (X,Y) = (80,4), (40,6) and (20,8) to be less and less strict in
mapping (warning shown for most permissive one).
- If multiple possible mappings are found, we choose the one which leads
to the lowest multi-chain-RMSD given the superposition
- Fallback option: try all mappings to find minimal multi-chain-RMSD
(warning shown)
- For each chain-pair defined above: apply superposition, try all (!)
possible chain mappings (within symmetry group) and keep mapping with
lowest multi-chain-RMSD
- Repeat procedure above to resolve symmetry. Within the symmetry group we
can use the chain mapping computed before and we just need to find which
symmetry group in first oligomer maps to which in the second one. We
again try all possible combinations...
- Limitations:
- Trying all possible mappings is a combinatorial nightmare (factorial).
We throw an exception if too many combinations (e.g. octomer vs
octomer with no usable symmetry)
- The mapping is forced: the "best" mapping will be chosen independently
of how badly they fit in terms of multi-chain-RMSD
- As a result, such a forced mapping can lead to a large range of
resulting QS scores. An extreme example was observed between 1on3.1
and 3u9r.1, where :attr:`global_score` can range from 0.12 to 0.43
for mappings with very similar multi-chain-RMSD.
:getter: Computed on first use (cached)
:type: :class:`dict` with key / value = :class:`str` (chain names, key
for :attr:`ent_to_cm_1`, value for :attr:`ent_to_cm_2`)
:raises: :class:`QSscoreError` if there are too many combinations to check
to find a chain mapping (see :attr:`max_mappings_extensive`).
"""
if self._chain_mapping is None:
self._chain_mapping, self._chain_mapping_scheme = \
_GetChainMapping(self.ent_to_cm_1, self.ent_to_cm_2, self.symm_1,
self.symm_2, self.chem_mapping,
self.max_mappings_extensive)
LogInfo('Mapping found: %s' % str(self._chain_mapping))
return self._chain_mapping
@chain_mapping.setter
def chain_mapping(self, chain_mapping):
self._chain_mapping = chain_mapping
@property
def chain_mapping_scheme(self):
"""Mapping scheme used to get :attr:`chain_mapping`.
Possible values:
- 'strict': 80% overlap needed within 4 Angstrom (overlap based mapping).
- 'tolerant': 40% overlap needed within 6 Angstrom (overlap based mapping).
- 'permissive': 20% overlap needed within 8 Angstrom (overlap based
mapping). It's best if you check mapping manually!
- 'extensive': Extensive search used for mapping detection (fallback). This
approach has known limitations and may be removed in future versions.
Mapping should be checked manually!
- 'user': :attr:`chain_mapping` was set by user before first use of this
attribute.
:getter: Computed with :attr:`chain_mapping` on first use (cached)
:type: :class:`str`
:raises: :class:`QSscoreError` as in :attr:`chain_mapping`.
"""
if self._chain_mapping_scheme is None:
# default: user provided
self._chain_mapping_scheme = 'user'
# get chain mapping and make sure internal variable is set
# -> will not compute and only update _chain_mapping if user provided
# -> will compute and overwrite _chain_mapping_scheme else
self._chain_mapping = self.chain_mapping
return self._chain_mapping_scheme
@property
def alignments(self):
"""List of successful sequence alignments using :attr:`chain_mapping`.
There will be one alignment for each mapped chain and they are ordered by
their chain names in :attr:`qs_ent_1`.
The first sequence of each alignment belongs to :attr:`qs_ent_1` and the
second one to :attr:`qs_ent_2`. The sequences are named according to the
mapped chain names and have views attached into :attr:`QSscoreEntity.ent`
of :attr:`qs_ent_1` and :attr:`qs_ent_2`.
If :attr:`res_num_alignment` is False, each alignment is performed using a
global BLOSUM62-based alignment. Otherwise, the positions in the alignment
sequences are simply given by the residue number so that residues with
matching numbers are aligned.
:getter: Computed on first use (cached)
:type: :class:`list` of :class:`~ost.seq.AlignmentHandle`
"""
if self._alignments is None:
self._alignments = _GetMappedAlignments(self.qs_ent_1.ent,
self.qs_ent_2.ent,
self.chain_mapping,
self.res_num_alignment)
return self._alignments
@alignments.setter
def alignments(self, alignments):
self._alignments = alignments
@property
def mapped_residues(self):
"""Mapping of shared residues in :attr:`alignments`.
:getter: Computed on first use (cached)
:type: :class:`dict` *mapped_residues[c1][r1] = r2* with:
*c1* = Chain name in first entity (= first sequence in aln),
*r1* = Residue number in first entity,
*r2* = Residue number in second entity
"""
if self._mapped_residues is None:
self._mapped_residues = _GetMappedResidues(self.alignments)
return self._mapped_residues
@mapped_residues.setter
def mapped_residues(self, mapped_residues):
self._mapped_residues = mapped_residues
@property
def global_score(self):
"""QS-score with penalties.
The range of the score is between 0 (i.e. no interface residues are shared
between biounits) and 1 (i.e. the interfaces are identical).
The global QS-score is computed applying penalties when interface residues
or entire chains are missing (i.e. anything that is not mapped in
:attr:`mapped_residues` / :attr:`chain_mapping`) in one of the biounits.
:getter: Computed on first use (cached)
:type: :class:`float`
:raises: :class:`QSscoreError` if only one chain is mapped
"""
if self._global_score is None:
self._ComputeScores()
return self._global_score
@property
def best_score(self):
"""QS-score without penalties.
Like :attr:`global_score`, but neglecting additional residues or chains in
one of the biounits (i.e. the score is calculated considering only mapped
chains and residues).
:getter: Computed on first use (cached)
:type: :class:`float`
:raises: :class:`QSscoreError` if only one chain is mapped
"""
if self._best_score is None:
self._ComputeScores()
return self._best_score
@property
def superposition(self):
"""Superposition result based on shared CA atoms in :attr:`alignments`.
The superposition can be used to map :attr:`QSscoreEntity.ent` of
:attr:`qs_ent_1` onto the one of :attr:`qs_ent_2`. Use
:func:`ost.geom.Invert` if you need the opposite transformation.
:getter: Computed on first use (cached)
:type: :class:`ost.mol.alg.SuperpositionResult`
"""
if self._superposition is None:
self._superposition = _GetQsSuperposition(self.alignments)
# report it
sup_rmsd = self._superposition.rmsd
cmp_view = self._superposition.view1
LogInfo('CA RMSD for %s aligned residues on %s chains: %.2f' \
% (cmp_view.residue_count, cmp_view.chain_count, sup_rmsd))
return self._superposition
@property
def clustalw_bin(self):
"""
Full path to ``clustalw`` or ``clustalw2`` executable to use for multiple
sequence alignments (unless :attr:`chain_mapping` is provided manually).
:getter: Located in path on first use (cached)
:type: :class:`str`
"""
if self._clustalw_bin is None:
self._clustalw_bin = settings.Locate(('clustalw', 'clustalw2'))
return self._clustalw_bin
@clustalw_bin.setter
def clustalw_bin(self, clustalw_bin):
self._clustalw_bin = clustalw_bin
def GetOligoLDDTScorer(self, settings, penalize_extra_chains=True):
"""
:return: :class:`OligoLDDTScorer` object, setup for this QS scoring problem.
The scorer is set up with :attr:`qs_ent_1` as the reference and
:attr:`qs_ent_2` as the model.
:param settings: Passed to :class:`OligoLDDTScorer` constructor.
:param penalize_extra_chains: Passed to :class:`OligoLDDTScorer` constructor.
"""
if penalize_extra_chains:
return OligoLDDTScorer(self.qs_ent_1.ent, self.qs_ent_2.ent,
self.alignments, self.calpha_only, settings,
True, self.chem_mapping)
else:
return OligoLDDTScorer(self.qs_ent_1.ent, self.qs_ent_2.ent,
self.alignments, self.calpha_only, settings, False)
##############################################################################
# Class internal helpers (anything that doesnt easily work without this class)
##############################################################################
def _ComputeAlignedEntities(self):
"""Fills cached ent_to_cm_1 and ent_to_cm_2."""
# get aligned residues via MSA
ev1, ev2 = _GetAlignedResidues(self.qs_ent_1, self.qs_ent_2,
self.chem_mapping,
self.max_ca_per_chain_for_cm,
self.clustalw_bin)
# extract new entities
self._ent_to_cm_1 = mol.CreateEntityFromView(ev1, True)
self._ent_to_cm_2 = mol.CreateEntityFromView(ev2, True)
# name them
self._ent_to_cm_1.SetName(self.qs_ent_1.GetName())
self._ent_to_cm_2.SetName(self.qs_ent_2.GetName())
def _ComputeSymmetry(self):
"""Fills cached symm_1 and symm_2."""
# get them
self._symm_1, self._symm_2 = \
_FindSymmetry(self.qs_ent_1, self.qs_ent_2, self.ent_to_cm_1,
self.ent_to_cm_2, self.chem_mapping)
# check that we have reasonable symmetries set (fallback: all chains)
if not _AreValidSymmetries(self._symm_1, self._symm_2):
self._symm_1 = [tuple(ch.name for ch in self.ent_to_cm_1.chains)]
self._symm_2 = [tuple(ch.name for ch in self.ent_to_cm_2.chains)]
def _ComputeScores(self):
"""Fills cached global_score and best_score."""
if len(self.chain_mapping) < 2:
raise QSscoreError("QS-score is not defined for monomers")
# get contacts
if self.calpha_only:
contacts_1 = self.qs_ent_1.contacts_ca
contacts_2 = self.qs_ent_2.contacts_ca
else:
contacts_1 = self.qs_ent_1.contacts
contacts_2 = self.qs_ent_2.contacts
# get scores
scores = _GetScores(contacts_1, contacts_2, self.mapped_residues,
self.chain_mapping)
self._best_score = scores[0]
self._global_score = scores[1]
# report scores
LogInfo('QSscore %s, %s: best: %.2f, global: %.2f' \
% (self.qs_ent_1.GetName(), self.qs_ent_2.GetName(),
self._best_score, self._global_score))
###############################################################################
# Entity with cached entries for QS scoring
###############################################################################
class QSscoreEntity(object):
"""Entity with cached entries for QS scoring.
Any known / precomputed information can be filled into the appropriate
attribute here as long as they are labelled as read/write. Otherwise the
quantities are computed on first access and cached (lazy evaluation). The
heaviest load is expected when computing :attr:`contacts` and
:attr:`contacts_ca`.
:param ent: Entity to be used for QS scoring. A copy of it will be processed.
:type ent: :class:`~ost.mol.EntityHandle` or :class:`~ost.mol.EntityView`
.. attribute:: is_valid
True, if successfully initialized. False, if input structure has no protein
chains with >= 20 residues.
:type: :class:`bool`
.. attribute:: original_name
Name set for *ent* when object was created.
:type: :class:`str`
.. attribute:: ent
Cleaned version of *ent* passed at construction. Hydrogens are removed, the
entity is processed with a :class:`~ost.conop.RuleBasedProcessor` and chains
listed in :attr:`removed_chains` have been removed. The name of this entity
might change during scoring (see :func:`GetName`). Otherwise, this will be
fixed.
:type: :class:`~ost.mol.EntityHandle`
.. attribute:: removed_chains
Chains removed from *ent* passed at construction. These are ligand and water
chains as well as small (< 20 res.) peptides or chains with no amino acids
(determined by chem. type, which is set by rule based processor).
:type: :class:`list` of :class:`str`
.. attribute:: calpha_only
Whether entity is CA-only (i.e. it has 0 CB atoms)
:type: :class:`bool`
"""
def __init__(self, ent):
# copy entity and process/clean it
self.original_name = ent.GetName()
ent = mol.CreateEntityFromView(ent.Select('ele!=H and aname!=HN'), True)
if not conop.GetDefaultLib():
raise RuntimeError("QSscore computation requires a compound library!")
pr = conop.RuleBasedProcessor(conop.GetDefaultLib())
pr.Process(ent)
self.ent, self.removed_chains, self.calpha_only = _CleanInputEntity(ent)
# check if it's suitable for QS scoring
if self.ent.chain_count == 0:
LogError('Bad input file: ' + ent.GetName() + '. No chains left after '
'removing water, ligands and small peptides.')
self.is_valid = False
elif self.ent.chain_count == 1:
LogWarning('Structure ' + ent.GetName() + ' is a monomer.')
self.is_valid = True
else:
self.is_valid = True
# init cached stuff
self._ca_entity = None
self._ca_chains = None
self._alignments = {}
self._chem_groups = None
self._angles = {}
self._axis = {}
self._contacts = None
self._contacts_ca = None
def GetName(self):
"""Wrapper to :func:`~ost.mol.EntityHandle.GetName` of :attr:`ent`.
This is used to uniquely identify the entity while scoring. The name may
therefore change while :attr:`original_name` remains fixed.
"""
# for duck-typing and convenience
return self.ent.GetName()
def SetName(self, new_name):
"""Wrapper to :func:`~ost.mol.EntityHandle.SetName` of :attr:`ent`.
Use this to change unique identifier while scoring (see :func:`GetName`).
"""
# for duck-typing and convenience
self.ent.SetName(new_name)
@property
def ca_entity(self):
"""
Reduced representation of :attr:`ent` with only CA atoms.
This guarantees that each included residue has exactly one atom.
:getter: Computed on first use (cached)
:type: :class:`~ost.mol.EntityHandle`
"""
if self._ca_entity is None:
self._ca_entity = _GetCAOnlyEntity(self.ent)
return self._ca_entity
@property
def ca_chains(self):
"""
Map of chain names in :attr:`ent` to sequences with attached view to CA-only
chains (into :attr:`ca_entity`). Useful for alignments and superpositions.
:getter: Computed on first use (cached)
:type: :class:`dict` (key = :class:`str`,
value = :class:`~ost.seq.SequenceHandle`)
"""
if self._ca_chains is None:
self._ca_chains = dict()
ca_entity = self.ca_entity
for ch in ca_entity.chains:
self._ca_chains[ch.name] = seq.SequenceFromChain(ch.name, ch)
return self._ca_chains
def GetAlignment(self, c1, c2):
"""Get sequence alignment of chain *c1* with chain *c2*.
Computed on first use based on :attr:`ca_chains` (cached).
:param c1: Chain name for first chain to align.
:type c1: :class:`str`
:param c2: Chain name for second chain to align.
:type c2: :class:`str`
:rtype: :class:`~ost.seq.AlignmentHandle` or None if it failed.
"""
if (c1,c2) not in self._alignments:
ca_chains = self.ca_chains
self._alignments[(c1,c2)] = _AlignAtomSeqs(ca_chains[c1], ca_chains[c2])
return self._alignments[(c1,c2)]
@property
def chem_groups(self):
"""
Intra-complex group of chemically identical (seq. id. > 95%) polypeptide
chains as extracted from :attr:`ca_chains`. First chain in group is the one
with the longest sequence.
:getter: Computed on first use (cached)
:type: :class:`list` of :class:`list` of :class:`str` (chain names)
"""
if self._chem_groups is None:
self._chem_groups = _GetChemGroups(self, 95)
LogInfo('Chemically equivalent chain-groups in %s: %s' \
% (self.GetName(), str(self._chem_groups)))
return self._chem_groups
def GetAngles(self, c1, c2):
"""Get Euler angles from superposition of chain *c1* with chain *c2*.
Computed on first use based on :attr:`ca_chains` (cached).
:param c1: Chain name for first chain to superpose.
:type c1: :class:`str`
:param c2: Chain name for second chain to superpose.
:type c2: :class:`str`
:return: 3 Euler angles (may contain nan if something fails).
:rtype: :class:`numpy.array`
"""
if (c1,c2) not in self._angles:
self._GetSuperposeData(c1, c2)
return self._angles[(c1,c2)]
def GetAxis(self, c1, c2):
"""Get axis of symmetry from superposition of chain *c1* with chain *c2*.
Computed on first use based on :attr:`ca_chains` (cached).
:param c1: Chain name for first chain to superpose.
:type c1: :class:`str`
:param c2: Chain name for second chain to superpose.
:type c2: :class:`str`
:return: Rotational axis (may contain nan if something fails).
:rtype: :class:`numpy.array`
"""
if (c1,c2) not in self._axis:
self._GetSuperposeData(c1, c2)
return self._axis[(c1,c2)]
@property
def contacts(self):
"""
Connectivity dictionary (**read/write**).
As given by :func:`GetContacts` with *calpha_only* = False on :attr:`ent`.
:getter: Computed on first use (cached)
:setter: Uses :func:`FilterContacts` to ensure that we only keep contacts
for chains in the cleaned entity.
:type: See return type of :func:`GetContacts`
"""
if self._contacts is None:
self._contacts = GetContacts(self.ent, False)
return self._contacts
@contacts.setter
def contacts(self, new_contacts):
chain_names = set([ch.name for ch in self.ent.chains])
self._contacts = FilterContacts(new_contacts, chain_names)
@property
def contacts_ca(self):
"""
CA-only connectivity dictionary (**read/write**).
Like :attr:`contacts` but with *calpha_only* = True in :func:`GetContacts`.
"""
if self._contacts_ca is None:
self._contacts_ca = GetContacts(self.ent, True)
return self._contacts_ca
@contacts_ca.setter
def contacts_ca(self, new_contacts):
chain_names = set([ch.name for ch in self.ent.chains])
self._contacts_ca = FilterContacts(new_contacts, chain_names)
##############################################################################
# Class internal helpers (anything that doesnt easily work without this class)
##############################################################################
def _GetSuperposeData(self, c1, c2):
"""Fill _angles and _axis from superposition of CA chains of c1 and c2."""
# get aligned views (must contain identical numbers of atoms!)
aln = self.GetAlignment(c1, c2)
if not aln:
# fallback for non-aligned stuff (nan)
self._angles[(c1,c2)] = np.empty(3) * np.nan
self._axis[(c1,c2)] = np.empty(3) * np.nan
return
v1, v2 = seq.ViewsFromAlignment(aln)
if v1.atom_count < 3:
# fallback for non-aligned stuff (nan)
self._angles[(c1,c2)] = np.empty(3) * np.nan
self._axis[(c1,c2)] = np.empty(3) * np.nan
return
# get transformation
sup_res = mol.alg.SuperposeSVD(v1, v2, apply_transform=False)
Rt = sup_res.transformation
# extract angles
a,b,c = _GetAngles(Rt)
self._angles[(c1,c2)] = np.asarray([a,b,c])
# extract axis of symmetry
R3 = geom.Rotation3(Rt.ExtractRotation())
self._axis[(c1,c2)] = np.asarray(R3.GetRotationAxis().data)
###############################################################################
# Contacts computations
###############################################################################
def FilterContacts(contacts, chain_names):
"""Filter contacts to contain only contacts for chains in *chain_names*.
:param contacts: Connectivity dictionary as produced by :func:`GetContacts`.
:type contacts: :class:`dict`
:param chain_names: Chain names to keep.
:type chain_names: :class:`list` or (better) :class:`set`
:return: New connectivity dictionary (format as in :func:`GetContacts`)
:rtype: :class:`dict`
"""
# create new dict with subset
filtered_contacts = dict()
for c1 in contacts:
if c1 in chain_names:
new_contacts = dict()
for c2 in contacts[c1]:
if c2 in chain_names:
new_contacts[c2] = contacts[c1][c2]
# avoid adding empty dicts
if new_contacts:
filtered_contacts[c1] = new_contacts
return filtered_contacts
def GetContacts(entity, calpha_only, dist_thr=12.0):
"""Get inter-chain contacts of a macromolecular entity.
Contacts are pairs of residues within a given distance belonging to different
chains. They are stored once per pair and include the CA/CB-CA/CB distance.
:param entity: An entity to check connectivity for.
:type entity: :class:`~ost.mol.EntityHandle` or :class:`~ost.mol.EntityView`
:param calpha_only: If True, we only consider CA-CA distances. Else, we use CB
unless the residue is a GLY.
:type calpha_only: :class:`bool`
:param dist_thr: Maximal CA/CB-CA/CB distance to be considered in contact.
:type dist_thr: :class:`float`
:return: A connectivity dictionary. A pair of residues with chain names
*ch_name1* & *ch_name2* (*ch_name1* < *ch_name2*), residue numbers
*res_num1* & *res_num2* and distance *dist* (<= *dist_thr*) are
stored as *result[ch_name1][ch_name2][res_num1][res_num2]* = *dist*.
:rtype: :class:`dict`
"""
# get ent copy to search on
if calpha_only:
ev = entity.Select("aname=CA")
else:
ev = entity.Select("(rname=GLY and aname=CA) or aname=CB")
ent = mol.CreateEntityFromView(ev, True)
# search all vs all
contacts = dict()
for atom in ent.atoms:
ch_name1 = atom.chain.name
res_num1 = atom.residue.number.num
close_atoms = ent.FindWithin(atom.pos, dist_thr)
for close_atom in close_atoms:
ch_name2 = close_atom.chain.name
if ch_name2 > ch_name1:
res_num2 = close_atom.residue.number.num
dist = geom.Distance(atom.pos, close_atom.pos)
# add to contacts
if ch_name1 not in contacts:
contacts[ch_name1] = dict()
if ch_name2 not in contacts[ch_name1]:
contacts[ch_name1][ch_name2] = dict()
if res_num1 not in contacts[ch_name1][ch_name2]:
contacts[ch_name1][ch_name2][res_num1] = dict()
contacts[ch_name1][ch_name2][res_num1][res_num2] = round(dist, 3)
# DONE
return contacts
###############################################################################
# Oligo-lDDT scores
###############################################################################
class OligoLDDTScorer(object):
"""Helper class to calculate oligomeric lDDT scores.
This class can be used independently, but commonly it will be created by
calling :func:`QSscorer.GetOligoLDDTScorer`.
.. note::
By construction, lDDT scores are not symmetric and hence it matters which
structure is the reference (:attr:`ref`) and which one is the model
(:attr:`mdl`). Extra residues in the model are generally not considered.
Extra chains in both model and reference can be considered by setting the
:attr:`penalize_extra_chains` flag to True.
:param ref: Sets :attr:`ref`
:param mdl: Sets :attr:`mdl`
:param alignments: Sets :attr:`alignments`
:param calpha_only: Sets :attr:`calpha_only`
:param settings: Sets :attr:`settings`
:param penalize_extra_chains: Sets :attr:`penalize_extra_chains`
:param chem_mapping: Sets :attr:`chem_mapping`. Must be given if
*penalize_extra_chains* is True.
.. attribute:: ref
mdl
Full reference/model entity to be scored. The entity must contain all chains
mapped in :attr:`alignments` and may also contain additional ones which are
considered if :attr:`penalize_extra_chains` is True.
:type: :class:`~ost.mol.EntityHandle`
.. attribute:: alignments
One alignment for each mapped chain of :attr:`ref`/:attr:`mdl` as defined in
:attr:`QSscorer.alignments`. The first sequence of each alignment belongs to
:attr:`ref` and the second one to :attr:`mdl`. Sequences must have sequence
naming and attached views as defined in :attr:`QSscorer.alignments`.
:type: :class:`list` of :class:`~ost.seq.AlignmentHandle`
.. attribute:: calpha_only
If True, restricts lDDT score to CA only.
:type: :class:`bool`
.. attribute:: settings
Settings to use for lDDT scoring.
:type: :class:`~ost.mol.alg.lDDTSettings`
.. attribute:: penalize_extra_chains
If True, extra chains in both :attr:`ref` and :attr:`mdl` will penalize the
lDDT scores.
:type: :class:`bool`
.. attribute:: chem_mapping
Inter-complex mapping of chemical groups as defined in
:attr:`QSscorer.chem_mapping`. Used to find "chem-mapped" chains in
:attr:`ref` for unmapped chains in :attr:`mdl` when penalizing scores.
Each unmapped model chain can add extra reference-contacts according to the
average total contacts of each single "chem-mapped" reference chain. If
there is no "chem-mapped" reference chain, a warning is shown and the model
chain is ignored.
Only relevant if :attr:`penalize_extra_chains` is True.
:type: :class:`dict` with key = :class:`tuple` of chain names in
:attr:`ref` and value = :class:`tuple` of chain names in
:attr:`mdl`.
"""
# NOTE: one could also allow computation of both penalized and unpenalized
# in same object -> must regenerate lddt_ref / lddt_mdl though
def __init__(self, ref, mdl, alignments, calpha_only, settings,
penalize_extra_chains=False, chem_mapping=None):
# sanity checks
if chem_mapping is None and penalize_extra_chains:
raise RuntimeError("Must provide chem_mapping when requesting penalty "
"for extra chains!")
if not penalize_extra_chains:
# warn for unmapped model chains
unmapped_mdl_chains = self._GetUnmappedMdlChains(mdl, alignments)
if unmapped_mdl_chains:
LogWarning('MODEL contains chains unmapped to REFERENCE, '
'lDDT is not considering MODEL chains %s' \
% str(list(unmapped_mdl_chains)))
# warn for unmapped reference chains
ref_chains = set(ch.name for ch in ref.chains)
mapped_ref_chains = set(aln.GetSequence(0).GetName() for aln in alignments)
unmapped_ref_chains = (ref_chains - mapped_ref_chains)
if unmapped_ref_chains:
LogWarning('REFERENCE contains chains unmapped to MODEL, '
'lDDT is not considering REFERENCE chains %s' \
% str(list(unmapped_ref_chains)))
# prepare fields
self.ref = ref
self.mdl = mdl
self.alignments = alignments
self.calpha_only = calpha_only
self.settings = settings
self.penalize_extra_chains = penalize_extra_chains
self.chem_mapping = chem_mapping
self._sc_lddt = None
self._oligo_lddt = None
self._weighted_lddt = None
self._lddt_ref = None
self._lddt_mdl = None
self._oligo_lddt_scorer = None
self._mapped_lddt_scorers = None
self._ref_scorers = None
self._model_penalty = None
@property
def oligo_lddt(self):
"""Oligomeric lDDT score.
The score is computed as conserved contacts divided by the total contacts
in the reference using the :attr:`oligo_lddt_scorer`, which uses the full
complex as reference/model structure. If :attr:`penalize_extra_chains` is
True, the reference/model complexes contain all chains (otherwise only the
mapped ones) and additional contacts are added to the reference's total
contacts for unmapped model chains according to the :attr:`chem_mapping`.
The main difference with :attr:`weighted_lddt` is that the lDDT scorer
"sees" the full complex here (incl. inter-chain contacts), while the
weighted single chain score looks at each chain separately.
:getter: Computed on first use (cached)
:type: :class:`float`
"""
if self._oligo_lddt is None:
LogInfo('Reference %s has: %s chains' \
% (self.ref.GetName(), self.ref.chain_count))
LogInfo('Model %s has: %s chains' \
% (self.mdl.GetName(), self.mdl.chain_count))
# score with or w/o extra-chain penalty
if self.penalize_extra_chains:
denominator = self.oligo_lddt_scorer.total_contacts
denominator += self._GetModelPenalty()
if denominator > 0:
oligo_lddt = self.oligo_lddt_scorer.conserved_contacts \
/ float(denominator)
else:
oligo_lddt = 0.0
else:
oligo_lddt = self.oligo_lddt_scorer.global_score
self._oligo_lddt = oligo_lddt
return self._oligo_lddt
@property
def weighted_lddt(self):
"""Weighted average of single chain lDDT scores.
The score is computed as a weighted average of single chain lDDT scores
(see :attr:`sc_lddt_scorers`) using the total contacts of each single
reference chain as weights. If :attr:`penalize_extra_chains` is True,
unmapped chains are added with a 0 score and total contacts taken from
the actual reference chains or (for unmapped model chains) using the
:attr:`chem_mapping`.
See :attr:`oligo_lddt` for a comparison of the two scores.
:getter: Computed on first use (cached)
:type: :class:`float`
"""
if self._weighted_lddt is None:
scores = [s.global_score for s in self.sc_lddt_scorers]
weights = [s.total_contacts for s in self.sc_lddt_scorers]
nominator = sum([s * w for s, w in zip(scores, weights)])
if self.penalize_extra_chains:
ref_scorers = self._GetRefScorers()
denominator = sum(s.total_contacts for s in list(ref_scorers.values()))
denominator += self._GetModelPenalty()
else:
denominator = sum(weights)
if denominator > 0:
self._weighted_lddt = nominator / float(denominator)
else:
self._weighted_lddt = 0.0
return self._weighted_lddt
@property
def lddt_ref(self):
"""The reference entity used for oligomeric lDDT scoring
(:attr:`oligo_lddt` / :attr:`oligo_lddt_scorer`).
Since the lDDT computation requires a single chain with mapped residue
numbering, all chains of :attr:`ref` are appended into a single chain X with
unique residue numbers according to the column-index in the alignment. The
alignments are in the same order as they appear in :attr:`alignments`.
Additional residues are appended at the end of the chain with unique residue
numbers. Unmapped chains are only added if :attr:`penalize_extra_chains` is
True. Only CA atoms are considered if :attr:`calpha_only` is True.
:getter: Computed on first use (cached)
:type: :class:`~ost.mol.EntityHandle`
"""
if self._lddt_ref is None:
self._PrepareOligoEntities()
return self._lddt_ref
@property
def lddt_mdl(self):
"""The model entity used for oligomeric lDDT scoring
(:attr:`oligo_lddt` / :attr:`oligo_lddt_scorer`).
Like :attr:`lddt_ref`, this is a single chain X containing all chains of
:attr:`mdl`. The residue numbers match the ones in :attr:`lddt_ref` where
aligned and have unique numbers for additional residues.
:getter: Computed on first use (cached)
:type: :class:`~ost.mol.EntityHandle`
"""
if self._lddt_mdl is None:
self._PrepareOligoEntities()
return self._lddt_mdl
@property
def oligo_lddt_scorer(self):
"""lDDT Scorer object for :attr:`lddt_ref` and :attr:`lddt_mdl`.
:getter: Computed on first use (cached)
:type: :class:`~ost.mol.alg.lDDTScorer`
"""
if self._oligo_lddt_scorer is None:
self._oligo_lddt_scorer = lDDTScorer(
references=[self.lddt_ref.Select("")],
model=self.lddt_mdl.Select(""),
settings=self.settings)
return self._oligo_lddt_scorer
@property
def mapped_lddt_scorers(self):
"""List of scorer objects for each chain mapped in :attr:`alignments`.
:getter: Computed on first use (cached)
:type: :class:`list` of :class:`MappedLDDTScorer`
"""
if self._mapped_lddt_scorers is None:
self._mapped_lddt_scorers = list()
for aln in self.alignments:
mapped_lddt_scorer = MappedLDDTScorer(aln, self.calpha_only,
self.settings)
self._mapped_lddt_scorers.append(mapped_lddt_scorer)
return self._mapped_lddt_scorers
@property
def sc_lddt_scorers(self):
"""List of lDDT scorer objects extracted from :attr:`mapped_lddt_scorers`.
:type: :class:`list` of :class:`~ost.mol.alg.lDDTScorer`
"""
return [mls.lddt_scorer for mls in self.mapped_lddt_scorers]
@property
def sc_lddt(self):
"""List of global scores extracted from :attr:`sc_lddt_scorers`.
If scoring for a mapped chain fails, an error is displayed and a score of 0
is assigned.
:getter: Computed on first use (cached)
:type: :class:`list` of :class:`float`
"""
if self._sc_lddt is None:
self._sc_lddt = list()
for lddt_scorer in self.sc_lddt_scorers:
try:
self._sc_lddt.append(lddt_scorer.global_score)
except Exception as ex:
LogError('Single chain lDDT failed:', str(ex))
self._sc_lddt.append(0.0)
return self._sc_lddt
##############################################################################
# Class internal helpers
##############################################################################
def _PrepareOligoEntities(self):
# simple wrapper to avoid code duplication
self._lddt_ref, self._lddt_mdl = _MergeAlignedChains(
self.alignments, self.ref, self.mdl, self.calpha_only,
self.penalize_extra_chains)
@staticmethod
def _GetUnmappedMdlChains(mdl, alignments):
# assume model is second sequence in alignment and is named by chain
mdl_chains = set(ch.name for ch in mdl.chains)
mapped_mdl_chains = set(aln.GetSequence(1).GetName() for aln in alignments)
return (mdl_chains - mapped_mdl_chains)
def _GetRefScorers(self):
# single chain lddt scorers for each reference chain (key = chain name)
if self._ref_scorers is None:
# collect from mapped_lddt_scorers
ref_scorers = dict()
for mapped_lddt_scorer in self.mapped_lddt_scorers:
ref_ch_name = mapped_lddt_scorer.reference_chain_name
ref_scorers[ref_ch_name] = mapped_lddt_scorer.lddt_scorer
# add new ones where needed
for ch in self.ref.chains:
if ch.name not in ref_scorers:
if self.calpha_only:
ref_chain = ch.Select('aname=CA')
else:
ref_chain = ch.Select('')
ref_scorers[ch.name] = lDDTScorer(
references=[ref_chain],
model=ref_chain,
settings=self.settings)
# store in cache
self._ref_scorers = ref_scorers
# fetch from cache
return self._ref_scorers
def _GetModelPenalty(self):
# extra value to add to total number of distances for extra model chains
# -> estimated from chem-mapped reference chains
if self._model_penalty is None:
# sanity check
if self.chem_mapping is None:
raise RuntimeError("Must provide chem_mapping when requesting penalty "
"for extra model chains!")
# get cached ref_scorers
ref_scorers = self._GetRefScorers()
# get unmapped model chains
unmapped_mdl_chains = self._GetUnmappedMdlChains(self.mdl, self.alignments)
# map extra chains to ref. chains
model_penalty = 0
for ch_name_mdl in sorted(unmapped_mdl_chains):
# get penalty for chain
cur_penalty = None
for cm_ref, cm_mdl in self.chem_mapping.items():
if ch_name_mdl in cm_mdl:
# penalize by an average of the chem. mapped ref. chains
cur_penalty = 0
for ch_name_ref in cm_ref:
# assumes that total_contacts is cached (for speed)
cur_penalty += ref_scorers[ch_name_ref].total_contacts
cur_penalty /= float(len(cm_ref))
break
# report penalty
if cur_penalty is None:
LogWarning('Extra MODEL chain %s could not be chemically mapped to '
'any chain in REFERENCE, lDDT cannot consider it!' \
% ch_name_mdl)
else:
LogScript('Extra MODEL chain %s added to lDDT score by considering '
'chemically mapped chains in REFERENCE.' % ch_name_mdl)
model_penalty += cur_penalty
# store in cache
self._model_penalty = model_penalty
# fetch from cache
return self._model_penalty
class MappedLDDTScorer(object):
"""A simple class to calculate a single-chain lDDT score on a given chain to
chain mapping as extracted from :class:`OligoLDDTScorer`.
:param alignment: Sets :attr:`alignment`
:param calpha_only: Sets :attr:`calpha_only`
:param settings: Sets :attr:`settings`
.. attribute:: alignment
Alignment with two sequences named according to the mapped chains and with
views attached to both sequences (e.g. one of the items of
:attr:`QSscorer.alignments`).
The first sequence is assumed to be the reference and the second one the
model. Since the lDDT score is not symmetric (extra residues in model are
ignored), the order is important.
:type: :class:`~ost.seq.AlignmentHandle`
.. attribute:: calpha_only
If True, restricts lDDT score to CA only.
:type: :class:`bool`
.. attribute:: settings
Settings to use for lDDT scoring.
:type: :class:`~ost.mol.alg.lDDTSettings`
.. attribute:: lddt_scorer
lDDT Scorer object for the given chains.
:type: :class:`~ost.mol.alg.lDDTScorer`
.. attribute:: reference_chain_name
Chain name of the reference.
:type: :class:`str`
.. attribute:: model_chain_name
Chain name of the model.
:type: :class:`str`
"""
def __init__(self, alignment, calpha_only, settings):
# prepare fields
self.alignment = alignment
self.calpha_only = calpha_only
self.settings = settings
self.lddt_scorer = None # set in _InitScorer
self.reference_chain_name = alignment.sequences[0].name
self.model_chain_name = alignment.sequences[1].name
self._old_number_label = "old_num"
self._extended_alignment = None # set in _InitScorer
# initialize lDDT scorer
self._InitScorer()
def GetPerResidueScores(self):
"""
:return: Scores for each residue
:rtype: :class:`list` of :class:`dict` with one item for each residue
existing in model and reference:
- "residue_number": Residue number in reference chain
- "residue_name": Residue name in reference chain
- "lddt": local lDDT
- "conserved_contacts": number of conserved contacts
- "total_contacts": total number of contacts
"""
scores = list()
assigned_residues = list()
# Make sure the score is calculated
self.lddt_scorer.global_score
for col in self._extended_alignment:
if col[0] != "-" and col.GetResidue(3).IsValid():
ref_res = col.GetResidue(0)
mdl_res = col.GetResidue(1)
ref_res_renum = col.GetResidue(2)
mdl_res_renum = col.GetResidue(3)
if ref_res.one_letter_code != ref_res_renum.one_letter_code:
raise RuntimeError("Reference residue name mapping inconsistent: %s != %s" %
(ref_res.one_letter_code,
ref_res_renum.one_letter_code))
if mdl_res.one_letter_code != mdl_res_renum.one_letter_code:
raise RuntimeError("Model residue name mapping inconsistent: %s != %s" %
(mdl_res.one_letter_code,
mdl_res_renum.one_letter_code))
if ref_res.GetNumber().num != ref_res_renum.GetIntProp(self._old_number_label):
raise RuntimeError("Reference residue number mapping inconsistent: %s != %s" %
(ref_res.GetNumber().num,
ref_res_renum.GetIntProp(self._old_number_label)))
if mdl_res.GetNumber().num != mdl_res_renum.GetIntProp(self._old_number_label):
raise RuntimeError("Model residue number mapping inconsistent: %s != %s" %
(mdl_res.GetNumber().num,
mdl_res_renum.GetIntProp(self._old_number_label)))
if ref_res.qualified_name in assigned_residues:
raise RuntimeError("Duplicated residue in reference: " %
(ref_res.qualified_name))
else:
assigned_residues.append(ref_res.qualified_name)
# check if property there (may be missing for CA-only)
if mdl_res_renum.HasProp(self.settings.label):
scores.append({
"residue_number": ref_res.GetNumber().num,
"residue_name": ref_res.name,
"lddt": mdl_res_renum.GetFloatProp(self.settings.label),
"conserved_contacts": mdl_res_renum.GetFloatProp(self.settings.label + "_conserved"),
"total_contacts": mdl_res_renum.GetFloatProp(self.settings.label + "_total")})
return scores
##############################################################################
# Class internal helpers (anything that doesnt easily work without this class)
##############################################################################
def _InitScorer(self):
# Use copy of alignment (extended by 2 extra sequences for renumbering)
aln = self.alignment.Copy()
# Get chains and renumber according to alignment (for lDDT)
reference = Renumber(
aln.GetSequence(0),
old_number_label=self._old_number_label).CreateFullView()
refseq = seq.CreateSequence(
"reference_renumbered",
aln.GetSequence(0).GetString())
refseq.AttachView(reference)
aln.AddSequence(refseq)
model = Renumber(
aln.GetSequence(1),
old_number_label=self._old_number_label).CreateFullView()
modelseq = seq.CreateSequence(
"model_renumbered",
aln.GetSequence(1).GetString())
modelseq.AttachView(model)
aln.AddSequence(modelseq)
# Filter to CA-only if desired (done after AttachView to not mess it up)
if self.calpha_only:
self.lddt_scorer = lDDTScorer(
references=[reference.Select('aname=CA')],
model=model.Select('aname=CA'),
settings=self.settings)
else:
self.lddt_scorer = lDDTScorer(
references=[reference],
model=model,
settings=self.settings)
# Store alignment for later
self._extended_alignment = aln
###############################################################################
# HELPERS
###############################################################################
# general
def _AlignAtomSeqs(seq_1, seq_2):
"""
:type seq_1: :class:`ost.seq.SequenceHandle`
:type seq_2: :class:`ost.seq.SequenceHandle`
:return: Alignment of two sequences using a global alignment. Views attached
to the input sequences will remain attached in the aln.
:rtype: :class:`~ost.seq.AlignmentHandle` or None if it failed.
"""
# NOTE: If the two sequence have a greatly different length
# a local alignment could be a better choice...
aln = None
alns = seq.alg.GlobalAlign(seq_1, seq_2, seq.alg.BLOSUM62)
if alns: aln = alns[0]
if not aln:
LogWarning('Failed to align %s to %s' % (seq_1.name, seq_2.name))
LogWarning('%s: %s' % (seq_1.name, seq_1.string))
LogWarning('%s: %s' % (seq_2.name, seq_2.string))
return aln
def _FixSelectChainNames(ch_names):
"""
:return: String to be used with Select(cname=<RETURN>). Takes care of joining
and putting quotation marks where needed.
:rtype: :class:`str`
:param ch_names: Some iterable list of chain names (:class:`str` items).
"""
return ','.join(mol.QueryQuoteName(ch_name) for ch_name in ch_names)
# QS entity
def _CleanInputEntity(ent):
"""
:param ent: The OST entity to be cleaned.
:type ent: :class:`EntityHandle` or :class:`EntityView`
:return: A tuple of 3 items: :attr:`QSscoreEntity.ent`,
:attr:`QSscoreEntity.removed_chains`,
:attr:`QSscoreEntity.calpha_only`
"""
# find chains to remove
removed_chains = []
for ch in ent.chains:
# we remove chains if they are small-peptides or if the contain no aa
# or if they contain only unknown or modified residues
if ch.name in ['-', '_'] \
or ch.residue_count < 20 \
or not any(r.chem_type.IsAminoAcid() for r in ch.residues) \
or not (set(r.one_letter_code for r in ch.residues) - {'?', 'X'}):
removed_chains.append(ch.name)
# remove them from *ent*
if removed_chains:
view = ent.Select('cname!=%s' % _FixSelectChainNames(set(removed_chains)))
ent_new = mol.CreateEntityFromView(view, True)
ent_new.SetName(ent.GetName())
else:
ent_new = ent
# check if CA only
calpha_only = False
if ent_new.atom_count > 0 and ent_new.Select('aname=CB').atom_count == 0:
LogInfo('Structure %s is a CA only structure!' % ent_new.GetName())
calpha_only = True
# report and return
if removed_chains:
LogInfo('Chains removed from %s: %s' \
% (ent_new.GetName(), ''.join(removed_chains)))
LogInfo('Chains in %s: %s' \
% (ent_new.GetName(), ''.join([c.name for c in ent_new.chains])))
return ent_new, removed_chains, calpha_only
def _GetCAOnlyEntity(ent):
"""
:param ent: Entity to process
:type ent: :class:`EntityHandle` or :class:`EntityView`
:return: New entity with only CA and only one atom per residue
(see :attr:`QSscoreEntity.ca_entity`)
"""
# cook up CA only view (diff from Select = guaranteed 1 atom per residue)
ca_view = ent.CreateEmptyView()
# add chain by chain
for res in ent.residues:
ca_atom = res.FindAtom("CA")
if ca_atom.IsValid():
ca_view.AddAtom(ca_atom)
# finalize
return mol.CreateEntityFromView(ca_view, False)
def _GetChemGroups(qs_ent, seqid_thr=95.):
"""
:return: Intra-complex group of chemically identical polypeptide chains
(see :attr:`QSscoreEntity.chem_groups`)
:param qs_ent: Entity to process
:type qs_ent: :class:`QSscoreEntity`
:param seqid_thr: Threshold used to decide when two chains are identical.
95 percent tolerates the few mutations crystallographers
like to do.
:type seqid_thr: :class:`float`
"""
# get data from qs_ent
ca_chains = qs_ent.ca_chains
chain_names = sorted(ca_chains.keys())
# get pairs of identical chains
# NOTE: this scales quadratically with number of chains and may be optimized
# -> one could merge it with "merge transitive pairs" below...
id_seqs = []
for ch_1, ch_2 in itertools.combinations(chain_names, 2):
aln = qs_ent.GetAlignment(ch_1, ch_2)
if aln and seq.alg.SequenceIdentity(aln) > seqid_thr:
id_seqs.append((ch_1, ch_2))
# trivial case: no matching pairs
if not id_seqs:
return [[name] for name in chain_names]
# merge transitive pairs
groups = []
for ch_1, ch_2 in id_seqs:
found = False
for g in groups:
if ch_1 in g or ch_2 in g:
found = True
g.add(ch_1)
g.add(ch_2)
if not found:
groups.append(set([ch_1, ch_2]))
# sort internally based on sequence length
chem_groups = []
for g in groups:
ranked_g = sorted([(-ca_chains[ch].length, ch) for ch in g])
chem_groups.append([ch for _,ch in ranked_g])
# add other dissimilar chains
for ch in chain_names:
if not any(ch in g for g in chem_groups):
chem_groups.append([ch])
return chem_groups
def _GetAngles(Rt):
"""Computes the Euler angles given a transformation matrix.
:param Rt: Rt operator.
:type Rt: :class:`ost.geom.Mat4`
:return: A :class:`tuple` of angles for each axis (x,y,z)
"""
rot = np.asarray(Rt.ExtractRotation().data).reshape(3,3)
tx = np.arctan2(rot[2,1], rot[2,2])
if tx < 0:
tx += 2*np.pi
ty = np.arctan2(rot[2,0], np.sqrt(rot[2,1]**2 + rot[2,2]**2))
if ty < 0:
ty += 2*np.pi
tz = np.arctan2(rot[1,0], rot[0,0])
if tz < 0:
tz += 2*np.pi
return tx,ty,tz
# QS scorer
def _GetChemGroupsMapping(qs_ent_1, qs_ent_2):
"""
:return: Inter-complex mapping of chemical groups
(see :attr:`QSscorer.chem_mapping`)
:param qs_ent_1: See :attr:`QSscorer.qs_ent_1`
:param qs_ent_2: See :attr:`QSscorer.qs_ent_2`
"""
# get chem. groups and unique representative
chem_groups_1 = qs_ent_1.chem_groups
chem_groups_2 = qs_ent_2.chem_groups
repr_chains_1 = {x[0]: tuple(x) for x in chem_groups_1}
repr_chains_2 = {x[0]: tuple(x) for x in chem_groups_2}
# if entities do not have different number of unique chains, we get the
# mapping for the smaller set
swapped = False
if len(repr_chains_2) < len(repr_chains_1):
repr_chains_1, repr_chains_2 = repr_chains_2, repr_chains_1
qs_ent_1, qs_ent_2 = qs_ent_2, qs_ent_1
swapped = True
# find the closest to each chain between the two entities
# NOTE: this may still be sensible to orthology problem
# -> currently we use a global alignment and seq. id. to rank pairs
# -> we also tried local alignments and weighting the seq. id. by the
# coverages of the alignments (gapless string in aln. / seq. length)
# but global aln performed better...
chain_pairs = []
ca_chains_1 = qs_ent_1.ca_chains
ca_chains_2 = qs_ent_2.ca_chains
for ch_1 in list(repr_chains_1.keys()):
for ch_2 in list(repr_chains_2.keys()):
aln = _AlignAtomSeqs(ca_chains_1[ch_1], ca_chains_2[ch_2])
if aln:
chains_seqid = seq.alg.SequenceIdentity(aln)
LogVerbose('Sequence identity', ch_1, ch_2, 'seqid=%.2f' % chains_seqid)
chain_pairs.append((chains_seqid, ch_1, ch_2))
# get top matching groups first
chain_pairs = sorted(chain_pairs, reverse=True)
chem_mapping = {}
for _, c1, c2 in chain_pairs:
skip = False
for a,b in chem_mapping.items():
if repr_chains_1[c1] == a or repr_chains_2[c2] == b:
skip = True
break
if not skip:
chem_mapping[repr_chains_1[c1]] = repr_chains_2[c2]
if swapped:
chem_mapping = {y: x for x, y in chem_mapping.items()}
qs_ent_1, qs_ent_2 = qs_ent_2, qs_ent_1
# notify chains without partner
mapped_1 = set([i for s in list(chem_mapping.keys()) for i in s])
chains_1 = set([c.name for c in qs_ent_1.ent.chains])
if chains_1 - mapped_1:
LogWarning('Unmapped Chains in %s: %s'
% (qs_ent_1.GetName(), ','.join(list(chains_1 - mapped_1))))
mapped_2 = set([i for s in list(chem_mapping.values()) for i in s])
chains_2 = set([c.name for c in qs_ent_2.ent.chains])
if chains_2 - mapped_2:
LogWarning('Unmapped Chains in %s: %s'
% (qs_ent_2.GetName(), ','.join(list(chains_2 - mapped_2))))
# check if we have any chains left
LogInfo('Chemical chain-groups mapping: ' + str(chem_mapping))
if len(mapped_1) < 1 or len(mapped_2) < 1:
raise QSscoreError('Less than 1 chains left in chem_mapping.')
return chem_mapping
def _SelectFew(l, max_elements):
"""Return l or copy of l with at most *max_elements* entries."""
n_el = len(l)
if n_el <= max_elements:
return l
else:
# cheap integer ceiling (-1 to ensure that x*max_elements gets d_el = x)
d_el = ((n_el - 1) // max_elements) + 1
new_l = list()
for i in range(0, n_el, d_el):
new_l.append(l[i])
return new_l
def _GetAlignedResidues(qs_ent_1, qs_ent_2, chem_mapping, max_ca_per_chain,
clustalw_bin):
"""
:return: Tuple of two :class:`~ost.mol.EntityView` objects containing subsets
of *qs_ent_1* and *qs_ent_2*. Two entities are later created from
those views (see :attr:`QSscorer.ent_to_cm_1` and
:attr:`QSscorer.ent_to_cm_2`)
:param qs_ent_1: See :attr:`QSscorer.qs_ent_1`
:param qs_ent_2: See :attr:`QSscorer.qs_ent_2`
:param chem_mapping: See :attr:`QSscorer.chem_mapping`
:param max_ca_per_chain: See :attr:`QSscorer.max_ca_per_chain_for_cm`
"""
# make sure name doesn't contain spaces and is unique
def _FixName(seq_name, seq_names):
# get rid of spaces and make it unique
seq_name = seq_name.replace(' ', '-')
while seq_name in seq_names:
seq_name += '-'
return seq_name
# resulting views into CA entities using CA chain sequences
ent_view_1 = qs_ent_1.ca_entity.CreateEmptyView()
ent_view_2 = qs_ent_2.ca_entity.CreateEmptyView()
ca_chains_1 = qs_ent_1.ca_chains
ca_chains_2 = qs_ent_2.ca_chains
# go through all mapped chemical groups
for group_1, group_2 in chem_mapping.items():
# MSA with ClustalW
seq_list = seq.CreateSequenceList()
# keep sequence-name (must be unique) to view mapping
seq_to_empty_view = dict()
for ch in group_1:
sequence = ca_chains_1[ch].Copy()
sequence.name = _FixName(qs_ent_1.GetName() + '.' + ch, seq_to_empty_view)
seq_to_empty_view[sequence.name] = ent_view_1
seq_list.AddSequence(sequence)
for ch in group_2:
sequence = ca_chains_2[ch].Copy()
sequence.name = _FixName(qs_ent_2.GetName() + '.' + ch, seq_to_empty_view)
seq_to_empty_view[sequence.name] = ent_view_2
seq_list.AddSequence(sequence)
alnc = ClustalW(seq_list, clustalw=clustalw_bin)
# collect aligned residues (list of lists of sequence_count valid residues)
residue_lists = list()
sequence_count = alnc.sequence_count
for col in alnc:
residues = [col.GetResidue(ir) for ir in range(sequence_count)]
if all([r.IsValid() for r in residues]):
residue_lists.append(residues)
# check number of aligned residues
if len(residue_lists) < 5:
raise QSscoreError('Not enough aligned residues.')
elif max_ca_per_chain > 0:
residue_lists = _SelectFew(residue_lists, max_ca_per_chain)
# check what view is for which residue
res_views = [seq_to_empty_view[alnc.sequences[ir].name] \
for ir in range(sequence_count)]
# add to view (note: only 1 CA atom per residue in here)
for res_list in residue_lists:
for res, view in zip(res_list, res_views):
view.AddResidue(res, mol.ViewAddFlag.INCLUDE_ATOMS)
# done
return ent_view_1, ent_view_2
def _FindSymmetry(qs_ent_1, qs_ent_2, ent_to_cm_1, ent_to_cm_2, chem_mapping):
"""
:return: A pair of comparable symmetry groups (for :attr:`QSscorer.symm_1`
and :attr:`QSscorer.symm_2`) between the two structures.
Empty lists if no symmetry identified.
:param qs_ent_1: See :attr:`QSscorer.qs_ent_1`
:param qs_ent_2: See :attr:`QSscorer.qs_ent_2`
:param ent_to_cm_1: See :attr:`QSscorer.ent_to_cm_1`
:param ent_to_cm_2: See :attr:`QSscorer.ent_to_cm_2`
:param chem_mapping: See :attr:`QSscorer.chem_mapping`
"""
LogInfo('Identifying Symmetry Groups...')
# get possible symmetry groups
symm_subg_1 = _GetSymmetrySubgroups(qs_ent_1, ent_to_cm_1,
list(chem_mapping.keys()))
symm_subg_2 = _GetSymmetrySubgroups(qs_ent_2, ent_to_cm_2,
list(chem_mapping.values()))
# check combination of groups
LogInfo('Selecting Symmetry Groups...')
# check how many mappings are to be checked for each pair of symmetry groups
# -> lower number here will speed up worst-case runtime of _GetChainMapping
# NOTE: this is tailored to speed up brute force all vs all mapping test
# for preferred _CheckClosedSymmetry this is suboptimal!
best_symm = []
for symm_1, symm_2 in itertools.product(symm_subg_1, symm_subg_2):
s1 = symm_1[0]
s2 = symm_2[0]
if len(s1) != len(s2):
LogDebug('Discarded', str(symm_1), str(symm_2),
': different size of symmetry groups')
continue
count = _CountSuperpositionsAndMappings(symm_1, symm_2, chem_mapping)
nr_mapp = count['intra']['mappings'] + count['inter']['mappings']
LogDebug('OK', str(symm_1), str(symm_2), ': %s mappings' % nr_mapp)
best_symm.append((nr_mapp, symm_1, symm_2))
for _, symm_1, symm_2 in sorted(best_symm):
s1 = symm_1[0]
s2 = symm_2[0]
group_1 = ent_to_cm_1.Select('cname=%s' % _FixSelectChainNames(s1))
group_2 = ent_to_cm_2.Select('cname=%s' % _FixSelectChainNames(s2))
# check if by superposing a pair of chains within the symmetry group to
# superpose all chains within the symmetry group
# -> if successful, the symmetry groups are compatible
closed_symm = _CheckClosedSymmetry(group_1, group_2, symm_1, symm_2,
chem_mapping, 6, 0.8, find_best=False)
if closed_symm:
return symm_1, symm_2
# nothing found
LogInfo('No coherent symmetry identified between structures')
return [], []
def _GetChainMapping(ent_1, ent_2, symm_1, symm_2, chem_mapping,
max_mappings_extensive):
"""
:return: Tuple with mapping from *ent_1* to *ent_2* (see
:attr:`QSscorer.chain_mapping`) and scheme used (see
:attr:`QSscorer.chain_mapping_scheme`)
:param ent_1: See :attr:`QSscorer.ent_to_cm_1`
:param ent_2: See :attr:`QSscorer.ent_to_cm_2`
:param symm_1: See :attr:`QSscorer.symm_1`
:param symm_2: See :attr:`QSscorer.symm_2`
:param chem_mapping: See :attr:`QSscorer.chem_mapping`
:param max_mappings_extensive: See :attr:`QSscorer.max_mappings_extensive`
"""
LogInfo('Symmetry-groups used in %s: %s' % (ent_1.GetName(), str(symm_1)))
LogInfo('Symmetry-groups used in %s: %s' % (ent_2.GetName(), str(symm_2)))
# quick check for closed symmetries
thresholds = [( 'strict', 4, 0.8),
( 'tolerant', 6, 0.4),
('permissive', 8, 0.2)]
for scheme, sup_thr, sup_fract in thresholds:
# check if by superposing a pair of chains within the symmetry group to
# superpose all chains of the two oligomers
# -> this also returns the resulting mapping of chains
mapping = _CheckClosedSymmetry(ent_1, ent_2, symm_1, symm_2,
chem_mapping, sup_thr, sup_fract)
if mapping:
LogInfo('Closed Symmetry with %s parameters' % scheme)
if scheme == 'permissive':
LogWarning('Permissive thresholds used for overlap based mapping ' + \
'detection: check mapping manually: %s' % mapping)
return mapping, scheme
# NOTE that what follows below is sub-optimal:
# - if the two structures don't fit at all, we may map chains rather randomly
# - we may need a lot of operations to find globally "best" mapping
# -> COST = O(N^2) * O(N!)
# (first = all pairwise chain-superpose, latter = all chain mappings)
# -> a greedy chain mapping choice algo (pick best RMSD for each one-by-one)
# could reduce this to O(N^2) * O(N^2) but it would need to be validated
# - one could also try some other heuristic based on center of atoms of chains
# -> at this point we get a bad mapping anyways...
# if we get here, we will need to check many combinations of mappings
# -> check how many mappings must be checked and limit
count = _CountSuperpositionsAndMappings(symm_1, symm_2, chem_mapping)
LogInfo('Intra Symmetry-group mappings to check: %s' \
% count['intra']['mappings'])
LogInfo('Inter Symmetry-group mappings to check: %s' \
% count['inter']['mappings'])
nr_mapp = count['intra']['mappings'] + count['inter']['mappings']
if nr_mapp > max_mappings_extensive:
raise QSscoreError('Too many possible mappings: %s' % nr_mapp)
# to speed up the computations we cache chain views and RMSDs
cached_rmsd = _CachedRMSD(ent_1, ent_2)
# get INTRA symmetry group chain mapping
check = 0
intra_mappings = [] # list of (RMSD, c1, c2, mapping) tuples (best superpose)
# limit chem mapping to reference symmetry group
ref_symm_1 = symm_1[0]
ref_symm_2 = symm_2[0]
asu_chem_mapping = _LimitChemMapping(chem_mapping, ref_symm_1, ref_symm_2)
# for each chemically identical group
for g1, g2 in asu_chem_mapping.items():
# try to superpose all possible pairs
for c1, c2 in itertools.product(g1, g2):
# get superposition transformation
LogVerbose('Superposing chains: %s, %s' % (c1, c2))
res = cached_rmsd.GetSuperposition(c1, c2)
# compute RMSD of possible mappings
cur_mappings = [] # list of (RMSD, mapping) tuples
for mapping in _ListPossibleMappings(c1, c2, asu_chem_mapping):
check += 1
chains_rmsd = cached_rmsd.GetMappedRMSD(mapping, res.transformation)
cur_mappings.append((chains_rmsd, mapping))
LogVerbose(str(mapping), str(chains_rmsd))
best_rmsd, best_mapp = min(cur_mappings)
intra_mappings.append((best_rmsd, c1, c2, best_mapp))
# best chain-chain superposition defines the intra asu mapping
_, intra_asu_c1, intra_asu_c2, intra_asu_mapp = min(intra_mappings)
# if only one asu is present in any of the complexes, we're done
if len(symm_1) == 1 or len(symm_2) == 1:
mapping = intra_asu_mapp
else:
# the mapping is the element position within the asu chain list
# -> this speed up a lot, assuming that the order of chain in asu groups
# is following the order of symmetry operations
index_asu_c1 = ref_symm_1.index(intra_asu_c1)
index_asu_c2 = ref_symm_2.index(intra_asu_c2)
index_mapp = {ref_symm_1.index(s1): ref_symm_2.index(s2) \
for s1, s2 in intra_asu_mapp.items()}
LogInfo('Intra symmetry-group mapping: %s' % str(intra_asu_mapp))
# get INTER symmetry group chain mapping
# we take the first symmetry group from the complex having the most
if len(symm_1) < len(symm_2):
symm_combinations = list(itertools.product(symm_1, [symm_2[0]]))
else:
symm_combinations = list(itertools.product([symm_1[0]], symm_2))
full_asu_mapp = {tuple(symm_1): tuple(symm_2)}
full_mappings = [] # list of (RMSD, mapping) tuples
for s1, s2 in symm_combinations:
# get superposition transformation (we take best chain-pair in asu)
LogVerbose('Superposing symmetry-group: %s, %s in %s, %s' \
% (s1[index_asu_c1], s2[index_asu_c2], s1, s2))
res = cached_rmsd.GetSuperposition(s1[index_asu_c1], s2[index_asu_c2])
# compute RMSD of possible mappings
for asu_mapp in _ListPossibleMappings(s1, s2, full_asu_mapp):
check += 1
# need to extract full chain mapping (use indexing)
mapping = {}
for a, b in asu_mapp.items():
for id_a, id_b in index_mapp.items():
mapping[a[id_a]] = b[id_b]
chains_rmsd = cached_rmsd.GetMappedRMSD(mapping, res.transformation)
full_mappings.append((chains_rmsd, mapping))
LogVerbose(str(mapping), str(chains_rmsd))
if check != nr_mapp:
LogWarning('Mapping number estimation was wrong') # sanity check
# return best (lowest RMSD) mapping
mapping = min(full_mappings, key=lambda x: x[0])[1]
LogWarning('Extensive search used for mapping detection (fallback). This ' + \
'approach has known limitations. Check mapping manually: %s' \
% mapping)
return mapping, 'extensive'
def _GetSymmetrySubgroups(qs_ent, ent, chem_groups):
"""
Identify the symmetry (either cyclic C or dihedral D) of the protein and find
all possible symmetry subgroups. This is done testing all combination of chain
superposition and clustering them by the angles (D) or the axis (C) of the Rt
operator.
Groups of superposition which can fully reconstruct the structure are possible
symmetry subgroups.
:param qs_ent: Entity with cached angles and axis.
:type qs_ent: :class:`QSscoreEntity`
:param ent: Entity from which to extract chains (perfect alignment assumed
for superposition as in :attr:`QSscorer.ent_to_cm_1`).
:type ent: :class:`EntityHandle` or :class:`EntityView`
:param chem_groups: List of tuples/lists of chain names in *ent*. Each list
contains all chains belonging to a chem. group (could be
from :attr:`QSscoreEntity.chem_groups` or from "keys()"
or "values()" of :attr:`QSscorer.chem_mapping`)
:return: A list of possible symmetry subgroups (each in same format as
:attr:`QSscorer.symm_1`). If no symmetry is found, we return a list
with a single symmetry subgroup with a single group with all chains.
"""
# get angles / axis for pairwise transformations within same chem. group
angles = {}
axis = {}
for cnames in chem_groups:
for c1, c2 in itertools.combinations(cnames, 2):
cur_angles = qs_ent.GetAngles(c1, c2)
if not np.any(np.isnan(cur_angles)):
angles[(c1,c2)] = cur_angles
cur_axis = qs_ent.GetAxis(c1, c2)
if not np.any(np.isnan(cur_axis)):
axis[(c1,c2)] = cur_axis
# cluster superpositions angles at different thresholds
symm_groups = []
LogVerbose('Possible symmetry-groups for: %s' % ent.GetName())
for angle_thr in np.arange(0.1, 1, 0.1):
d_symm_groups = _GetDihedralSubgroups(ent, chem_groups, angles, angle_thr)
if d_symm_groups:
for group in d_symm_groups:
if group not in symm_groups:
symm_groups.append(group)
LogVerbose('Dihedral: %s' % group)
LogInfo('Symmetry threshold %.1f used for angles of %s' \
% (angle_thr, ent.GetName()))
break
# cluster superpositions axis at different thresholds
for axis_thr in np.arange(0.1, 1, 0.1):
c_symm_groups = _GetCyclicSubgroups(ent, chem_groups, axis, axis_thr)
if c_symm_groups:
for group in c_symm_groups:
if group not in symm_groups:
symm_groups.append(group)
LogVerbose('Cyclic: %s' % group)
LogInfo('Symmetry threshold %.1f used for axis of %s' \
% (axis_thr, ent.GetName()))
break
# fall back to single "group" containing all chains if none found
if not symm_groups:
LogInfo('No symmetry-group detected in %s' % ent.GetName())
symm_groups = [[tuple([c for g in chem_groups for c in g])]]
return symm_groups
def _GetDihedralSubgroups(ent, chem_groups, angles, angle_thr):
"""
:return: Dihedral subgroups for :func:`_GetSymmetrySubgroups`
(same return type as there). Empty list if fail.
:param ent: See :func:`_GetSymmetrySubgroups`
:param chem_groups: See :func:`_GetSymmetrySubgroups`
:param angles: :class:`dict` (key = chain-pair-tuple, value = Euler angles)
:param angle_thr: Euler angles distance threshold for clustering (float).
"""
# cluster superpositions angles
if len(angles) == 0:
# nothing to be done here
return []
else:
same_angles = _ClusterData(angles, angle_thr, _AngleArrayDistance)
# get those which are non redundant and covering all chains
symm_groups = []
for clst in list(same_angles.values()):
group = list(clst.keys())
if _ValidChainGroup(group, ent):
if len(chem_groups) > 1:
# if hetero, we want to group toghether different chains only
symm_groups.append(list(zip(*group)))
else:
# if homo, we also want pairs
symm_groups.append(group)
symm_groups.append(list(zip(*group)))
return symm_groups
def _GetCyclicSubgroups(ent, chem_groups, axis, axis_thr):
"""
:return: Cyclic subgroups for :func:`_GetSymmetrySubgroups`
(same return type as there). Empty list if fail.
:param ent: See :func:`_GetSymmetrySubgroups`
:param chem_groups: See :func:`_GetSymmetrySubgroups`
:param angles: :class:`dict` (key = chain-pair-tuple, value = rotation axis)
:param angle_thr: Axis distance threshold for clustering (float).
"""
# cluster superpositions axis
if len(axis) == 0:
# nothing to be done here
return []
else:
same_axis = _ClusterData(axis, axis_thr, _AxisDistance)
# use to get grouping
symm_groups = []
for clst in list(same_axis.values()):
all_chain = [item for sublist in list(clst.keys()) for item in sublist]
if len(set(all_chain)) == ent.chain_count:
# if we have an hetero we can exploit cyclic symmetry for grouping
if len(chem_groups) > 1:
ref_chem_group = chem_groups[0]
# try two criteria for grouping
cyclic_group_closest = []
cyclic_group_iface = []
for c1 in ref_chem_group:
group_closest = [c1]
group_iface = [c1]
for chains in chem_groups[1:]:
# center of atoms distance
closest = _GetClosestChain(ent, c1, chains)
# chain with bigger interface
closest_iface = _GetClosestChainInterface(ent, c1, chains)
group_closest.append(closest)
group_iface.append(closest_iface)
cyclic_group_closest.append(tuple(group_closest))
cyclic_group_iface.append(tuple(group_iface))
if _ValidChainGroup(cyclic_group_closest, ent):
symm_groups.append(cyclic_group_closest)
if _ValidChainGroup(cyclic_group_iface, ent):
symm_groups.append(cyclic_group_iface)
# if it is a homo, there's not much we can group
else:
symm_groups.append(chem_groups)
return symm_groups
def _ClusterData(data, thr, metric):
"""Wrapper for fclusterdata to get dict of clusters.
:param data: :class:`dict` (keys for ID, values used for clustering)
:return: :class:`dict` {cluster_idx: {data-key: data-value}}
"""
# special case length 1
if len(data) == 1:
return {0: {list(data.keys())[0]: list(data.values())[0]} }
# do the clustering
cluster_indices = fclusterdata(np.asarray(list(data.values())), thr,
method='complete', criterion='distance',
metric=metric)
# fclusterdata output is cluster ids -> put into dict of clusters
res = {}
for cluster_idx, data_key in zip(cluster_indices, list(data.keys())):
if not cluster_idx in res:
res[cluster_idx] = {}
res[cluster_idx][data_key] = data[data_key]
return res
def _AngleArrayDistance(u, v):
"""
:return: Average angular distance of two arrays of angles.
:param u: Euler angles.
:param v: Euler angles.
"""
dist = []
for a,b in zip(u,v):
delta = abs(a-b)
if delta > np.pi:
delta = abs(2*np.pi - delta)
dist.append(delta)
return np.mean(dist)
def _AxisDistance(u, v):
"""
:return: Euclidean distance between two rotation axes. Axes can point in
either direction so we ensure to use the closer one.
:param u: Rotation axis.
:param v: Rotation axis.
"""
# get axes as arrays (for convenience)
u = np.asarray(u)
v = np.asarray(v)
# get shorter of two possible distances (using v or -v)
dv1 = u - v
dv2 = u + v
d1 = np.dot(dv1, dv1)
d2 = np.dot(dv2, dv2)
return np.sqrt(min(d1, d2))
def _GetClosestChain(ent, ref_chain, chains):
"""
:return: Chain closest to *ref_chain* based on center of atoms distance.
:rtype: :class:`str`
:param ent: See :func:`_GetSymmetrySubgroups`
:param ref_chain: We look for chains closest to this one
:type ref_chain: :class:`str`
:param chains: We only consider these chains
:type chains: :class:`list` of :class:`str`
"""
contacts = []
ref_center = ent.FindChain(ref_chain).center_of_atoms
for ch in chains:
center = ent.FindChain(ch).center_of_atoms
contacts.append((geom.Distance(ref_center, center), ch))
closest_chain = min(contacts)[1]
return closest_chain
def _GetClosestChainInterface(ent, ref_chain, chains):
"""
:return: Chain with biggest interface (within 10 A) to *ref_chain*.
:rtype: :class:`str`
:param ent: See :func:`_GetSymmetrySubgroups`
:param ref_chain: We look for chains closest to this one
:type ref_chain: :class:`str`
:param chains: We only consider these chains
:type chains: :class:`list` of :class:`str`
"""
# NOTE: this is computed on a subset of the full biounit and might be
# inaccurate. Also it could be extracted from QSscoreEntity.contacts.
closest = []
for ch in chains:
iface_view = ent.Select('cname="%s" and 10 <> [cname="%s"]' \
% (ref_chain, ch))
nr_res = iface_view.residue_count
closest.append((nr_res, ch))
closest_chain = max(closest)[1]
return closest_chain
def _ValidChainGroup(group, ent):
"""
:return: True, if *group* has unique chain names and as many chains as *ent*
:rtype: :class:`bool`
:param group: Symmetry groups to check
:type group: Same as :attr:`QSscorer.symm_1`
:param ent: See :func:`_GetSymmetrySubgroups`
"""
all_chain = [item for sublist in group for item in sublist]
if len(all_chain) == len(set(all_chain)) and\
len(all_chain) == ent.chain_count:
return True
return False
def _LimitChemMapping(chem_mapping, limit_1, limit_2):
"""
:return: Chem. mapping containing only chains in *limit_1* and *limit_2*
:rtype: Same as :attr:`QSscorer.chem_mapping`
:param chem_mapping: See :attr:`QSscorer.chem_mapping`
:param limit_1: Limits chain names in chem_mapping.keys()
:type limit_1: List/tuple of strings
:param limit_2: Limits chain names in chem_mapping.values()
:type limit_2: List/tuple of strings
"""
# use set intersection to keep only mapping for chains in limit_X
limit_1_set = set(limit_1)
limit_2_set = set(limit_2)
asu_chem_mapping = dict()
for key, value in chem_mapping.items():
new_key = tuple(set(key) & limit_1_set)
if new_key:
asu_chem_mapping[new_key] = tuple(set(value) & limit_2_set)
return asu_chem_mapping
def _CountSuperpositionsAndMappings(symm_1, symm_2, chem_mapping):
"""
:return: Dictionary of number of mappings and superpositions to be performed.
Returned as *result[X][Y] = number* with X = "intra" or "inter" and
Y = "mappings" or "superpositions". The idea is that for each
pairwise superposition we check all possible mappings.
We can check the combinations within (intra) a symmetry group and
once established, we check the combinations between different (inter)
symmetry groups.
:param symm_1: See :attr:`QSscorer.symm_1`
:param symm_2: See :attr:`QSscorer.symm_2`
:param chem_mapping: See :attr:`QSscorer.chem_mapping`
"""
# setup
c = {}
c['intra'] = {}
c['inter'] = {}
c['intra']['mappings'] = 0
c['intra']['superpositions'] = 0
c['inter']['mappings'] = 0
c['inter']['superpositions'] = 0
# intra ASU mappings within reference symmetry groups
ref_symm_1 = symm_1[0]
ref_symm_2 = symm_2[0]
asu_chem_mapping = _LimitChemMapping(chem_mapping, ref_symm_1, ref_symm_2)
for g1, g2 in asu_chem_mapping.items():
chain_superpositions = len(g1) * len(g2)
c['intra']['superpositions'] += chain_superpositions
map_per_sup = _PermutationOrCombinations(g1[0], g2[0], asu_chem_mapping)
c['intra']['mappings'] += chain_superpositions * map_per_sup
if len(symm_1) == 1 or len(symm_2) == 1:
return c
# inter ASU mappings
asu_superposition = min(len(symm_1), len(symm_2))
c['inter']['superpositions'] = asu_superposition
asu = {tuple(symm_1): tuple(symm_2)}
map_per_sup = _PermutationOrCombinations(ref_symm_1, ref_symm_2, asu)
c['inter']['mappings'] = asu_superposition * map_per_sup
return c
def _PermutationOrCombinations(sup1, sup2, chem_mapping):
"""Should match len(_ListPossibleMappings(sup1, sup2, chem_mapping))."""
# remove superposed elements, put smallest complex as key
chem_map = {}
for a,b in chem_mapping.items():
new_a = tuple([x for x in a if x != sup1])
new_b = tuple([x for x in b if x != sup2])
chem_map[new_a] = new_b
mapp_nr = 1.0
for a, b in chem_map.items():
if len(a) == len(b):
mapp_nr *= factorial(len(a))
elif len(a) < len(b):
mapp_nr *= binom(len(b), len(a))
elif len(a) > len(b):
mapp_nr *= binom(len(a), len(b))
return int(mapp_nr)
def _ListPossibleMappings(sup1, sup2, chem_mapping):
"""
Return a flat list of all possible mappings given *chem_mapping* and keeping
mapping of *sup1* and *sup2* fixed. For instance if elements are chain names
this is all the mappings to check for a given superposition.
Elements in first complex are defined by *chem_mapping.keys()* (list of list
of elements) and elements in second complex by *chem_mapping.values()*. If
complexes don't have same number of elements, we map only elements for the one
with less. Also mapping is only between elements of mapped groups according to
*chem_mapping*.
:rtype: :class:`list` of :class:`dict` (key = element in chem_mapping-key,
value = element in chem_mapping-value)
:param sup1: Element for which mapping is fixed.
:type sup1: Like element in chem_mapping-key
:param sup2: Element for which mapping is fixed.
:type sup2: Like element in chem_mapping-value
:param chem_mapping: Defines mapping between groups of elements (e.g. result
of :func:`_LimitChemMapping`).
:type chem_mapping: :class:`dict` with key / value = :class:`tuple`
:raises: :class:`QSscoreError` if reference complex (first one or one with
less elements) has more elements for any given mapped group.
"""
# find smallest complex
chain1 = [i for s in list(chem_mapping.keys()) for i in s]
chain2 = [i for s in list(chem_mapping.values()) for i in s]
swap = False
if len(chain1) > len(chain2):
swap = True
# remove superposed elements, put smallest complex as key
chem_map = {}
for a, b in chem_mapping.items():
new_a = tuple([x for x in a if x != sup1])
new_b = tuple([x for x in b if x != sup2])
if swap:
chem_map[new_b] = new_a
else:
chem_map[new_a] = new_b
# generate permutations or combinations of chemically
# equivalent chains
chem_perm = []
chem_ref = []
for a, b in chem_map.items():
if len(a) == len(b):
chem_perm.append(list(itertools.permutations(b)))
chem_ref.append(a)
elif len(a) < len(b):
chem_perm.append(list(itertools.combinations(b, len(a))))
chem_ref.append(a)
else:
raise QSscoreError('Impossible to define reference group: %s' \
% str(chem_map))
# save the list of possible mappings
mappings = []
flat_ref = [i for s in chem_ref for i in s]
for perm in itertools.product(*chem_perm):
flat_perm = [i for s in perm for i in s]
d = {c1: c2 for c1, c2 in zip(flat_ref, flat_perm)}
if swap:
d = {v: k for k, v in list(d.items())}
d.update({sup1: sup2})
mappings.append(d)
return mappings
def _CheckClosedSymmetry(ent_1, ent_2, symm_1, symm_2, chem_mapping,
sup_thr=4, sup_fract=0.8, find_best=True):
"""
Quick check if we can superpose two chains and get a mapping for all other
chains using the same transformation. The mapping is defined by sufficient
overlap of the transformed chain of *ent_1* onto another chain in *ent_2*.
:param ent_1: Entity to map to *ent_2* (perfect alignment assumed between
chains of same chem. group as in :attr:`QSscorer.ent_to_cm_1`).
Views are ok but only to select full chains!
:param ent_2: Entity to map to (perfect alignment assumed between
chains of same chem. group as in :attr:`QSscorer.ent_to_cm_2`).
Views are ok but only to select full chains!
:param symm_1: Symmetry groups to use. We only superpose chains within
reference symmetry group of *symm_1* and *symm_2*.
See :attr:`QSscorer.symm_1`
:param symm_2: See :attr:`QSscorer.symm_2`
:param chem_mapping: See :attr:`QSscorer.chem_mapping`.
All chains in *ent_1* / *ent_2* must be listed here!
:param sup_thr: Distance around transformed chain in *ent_1* to check for
overlap.
:type sup_thr: :class:`float`
:param sup_fract: Fraction of atoms in chain of *ent_2* that must be
overlapped for overlap to be sufficient.
:type sup_fract: :class:`float`
:param find_best: If True, we look for best mapping according to
:func:`_GetMappedRMSD`. Otherwise, we return first suitable
mapping.
:type find_best: :class:`bool`
:return: Mapping from *ent_1* to *ent_2* or None if none found. Mapping, if
found, is as in :attr:`QSscorer.chain_mapping`.
:rtype: :class:`dict` (:class:`str` / :class:`str`)
"""
# limit chem mapping to reference symmetry group
ref_symm_1 = symm_1[0]
ref_symm_2 = symm_2[0]
asu_chem_mapping = _LimitChemMapping(chem_mapping, ref_symm_1, ref_symm_2)
# for each chemically identical group
rmsd_mappings = []
for g1, g2 in asu_chem_mapping.items():
# try to superpose all possible pairs
# -> note that some chain-chain combinations may work better than others
# to superpose the full oligomer (e.g. if some chains are open/closed)
for c1, c2 in itertools.product(g1, g2):
# get superposition transformation
chain_1 = ent_1.Select('cname="%s"' % c1)
chain_2 = ent_2.Select('cname="%s"' % c2)
res = mol.alg.SuperposeSVD(chain_1, chain_2, apply_transform=False)
# look for overlaps
mapping = _GetSuperpositionMapping(ent_1, ent_2, chem_mapping,
res.transformation, sup_thr,
sup_fract)
if not mapping:
continue
# early abort if we only want the first one
if not find_best:
return mapping
else:
# get RMSD for sorting
rmsd = _GetMappedRMSD(ent_1, ent_2, mapping, res.transformation)
rmsd_mappings.append((rmsd, mapping))
# return best mapping
if rmsd_mappings:
return min(rmsd_mappings, key=lambda x: x[0])[1]
else:
return None
def _GetSuperpositionMapping(ent_1, ent_2, chem_mapping, transformation,
sup_thr, sup_fract):
"""
:return: Dict with chain mapping from *ent_1* to *ent_2* or None if failed
(see :func:`_CheckClosedSymmetry`).
:param ent_1: See :func:`_CheckClosedSymmetry`
:param ent_2: See :func:`_CheckClosedSymmetry`
:param chem_mapping: See :func:`_CheckClosedSymmetry`
:param transformation: Superposition transformation to be applied to *ent_1*.
:param sup_thr: See :func:`_CheckClosedSymmetry`
:param sup_fract: See :func:`_CheckClosedSymmetry`
"""
# NOTE: this seems to be the comput. most expensive part in QS scoring
# -> it could be moved to C++ for speed-up
# -> the next expensive bits are ClustalW and GetContacts btw...
# swap if needed (ent_1 must be shorter or same)
if ent_1.chain_count > ent_2.chain_count:
swap = True
ent_1, ent_2 = ent_2, ent_1
transformation = geom.Invert(transformation)
chem_pairs = list(zip(list(chem_mapping.values()), list(chem_mapping.keys())))
else:
swap = False
chem_pairs = iter(chem_mapping.items())
# sanity check
if ent_1.chain_count == 0:
return None
# extract valid partners for each chain in ent_1
chem_partners = dict()
for cg1, cg2 in chem_pairs:
for ch in cg1:
chem_partners[ch] = set(cg2)
# get mapping for each chain in ent_1
mapping = dict()
mapped_chains = set()
for ch_1 in ent_1.chains:
# get all neighbors split by chain (NOTE: this muight be moved to C++)
ch_atoms = {ch_2.name: set() for ch_2 in ent_2.chains}
for a_1 in ch_1.handle.atoms:
transformed_pos = geom.Vec3(transformation * geom.Vec4(a_1.pos))
a_within = ent_2.FindWithin(transformed_pos, sup_thr)
for a_2 in a_within:
ch_atoms[a_2.chain.name].add(a_2.hash_code)
# get one with most atoms in overlap
max_num, max_name = max((len(atoms), name)
for name, atoms in ch_atoms.items())
# early abort if overlap fraction not good enough
ch_2 = ent_2.FindChain(max_name)
if max_num == 0 or max_num / float(ch_2.handle.atom_count) < sup_fract:
return None
# early abort if mapped to chain of different chem. group
ch_1_name = ch_1.name
if ch_1_name not in chem_partners:
raise RuntimeError("Chem. mapping doesn't contain all chains!")
if max_name not in chem_partners[ch_1_name]:
return None
# early abort if multiple ones mapped to same chain
if max_name in mapped_chains:
return None
# set mapping
mapping[ch_1_name] = max_name
mapped_chains.add(max_name)
# unswap if needed and return
if swap:
mapping = {v: k for k, v in mapping.items()}
return mapping
def _GetMappedRMSD(ent_1, ent_2, chain_mapping, transformation):
"""
:return: RMSD between complexes considering chain mapping.
:param ent_1: Entity mapped to *ent_2* (perfect alignment assumed between
mapped chains as in :attr:`QSscorer.ent_to_cm_1`).
:param ent_2: Entity which was mapped to (perfect alignment assumed between
mapped chains as in :attr:`QSscorer.ent_to_cm_2`).
:param chain_mapping: See :attr:`QSscorer.chain_mapping`
:param transformation: Superposition transformation to be applied to *ent_1*.
"""
# collect RMSDs and atom counts chain by chain and combine afterwards
rmsds = []
atoms = []
for c1, c2 in chain_mapping.items():
# get views and atom counts
chain_1 = ent_1.Select('cname="%s"' % c1)
chain_2 = ent_2.Select('cname="%s"' % c2)
atom_count = chain_1.atom_count
if atom_count != chain_2.atom_count:
raise RuntimeError('Chains in _GetMappedRMSD must be perfectly aligned!')
# get RMSD
rmsd = mol.alg.CalculateRMSD(chain_1, chain_2, transformation)
# update lists
rmsds.append(rmsd)
atoms.append(float(atom_count))
# combine (reminder: RMSD = sqrt(sum(atom_distance^2)/atom_count))
rmsd = np.sqrt( sum([a * r**2 for a, r in zip(atoms, rmsds)]) / sum(atoms) )
return rmsd
class _CachedRMSD:
"""Helper object for repetitive RMSD calculations.
Meant to speed up :func:`_GetChainMapping` but could also be used to replace
:func:`_GetMappedRMSD` in :func:`_CheckClosedSymmetry`.
:param ent_1: See :attr:`QSscorer.ent_to_cm_1`
:param ent_2: See :attr:`QSscorer.ent_to_cm_2`
"""
def __init__(self, ent_1, ent_2):
# initialize caches and keep entities
self.ent_1 = ent_1
self.ent_2 = ent_2
self._chain_views_1 = dict()
self._chain_views_2 = dict()
self._pair_rmsd = dict() # key = (c1,c2), value = (atom_count,rmsd)
def GetChainView1(self, cname):
"""Get cached view on chain *cname* for :attr:`ent_1`."""
if cname not in self._chain_views_1:
self._chain_views_1[cname] = self.ent_1.Select('cname="%s"' % cname)
return self._chain_views_1[cname]
def GetChainView2(self, cname):
"""Get cached view on chain *cname* for :attr:`ent_2`."""
if cname not in self._chain_views_2:
self._chain_views_2[cname] = self.ent_2.Select('cname="%s"' % cname)
return self._chain_views_2[cname]
def GetSuperposition(self, c1, c2):
"""Get superposition result (no change in entities!) for *c1* to *c2*.
This invalidates cached RMSD results used in :func:`GetMappedRMSD`.
:param c1: chain name for :attr:`ent_1`.
:param c2: chain name for :attr:`ent_2`.
"""
# invalidate _pair_rmsd
self._pair_rmsd = dict()
# superpose
chain_1 = self.GetChainView1(c1)
chain_2 = self.GetChainView2(c2)
if chain_1.atom_count != chain_2.atom_count:
raise RuntimeError('Chains in GetSuperposition not perfectly aligned!')
return mol.alg.SuperposeSVD(chain_1, chain_2, apply_transform=False)
def GetMappedRMSD(self, chain_mapping, transformation):
"""
:return: RMSD between complexes considering chain mapping.
:param chain_mapping: See :attr:`QSscorer.chain_mapping`.
:param transformation: Superposition transformation (e.g. res.transformation
for res = :func:`GetSuperposition`).
"""
# collect RMSDs and atom counts chain by chain and combine afterwards
rmsds = []
atoms = []
for c1, c2 in chain_mapping.items():
# cached?
if (c1, c2) in self._pair_rmsd:
atom_count, rmsd = self._pair_rmsd[(c1, c2)]
else:
# get views and atom counts
chain_1 = self.GetChainView1(c1)
chain_2 = self.GetChainView2(c2)
atom_count = chain_1.atom_count
if atom_count != chain_2.atom_count:
raise RuntimeError('Chains in GetMappedRMSD not perfectly aligned!')
# get RMSD
rmsd = mol.alg.CalculateRMSD(chain_1, chain_2, transformation)
self._pair_rmsd[(c1, c2)] = (atom_count, rmsd)
# update lists
rmsds.append(rmsd)
atoms.append(float(atom_count))
# combine (reminder: RMSD = sqrt(sum(atom_distance^2)/atom_count))
rmsd = np.sqrt( sum([a * r**2 for a, r in zip(atoms, rmsds)]) / sum(atoms) )
return rmsd
def _CleanUserSymmetry(symm, ent):
"""Clean-up user provided symmetry.
:param symm: Symmetry group as in :attr:`QSscorer.symm_1`
:param ent: Entity from which to extract chain names
:type ent: :class:`~ost.mol.EntityHandle` or :class:`~ost.mol.EntityView`
:return: New symmetry group limited to chains in sub-structure *ent*
(see :attr:`QSscorer.symm_1`). Empty list if invalid symmetry.
"""
# restrict symm to only contain chains in ent
chain_names = set([ch.name for ch in ent.chains])
new_symm = list()
for symm_group in symm:
new_group = tuple(ch for ch in symm_group if ch in chain_names)
if new_group:
new_symm.append(new_group)
# report it
if new_symm != symm:
LogInfo("Cleaned user symmetry for %s: %s" % (ent.GetName(), new_symm))
# do all groups have same length?
lengths = [len(symm_group) for symm_group in new_symm]
if lengths[1:] != lengths[:-1]:
LogWarning('User symmetry group of different sizes for %s. Ignoring it!' \
% (ent.GetName()))
return []
# do we cover all chains?
s_chain_names = set([ch for symm_group in new_symm for ch in symm_group])
if len(s_chain_names) != sum(lengths):
LogWarning('User symmetry group for %s has duplicate chains. Ignoring it!' \
% (ent.GetName()))
return []
if s_chain_names != chain_names:
LogWarning('User symmetry group for %s is missing chains. Ignoring it!' \
% (ent.GetName()))
return []
# ok all good
return new_symm
def _AreValidSymmetries(symm_1, symm_2):
"""Check symmetry pair for major problems.
:return: False if any of the two is empty or if they're compatible in size.
:rtype: :class:`bool`
"""
if not symm_1 or not symm_2:
return False
if len(symm_1) != 1 or len(symm_2) != 1:
if not len(symm_1[0]) == len(symm_2[0]):
LogWarning('Symmetry groups of different sizes. Ignoring them!')
return False
return True
def _GetMappedAlignments(ent_1, ent_2, chain_mapping, res_num_alignment):
"""
:return: Alignments of 2 structures given chain mapping
(see :attr:`QSscorer.alignments`).
:param ent_1: Entity containing all chains in *chain_mapping.keys()*.
Views to this entity attached to first sequence of each aln.
:param ent_2: Entity containing all chains in *chain_mapping.values()*.
Views to this entity attached to second sequence of each aln.
:param chain_mapping: See :attr:`QSscorer.chain_mapping`
:param res_num_alignment: See :attr:`QSscorer.res_num_alignment`
"""
alns = list()
for ch_1_name in sorted(chain_mapping):
# get both sequences incl. attached view
ch_1 = ent_1.FindChain(ch_1_name)
ch_2 = ent_2.FindChain(chain_mapping[ch_1_name])
if res_num_alignment:
max_res_num = max([r.number.GetNum() for r in ch_1.residues] +
[r.number.GetNum() for r in ch_2.residues])
ch1_aln = ["-"] * max_res_num
ch2_aln = ["-"] * max_res_num
for res in ch_1.residues:
ch1_aln[res.number.GetNum() - 1] = res.GetOneLetterCode()
ch1_aln = "".join(ch1_aln)
seq_1 = seq.CreateSequence(ch_1.name, str(ch1_aln))
seq_1.AttachView(ch_1.Select(""))
for res in ch_2.residues:
ch2_aln[res.number.GetNum() - 1] = res.GetOneLetterCode()
ch2_aln = "".join(ch2_aln)
seq_2 = seq.CreateSequence(ch_2.name, str(ch2_aln))
seq_2.AttachView(ch_2.Select(""))
# Create alignment
aln = seq.CreateAlignment()
aln.AddSequence(seq_1)
aln.AddSequence(seq_2)
else:
seq_1 = seq.SequenceFromChain(ch_1.name, ch_1)
seq_2 = seq.SequenceFromChain(ch_2.name, ch_2)
# align them
aln = _AlignAtomSeqs(seq_1, seq_2)
if aln:
alns.append(aln)
return alns
def _GetMappedResidues(alns):
"""
:return: Mapping of shared residues in *alns* (with views attached)
(see :attr:`QSscorer.mapped_residues`).
:param alns: See :attr:`QSscorer.alignments`
"""
mapped_residues = dict()
for aln in alns:
# prepare dict for c1
c1 = aln.GetSequence(0).name
mapped_residues[c1] = dict()
# get shared residues
v1, v2 = seq.ViewsFromAlignment(aln)
for res_1, res_2 in zip(v1.residues, v2.residues):
r1 = res_1.number.num
r2 = res_2.number.num
mapped_residues[c1][r1] = r2
return mapped_residues
def _GetExtraWeights(contacts, done, mapped_residues):
"""Return sum of extra weights for contacts of chains in set and not in done.
:return: Tuple (weight_extra_mapped, weight_extra_all).
weight_extra_mapped only sums if both cX,rX in mapped_residues
weight_extra_all sums all
:param contacts: See :func:`GetContacts` for first entity
:param done: List of (c1, c2, r1, r2) tuples to ignore
:param mapped_residues: See :func:`_GetMappedResidues`
"""
weight_extra_mapped = 0
weight_extra_non_mapped = 0
for c1 in contacts:
for c2 in contacts[c1]:
for r1 in contacts[c1][c2]:
for r2 in contacts[c1][c2][r1]:
if (c1, c2, r1, r2) not in done:
weight = _weight(contacts[c1][c2][r1][r2])
if c1 in mapped_residues and r1 in mapped_residues[c1] \
and c2 in mapped_residues and r2 in mapped_residues[c2]:
weight_extra_mapped += weight
else:
weight_extra_non_mapped += weight
return weight_extra_mapped, weight_extra_mapped + weight_extra_non_mapped
def _GetScores(contacts_1, contacts_2, mapped_residues, chain_mapping):
"""Get QS scores (see :class:`QSscorer`).
Note that if some chains are not to be considered at all, they must be removed
from *contacts_1* / *contacts_2* prior to calling this.
:param contacts_1: See :func:`GetContacts` for first entity
:param contacts_2: See :func:`GetContacts` for second entity
:param mapped_residues: See :func:`_GetMappedResidues`
:param chain_mapping: Maps any chain name in *mapped_residues* to chain name
for *contacts_2*.
:type chain_mapping: :class:`dict` (:class:`str` / :class:`str`)
:return: Tuple (QS_best, QS_global) (see :attr:`QSscorer.best_score` and
see :attr:`QSscorer.global_score`)
"""
# keep track of considered contacts as set of (c1,c2,r1,r2) tuples
done_1 = set()
done_2 = set()
weighted_scores = 0
weight_sum = 0
# naming cXY, rXY: X = 1/2 for contact, Y = 1/2/T for mapping (T = tmp)
# -> d1 = contacts_1[c11][c21][r11][r21], d2 = contacts_2[c12][c22][r12][r22]
for c11 in contacts_1:
# map to other one
if c11 not in mapped_residues: continue
c1T = chain_mapping[c11]
# second chain
for c21 in contacts_1[c11]:
# map to other one
if c21 not in mapped_residues: continue
c2T = chain_mapping[c21]
# flip if needed
flipped_chains = (c1T > c2T)
if flipped_chains:
c12, c22 = c2T, c1T
else:
c12, c22 = c1T, c2T
# skip early if no contacts there
if c12 not in contacts_2 or c22 not in contacts_2[c12]: continue
# loop over res.num. in c11
for r11 in contacts_1[c11][c21]:
# map to other one and skip if no contacts there
if r11 not in mapped_residues[c11]: continue
r1T = mapped_residues[c11][r11]
# loop over res.num. in c21
for r21 in contacts_1[c11][c21][r11]:
# map to other one and skip if no contacts there
if r21 not in mapped_residues[c21]: continue
r2T = mapped_residues[c21][r21]
# flip if needed
if flipped_chains:
r12, r22 = r2T, r1T
else:
r12, r22 = r1T, r2T
# skip early if no contacts there
if r12 not in contacts_2[c12][c22]: continue
if r22 not in contacts_2[c12][c22][r12]: continue
# ok now we can finally do the scoring
d1 = contacts_1[c11][c21][r11][r21]
d2 = contacts_2[c12][c22][r12][r22]
weight = _weight(min(d1, d2))
weighted_scores += weight * (1 - abs(d1 - d2) / 12)
weight_sum += weight
# keep track of done ones
done_1.add((c11, c21, r11, r21))
done_2.add((c12, c22, r12, r22))
LogVerbose("Shared contacts: %d" % len(done_1))
# add the extra weights
weights_extra_1 = _GetExtraWeights(contacts_1, done_1, mapped_residues)
mapped_residues_2 = dict()
for c1 in mapped_residues:
c2 = chain_mapping[c1]
mapped_residues_2[c2] = set()
for r1 in mapped_residues[c1]:
mapped_residues_2[c2].add(mapped_residues[c1][r1])
weights_extra_2 = _GetExtraWeights(contacts_2, done_2, mapped_residues_2)
weight_extra_mapped = weights_extra_1[0] + weights_extra_2[0]
weight_extra_all = weights_extra_1[1] + weights_extra_2[1]
# get scores
denom_best = weight_sum + weight_extra_mapped
denom_all = weight_sum + weight_extra_all
if denom_best == 0:
QS_best = 0
else:
QS_best = weighted_scores / denom_best
if denom_all == 0:
QS_global = 0
else:
QS_global = weighted_scores / denom_all
return QS_best, QS_global
def _weight(dist):
"""
This weight expresses the probability of two residues to interact given the CB
distance (from Xu et al. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2573399/)
"""
if dist <= 5.0:
return 1
x = (dist-5.0)/4.28;
return np.exp(-2*x*x)
def _GetQsSuperposition(alns):
"""
:return: Superposition result based on shared CA atoms in *alns*
(with views attached) (see :attr:`QSscorer.superposition`).
:param alns: See :attr:`QSscorer.alignments`
"""
# check input
if not alns:
raise QSscoreError('No successful alignments for superposition!')
# prepare views
view_1 = alns[0].GetSequence(0).attached_view.CreateEmptyView()
view_2 = alns[0].GetSequence(1).attached_view.CreateEmptyView()
# collect CA from alignments in proper order
for aln in alns:
for col in aln:
res_1 = col.GetResidue(0)
res_2 = col.GetResidue(1)
if res_1.IsValid() and res_2.IsValid():
ca_1 = res_1.FindAtom('CA')
ca_2 = res_2.FindAtom('CA')
if ca_1.IsValid() and ca_2.IsValid():
view_1.AddAtom(ca_1)
view_2.AddAtom(ca_2)
# superpose them without chainging entities
res = mol.alg.SuperposeSVD(view_1, view_2, apply_transform=False)
return res
def _AddResidue(edi, res, rnum, chain, calpha_only):
"""
Add residue *res* with res. num. *run* to given *chain* using editor *edi*.
Either all atoms added or (if *calpha_only*) only CA.
"""
if calpha_only:
ca_atom = res.FindAtom('CA')
if ca_atom.IsValid():
new_res = edi.AppendResidue(chain, res.name, rnum)
edi.InsertAtom(new_res, ca_atom.name, ca_atom.pos)
else:
new_res = edi.AppendResidue(chain, res.name, rnum)
for atom in res.atoms:
edi.InsertAtom(new_res, atom.name, atom.pos)
def _MergeAlignedChains(alns, ent_1, ent_2, calpha_only, penalize_extra_chains):
"""
Create two new entities (based on the alignments attached views) where all
residues have same numbering (when they're aligned) and they are all pushed to
a single chain X. Also append extra chains contained in *ent_1* and *ent_2*
but not contained in *alns*.
Used for :attr:`QSscorer.lddt_ref` and :attr:`QSscorer.lddt_mdl`
:param alns: List of alignments with attached views (first sequence: *ent_1*,
second: *ent_2*). Residue number in single chain is column index
of current alignment + sum of lengths of all previous alignments
(order of alignments as in input list).
:type alns: See :attr:`QSscorer.alignments`
:param ent_1: First entity to process.
:type ent_1: :class:`~ost.mol.EntityHandle`
:param ent_2: Second entity to process.
:type ent_2: :class:`~ost.mol.EntityHandle`
:param calpha_only: If True, we only include CA atoms instead of all.
:type calpha_only: :class:`bool`
:param penalize_extra_chains: If True, extra chains are added to model and
reference. Otherwise, only mapped ones.
:type penalize_extra_chains: :class:`bool`
:return: Tuple of two single chain entities (from *ent_1* and from *ent_2*)
:rtype: :class:`tuple` of :class:`~ost.mol.EntityHandle`
"""
# first new entity
ent_ren_1 = mol.CreateEntity()
ed_1 = ent_ren_1.EditXCS()
new_chain_1 = ed_1.InsertChain('X')
# second one
ent_ren_2 = mol.CreateEntity()
ed_2 = ent_ren_2.EditXCS()
new_chain_2 = ed_2.InsertChain('X')
# the alignment already contains sorted chains
rnum = 0
chain_done_1 = set()
chain_done_2 = set()
for aln in alns:
chain_done_1.add(aln.GetSequence(0).name)
chain_done_2.add(aln.GetSequence(1).name)
for col in aln:
rnum += 1
# add valid residues to single chain entities
res_1 = col.GetResidue(0)
if res_1.IsValid():
_AddResidue(ed_1, res_1, rnum, new_chain_1, calpha_only)
res_2 = col.GetResidue(1)
if res_2.IsValid():
_AddResidue(ed_2, res_2, rnum, new_chain_2, calpha_only)
# extra chains?
if penalize_extra_chains:
for chain in ent_1.chains:
if chain.name in chain_done_1:
continue
for res in chain.residues:
rnum += 1
_AddResidue(ed_1, res, rnum, new_chain_1, calpha_only)
for chain in ent_2.chains:
if chain.name in chain_done_2:
continue
for res in chain.residues:
rnum += 1
_AddResidue(ed_2, res, rnum, new_chain_2, calpha_only)
# get entity names
ent_ren_1.SetName(aln.GetSequence(0).GetAttachedView().GetName())
ent_ren_2.SetName(aln.GetSequence(1).GetAttachedView().GetName())
# connect atoms
if not conop.GetDefaultLib():
raise RuntimeError("QSscore computation requires a compound library!")
pr = conop.RuleBasedProcessor(conop.GetDefaultLib())
pr.Process(ent_ren_1)
ed_1.UpdateICS()
pr.Process(ent_ren_2)
ed_2.UpdateICS()
return ent_ren_1, ent_ren_2
# specify public interface
__all__ = ('QSscoreError', 'QSscorer', 'QSscoreEntity', 'FilterContacts',
'GetContacts', 'OligoLDDTScorer', 'MappedLDDTScorer')
|