1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
|
"""
.. note::
This is a new implementation of the stereochemistry checks, introduced in
OpenStructure 2.4, with support for nucleotides. The
:doc:`previous stereochemistry checks <stereochemistry_deprecated>` that come
with `Mariani et al. <https://dx.doi.org/10.1093/bioinformatics/btt473>`_ are
considered deprecated.
"""
import os
import json
import datetime
import numpy as np
import ost
from ost import geom
from ost import mol
def _AtomToQualifiedName(a):
""" Returns string to uniquely identify atom
format: <chain_name>.<resnum>.<resnum_inscode>.<atom_name>
"""
r = a.GetResidue()
ch = r.GetChain()
num = r.number.num
ins_code = r.number.ins_code.strip("\u0000")
return f"{ch.name}.{r.number.num}.{ins_code}.{a.name}"
def _PotentialDisulfid(a_one, a_two):
""" Returns whether two atoms can potentially build a disulfid bond
Assumes that they're from two distinct residues
"""
if a_one.GetName() == "SG" and a_two.GetName() == "SG":
if a_one.GetResidue().GetName() == "CYS":
if a_two.GetResidue().GetName() == "CYS":
return True
return False
def _GetAngles(bonds):
""" Returns list of angles based on bonds
Returns list of tuples, each tuple has three atom handles
representing angles
"""
angles = list()
done = set()
for bond in bonds:
h1 = bond.first.GetHashCode()
h2 = bond.second.GetHashCode()
for a in bond.first.GetBondPartners():
h0 = a.GetHashCode()
if h0 != h2:
if ((h0, h1, h2)) not in done and (h2, h1, h0) not in done:
angles.append((a, bond.first, bond.second))
done.add((h0, h1, h2))
for a in bond.second.GetBondPartners():
h3 = a.GetHashCode()
if h3 != h1:
if ((h1, h2, h3)) not in done and (h3, h2, h1) not in done:
angles.append((bond.first, bond.second, a))
done.add((h1, h2, h3))
return angles
def _GetResidueType(atoms):
""" Identifies type in StereoLinkData
:param atoms: Atoms that define a bond or angle
:type atoms: :class:`list` of :class:`AtomHandle`
:returns: :class:`str` with which the respective parameters can be
accessed in default stereo link data, None if no match is found
"""
residues = [a.GetResidue().handle for a in atoms]
chem_types = list(set([str(r.GetChemType()) for r in residues]))
if len(chem_types) == 1 and chem_types[0] == 'N':
return "NA"
elif len(chem_types) == 1 and chem_types[0] == 'A':
# in both cases, bond or angle, there should be exactly two residues
# involved
tmp = list()
r_hashes = set()
for r in residues:
h = r.GetHashCode()
if h not in r_hashes:
r_hashes.add(h)
tmp.append(r)
residues = tmp
if len(residues) != 2:
return None
# need to be sorted
if residues[0].GetNumber() > residues[1].GetNumber():
r0 = residues[1]
r1 = residues[0]
else:
r0 = residues[0]
r1 = residues[1]
if r1.GetName() == "GLY":
return "GLY"
elif r1.GetName() == "PRO":
a = r0.FindAtom("CA")
b = r0.FindAtom("C")
c = r1.FindAtom("N")
d = r1.FindAtom("CA")
if a.IsValid() and b.IsValid() and c.IsValid() and d.IsValid():
omega = geom.DihedralAngle(a.GetPos(), b.GetPos(),
c.GetPos(), d.GetPos())
if abs(omega) < 1.57:
return "PRO_CIS"
else:
return "PRO_TRANS"
else:
return "PEPTIDE"
return None
def _ParseBondData(doc):
""" Parse stereochemistry data for bonds
That is expected distances and standard deviations from a
:class:`gemmi.Document`. Concatenates results form all loops with tags:
_chem_comp_bond.comp_id, _chem_comp_bond.atom_id_1,
_chem_comp_bond.atom_id_2, _chem_comp_bond.value_dist,
_chem_comp_bond.value_dist_esd
:param doc: Gemmi doc representing cif file opened with
gemmi.cif.read_file(filepath)
:type doc: :class:`gemmi.Document`
:returns: :class:`dict` with one key per compound, the respective value
is again a dict with key f"{at_1}_{at_2}" and value
[dist, dist_std].
"""
data = dict()
for block in doc:
comp_id = block.find_values("_chem_comp_bond.comp_id")
at_1 = block.find_values("_chem_comp_bond.atom_id_1")
at_2 = block.find_values("_chem_comp_bond.atom_id_2")
dist = block.find_values("_chem_comp_bond.value_dist")
dist_std = block.find_values("_chem_comp_bond.value_dist_esd")
if None not in [comp_id, at_1, at_2, dist, dist_std]:
for a, b, c, d, e in zip(comp_id, at_1, at_2, dist, dist_std):
if a not in data:
data[a] = dict()
key = '_'.join([b.strip('\"'), c.strip('\"')])
data[a][key] = [float(d), float(e)]
return data
def _ParseAngleData(doc):
""" Parse stereochemistry data for angles
That is expected distances and standard deviations from a
:class:`gemmi.Document`. Concatenates results form all loops with tags:
_chem_comp_angle.comp_id, _chem_comp_angle.atom_id_1,
_chem_comp_angle.atom_id_2, _chem_comp_angle.atom_id_2,
_chem_comp_angle.value_angle, _chem_comp_angle.value_angle_esd
:param doc: Gemmi doc representing cif file opened with
gemmi.cif.read_file(filepath)
:type doc: :class:`gemmi.Document`
:returns: :class:`dict` with one key per compound, the respective value
is again a dict with key f"{at_1}_{at_2}_{at_3}" and value
[angle, angle_std].
"""
data = dict()
for block in doc:
comp_id = block.find_values("_chem_comp_angle.comp_id")
at_1 = block.find_values("_chem_comp_angle.atom_id_1")
at_2 = block.find_values("_chem_comp_angle.atom_id_2")
at_3 = block.find_values("_chem_comp_angle.atom_id_3")
angle = block.find_values("_chem_comp_angle.value_angle")
angle_std = block.find_values("_chem_comp_angle.value_angle_esd")
if None not in [comp_id, at_1, at_2, at_3, angle, angle_std]:
for a, b, c, d, e, f in zip(comp_id, at_1, at_2, at_3, angle,
angle_std):
if a not in data:
data[a] = dict()
key = '_'.join([b.strip('\"'), c.strip('\"'), d.strip('\"')])
data[a][key] = [float(e), float(f)]
return data
def StereoDataFromMON_LIB(mon_lib_path, compounds=None):
""" Parses stereochemistry parameters from CCP4 MON_LIB
CCP4 `MON_LIB <https://www.ccp4.ac.uk/html/mon_lib.html>`_ contains
data on ideal bond lengths/angles for compounds.
Original data (several updates in the meantime) come from:
* Amino acid bond lengths and angles: Engh and Huber, Acta Cryst.
A47, 392-400 (1991).
* Purine and pyrimidine bond lengths and angles: O. Kennard & R. Taylor
(1982), J. Am. Soc. Chem. vol. 104, pp. 3209-3212.
* Sugar-phosphate backbone bond lengths and bond angles: W. Saenger’s
Principles of Nucleic Acid Structure (1983), Springer-Verlag, pp. 70,86.
This function adds a dependency to the
`gemmi <https://github.com/project-gemmi/gemmi/>`_ library to read cif
files.
:param mon_lib_path: Path to CCP4 MON_LIB
:type mon_lib_path: :class:`str`
:param compounds: Compounds to parse - parses proteinogenic amino acids
and nucleotides if not given.
:type compounds: :class:`list`
:returns: :class:`dict` with stereochemistry parameters
"""
if compounds is None:
compounds = ['ALA', 'ARG', 'ASN', 'ASP', 'CYS', 'GLN', 'GLU', 'GLY',
'HIS', 'ILE', 'LEU', 'LYS', 'MET', 'MSE', 'PHE', 'PRO',
'SER', 'THR', 'TRP', 'TYR', 'VAL', 'DA', 'A', 'DC', 'C',
'DG', 'G', 'DU', 'U', 'DT', 'DI', 'I']
cif_paths = list()
for c in compounds:
p = os.path.join(mon_lib_path, c[0].lower(), c + ".cif")
if not os.path.exists(p):
raise RuntimeError(f"Tried to find cif file for compound {c} "
f"in specified MON_LIB ({mon_lib_path})."
f"Expected file ({p}) does not exist.")
cif_paths.append(p)
# hide import to avoid it as dependency for the whole module
from gemmi import cif
# construct return dict from first element and subsequently
# add the remainder
doc = cif.read_file(cif_paths[0])
data = {"bond_data": _ParseBondData(doc),
"angle_data": _ParseAngleData(doc)}
for cp in cif_paths[1:]:
doc = cif.read_file(cp)
bond_data = _ParseBondData(doc)
angle_data = _ParseAngleData(doc)
data["bond_data"].update(bond_data)
data["angle_data"].update(angle_data)
# add license info
copying_str = f"This data has been derived from the CCP4 MON_LIB on "
copying_str += f"{datetime.datetime.now()}. MON_LIB is licensed under "
copying_str += f"GNU LESSER GENERAL PUBLIC LICENSE Version 3. Consult the "
copying_str += f"latest CCP4 for the full license text."
data["COPYING"] = copying_str
return data
def GetBondParam(a1, a2, stereo_data = None, stereo_link_data = None):
""" Returns mean and standard deviation for bond
:param a1: First atom that defines bond
:type a1: :class:`ost.mol.AtomView`/:class:`ost.mol.AtomHandle`
:param a2: Second atom that defines bond
:type a2: :class:`ost.mol.AtomView`/:class:`ost.mol.AtomHandle`
:param stereo_data: Stereochemistry data, use return value of
:func:`GetDefaultStereoData` if not given.
If you call this function repeatedly, you
really should provide *stereo_data*!
:type stereo_data: :class:`dict`
:param stereo_link_data: Stereochemistry data, use return value of
:func:`GetDefaultStereoLinkData` if not given.
If you call this function repeatedly, you
really should provide *stereo_link_data*!
:type stereo_link_data: :class:`dict`
:returns: :class:`tuple` with mean and standard deviation. Values are None
if respective bond is not found in *stereo_data*
"""
if stereo_data is None:
stereo_data = GetDefaultStereoData()
if stereo_link_data is None:
stereo_link_data = GetDefaultStereoLinkData()
residue_data = None
if a1.GetResidue().GetHashCode() == a2.GetResidue().GetHashCode():
# intra residue case
rname = a1.GetResidue().GetName()
if rname in stereo_data["bond_data"]:
residue_data = stereo_data["bond_data"][rname]
else:
# inter residue case
residue_type = _GetResidueType([a1, a2])
if residue_type is not None:
residue_data = stereo_link_data["bond_data"][residue_type]
if residue_data is not None:
a1name = a1.GetName()
a2name = a2.GetName()
key = a1name + "_" + a2name
if key in residue_data:
return (residue_data[key][0], residue_data[key][1])
key = a2name + "_" + a1name
if key in residue_data:
return (residue_data[key][0], residue_data[key][1])
return (None, None)
def GetAngleParam(a1, a2, a3, stereo_data = None, stereo_link_data = None):
""" Returns mean and standard deviation for angle
:param a1: First atom that defines angle
:type a1: :class:`ost.mol.AtomView`/:class:`ost.mol.AtomHandle`
:param a2: Second atom that defines angle
:type a2: :class:`ost.mol.AtomView`/:class:`ost.mol.AtomHandle`
:param a3: Third atom that defines angle
:type a3: :class:`ost.mol.AtomView`/:class:`ost.mol.AtomHandle`
:param stereo_data: Stereochemistry data, use return value of
:func:`GetDefaultStereoData` if not given.
If you call this function repeatedly, you
really should provide *stereo_data*!
:type stereo_data: :class:`dict`
:param stereo_link_data: Stereochemistry data, use return value of
:func:`GetDefaultStereoLinkData` if not given.
If you call this function repeatedly, you
really should provide *stereo_link_data*!
:type stereo_link_data: :class:`dict`
:returns: :class:`tuple` with mean and standard deviation. Values are None
if respective angle is not found in *stereo_data*
"""
if stereo_data is None:
stereo_data = GetDefaultStereoData()
if stereo_link_data is None:
stereo_link_data = GetDefaultStereoLinkData()
h1 = a1.GetResidue().handle.GetHashCode()
h2 = a2.GetResidue().handle.GetHashCode()
h3 = a3.GetResidue().handle.GetHashCode()
residue_data = None
if h1 == h2 and h2 == h3:
# intra residue case
rname = a1.GetResidue().GetName()
if rname in stereo_data["angle_data"]:
residue_data = stereo_data["angle_data"][rname]
else:
# inter residue case
residue_type = _GetResidueType([a1, a2, a3])
if residue_type in stereo_link_data["angle_data"]:
residue_data = stereo_link_data["angle_data"][residue_type]
if residue_data is not None:
a1name = a1.GetName()
a2name = a2.GetName()
a3name = a3.GetName()
key = a1name + "_" + a2name + "_" + a3name
if key in residue_data:
return (residue_data[key][0], residue_data[key][1])
key = a3name + "_" + a2name + "_" + a1name
if key in residue_data:
return (residue_data[key][0], residue_data[key][1])
return (None, None)
class ClashInfo:
""" Object to hold info on clash
Constructor arguments are available as attributes:
* a1 (:class:`ost.mol.AtomHandle`)
* a2 (:class:`ost.mol.AtomHandle`)
* dist (:class:`float`)
* tolerated_dist (:class:`float`)
"""
def __init__(self, a1, a2, dist, tolerated_dist):
self.a1 = a1
self.a2 = a2
self.dist = dist
self.tolerated_dist = tolerated_dist
def ToJSON(self, decimals = 3):
""" Return JSON serializable dict
Atoms are represented by a string in format:
<chain_name>.<resnum>.<resnum_inscode>.<atom_name>
"""
return {"a1": _AtomToQualifiedName(self.a1),
"a2": _AtomToQualifiedName(self.a2),
"dist": round(self.dist, decimals),
"tolerated_dist": round(self.tolerated_dist, decimals)}
class BondViolationInfo:
""" Object to hold info on bond violation
Constructor arguments are available as attributes:
* a1 (:class:`ost.mol.AtomHandle`)
* a2 (:class:`ost.mol.AtomHandle`)
* length (:class:`float`)
* exp_length (:class:`float`)
* std (:class:`float`)
"""
def __init__(self, a1, a2, length, exp_length, std):
self.a1 = a1
self.a2 = a2
self.length = length
self.exp_length = exp_length
self.std = std
def ToJSON(self, decimals = 3):
""" Return JSON serializable dict
Atoms are represented by a string in format:
<chain_name>.<resnum>.<resnum_inscode>.<atom_name>
"""
return {"a1": _AtomToQualifiedName(self.a1),
"a2": _AtomToQualifiedName(self.a2),
"length": round(self.length, decimals),
"exp_length": round(self.exp_length, decimals),
"std": round(self.std, decimals)}
class AngleViolationInfo:
""" Object to hold info on angle violation
Constructor arguments are available as attributes:
* a1 (:class:`ost.mol.AtomHandle`)
* a2 (:class:`ost.mol.AtomHandle`)
* a3 (:class:`ost.mol.AtomHandle`)
* angle (:class:`float`)
* exp_angle (:class:`float`)
* std (:class:`float`)
"""
def __init__(self, a1, a2, a3, angle, exp_angle, std):
self.a1 = a1
self.a2 = a2
self.a3 = a3
self.angle = angle
self.exp_angle = exp_angle
self.std = std
def ToJSON(self, decimals = 3):
""" Return JSON serializable dict
Atoms are represented by a string in format:
<chain_name>.<resnum>.<resnum_inscode>.<atom_name>
"""
return {"a1": _AtomToQualifiedName(self.a1),
"a2": _AtomToQualifiedName(self.a2),
"a3": _AtomToQualifiedName(self.a3),
"angle": round(self.angle, decimals),
"exp_angle": round(self.exp_angle, decimals),
"std": round(self.std, decimals)}
def GetClashes(ent, vdw_radii = None, tolerance = 1.5, disulfid_dist = 2.03,
disulfid_tolerance = 1.0):
""" Identifies clashing atoms
A clash between two non-bonded atoms is defined as their distance d being
below the sum of their vdw radii with some subtracted tolerance value.
The default values are not very sensitive.
:param ent: Entity for which you want to identify clashing atoms
:type ent: :class:`ost.mol.EntityHandle`/:class:`ost.mol.EntityView`
:param vdw_radii: Element based van der Waals radii. Only atoms of these
elements will be considered. If not given, default values
for all elements occuring in proteins/nucleotides are
used. Must be provided as :class:`dict`, where they key
are elements (capitalized) and value the respective radii
in Angstrom.
:type vdw_radii: :class:`dict`
:param tolerance: Tolerance value
:param disulfid_dist: Summed vdw radius that is used if two Sulfurs that can
potentially build a disulfid bond interact
:type disulfid_dist: :class:`float`
:param disulfid_tolerance: The respective tolerance
:type disulfid_dist: :class:`float`
:returns: A :class:`list` of :class:`ClashInfo`
"""
if vdw_radii is None:
vdw_radii = {"C": 1.70, "N": 1.55, "O": 1.52, "P": 1.80, "S": 1.80}
for ele in vdw_radii.keys():
if ele.upper() != ele:
raise RuntimeError(f"Elements in vdw_radii must be upper case. "
f"Got {ele}")
# it would be elegant to just do a selection by the ele property. However,
# thats case sensitive. So the element could be Cl but the vdw radii
# are all caps.
elements = set([ele.upper() for ele in vdw_radii.keys()])
for a in ent.atoms:
if a.GetElement().upper() in elements:
a.SetIntProp("clash_check", 1)
clash_ent = ent.Select("gaclash_check:0=1")
max_radius = max(vdw_radii.values())
max_radius = max(max_radius, 0.5*disulfid_dist)
min_tolerance = min(tolerance, disulfid_tolerance)
radius = 2*max_radius-min_tolerance
done = set()
return_list = list()
for a in clash_ent.atoms:
a_hash = a.handle.GetHashCode()
close_atoms = clash_ent.FindWithin(a.GetPos(), radius)
for ca in close_atoms:
ca_hash = ca.handle.GetHashCode()
if a_hash != ca_hash and not mol.BondExists(a.handle, ca.handle):
d = geom.Distance(a.GetPos(), ca.GetPos())
if _PotentialDisulfid(a, ca):
thresh = disulfid_dist - disulfid_tolerance
else:
thresh = vdw_radii[a.GetElement().upper()]
thresh += vdw_radii[ca.GetElement().upper()]
thresh -= tolerance
if d < thresh:
# check if already there, add if not
hash_pair = (min(a_hash, ca_hash), max(a_hash, ca_hash))
if hash_pair not in done:
done.add(hash_pair)
return_list.append(ClashInfo(a.handle, ca.handle, d,
thresh))
return return_list
def GetBadBonds(ent, stereo_data = None, stereo_link_data = None, tolerance=12):
""" Identify unrealistic bonds
:param ent: Entity for which you want to identify unrealistic bonds
:type ent: :class:`ost.mol.EntityHandle`/:class:`ost.mol.EntityView`
:param stereo_data: Stereochemistry data, use return value of
:func:`GetDefaultStereoData` if not given.
:type stereo_data: :class:`dict`
:param stereo_link_data: Stereochemistry data, use return value of
:func:`GetDefaultStereoLinkData` if not given.
:type stereo_link_data: :class:`dict`
:param tolerance: Bonds that devaiate more than *tolerance* times standard
deviation from expected mean are considered bad
:type tolerance: :class:`int`
:returns: :class:`list` :class:`BondViolationInfo`
"""
if stereo_data is None:
stereo_data = GetDefaultStereoData()
if stereo_link_data is None:
stereo_link_data = GetDefaultStereoLinkData()
return_list = list()
for b in ent.bonds:
a1 = b.first
a2 = b.second
mean, std = GetBondParam(a1, a2, stereo_data = stereo_data,
stereo_link_data = stereo_link_data)
if None not in [mean, std]:
l = b.length
if abs(mean-l) > tolerance*std:
return_list.append(BondViolationInfo(a1, a2, l, mean, std))
return return_list
def GetBadAngles(ent, stereo_data = None, stereo_link_data = None,
tolerance = 12):
""" Identify unrealistic angles
:param ent: Entity for which you want to identify unrealistic angles
:type ent: :class:`ost.mol.EntityHandle`/:class:`ost.mol.EntityView`
:param stereo_data: Stereochemistry data, use return value of
:func:`GetDefaultStereoData` if not given.
:type stereo_data: :class:`dict`
:param stereo_link_data: Stereochemistry data, use return value of
:func:`GetDefaultStereoLinkData` if not given.
:type stereo_link_data: :class:`dict`
:param tolerance: Angles that devaiate more than *tolerance* times standard
deviation from expected mean are considered bad
:type tolerance: :class:`int`
:returns: :class:`list` of :class:`AngleViolationInfo`
"""
if stereo_data is None:
stereo_data = GetDefaultStereoData()
if stereo_link_data is None:
stereo_link_data = GetDefaultStereoLinkData()
return_list = list()
for a in _GetAngles(ent.bonds):
mean, std = GetAngleParam(a[0], a[1], a[2], stereo_data = stereo_data,
stereo_link_data = stereo_link_data)
if None not in [mean, std]:
angle = geom.Angle(a[0].GetPos() - a[1].GetPos(),
a[2].GetPos() - a[1].GetPos())
angle = angle/np.pi*180 # stereo params are in degrees
diff = abs(mean-angle)
if diff > tolerance*std:
return_list.append(AngleViolationInfo(a[0], a[1], a[2], angle,
mean, std))
return return_list
def StereoCheck(ent, stereo_data = None, stereo_link_data = None):
""" Remove atoms with stereochemical problems
Selects for peptide/nucleotides and calls :func:`GetClashes`,
:func:`GetBadBonds` and :func:`GetBadAngles` with default
parameters.
* Amino acids: Remove full residue if backbone atom is involved in
stereochemistry issue ("N", "CA", "C", "O"). Remove sidechain if any of
the sidechain atoms is involved in stereochemistry issues.
* Nucleotides: Remove full residue if backbone atom is involved in
stereochemistry issue ("P", "OP1", "OP2", "OP3", "O5'", "C5'", "C4'",
"C3'", "C2'", "C1'", "O4'", "O3'", "O2'"). Remove sidechain (base) if any
of the sidechain atoms is involved in stereochemistry issues.
:param ent: Entity to be stereochecked
:type ent: :class:`ost.mol.EntityHandle`/:class:`ost.mol.EntityView`
:param stereo_data: Stereochemistry data, use return value of
:func:`GetDefaultStereoData` if not given.
:type stereo_data: :class:`dict`
:param stereo_link_data: Stereochemistry data, use return value of
:func:`GetDefaultStereoLinkData` if not given.
:type stereo_link_data: :class:`dict`
:returns: Tuple with four elements: 1) :class:`ost.mol.EntityView` of
*ent* processed as described above 2) Return value of
:func:`GetClashes` 3) return value of :func:`GetBadBonds`
4) return value of :func:`GetBadAngles`
"""
if stereo_data is None:
stereo_data = GetDefaultStereoData()
sel = ent.Select("peptide=true or nucleotide=true")
clashes = GetClashes(sel)
bad_bonds = GetBadBonds(sel, stereo_data = stereo_data)
bad_angles = GetBadAngles(sel, stereo_data = stereo_data)
# set stereo problems as properties on an atom level
for clash in clashes:
clash.a1.SetIntProp("stereo_problem", 1)
clash.a2.SetIntProp("stereo_problem", 1)
for bond in bad_bonds:
bond.a1.SetIntProp("stereo_problem", 1)
bond.a2.SetIntProp("stereo_problem", 1)
for angle in bad_angles:
angle.a1.SetIntProp("stereo_problem", 1)
angle.a2.SetIntProp("stereo_problem", 1)
angle.a3.SetIntProp("stereo_problem", 1)
# set stereo problems as properties on a residue level
bad_ent = ent.Select("gastereo_problem:0=1")
if len(bad_ent.residues) > 0:
pep_bb = set(["N", "CA", "C", "O"])
nuc_bb = set(["P", "OP1", "OP2", "OP3", "O5'", "C5'", "C4'", "C3'",
"C2'", "C1'", "O4'", "O3'", "O2'"])
for r in bad_ent.residues:
bad_atoms = set([a.GetName() for a in r.atoms])
r.SetIntProp("stereo_problem", 1)
if r.GetChemType() == mol.ChemType.NUCLEOTIDES:
if len(nuc_bb.intersection(bad_atoms)) > 0:
r.SetIntProp("stereo_problem_bb", 1)
elif r.GetChemType() == mol.ChemType.AMINOACIDS:
if len(pep_bb.intersection(bad_atoms)) > 0:
r.SetIntProp("stereo_problem_bb", 1)
# explicitely add " as OpenStructure query language would not
# understand ' otherwise
nuc_bb = [f"\"{name}\"" for name in nuc_bb]
pep_query = f"(peptide=true and grstereo_problem:0=0) or "
pep_query += f"(peptide=true and grstereo_problem_bb:0=0 and "
pep_query += f"aname={','.join(pep_bb)})"
nuc_query = f"(nucleotide=true and grstereo_problem:0=0) or "
nuc_query += f"(nucleotide=true and grstereo_problem_bb:0=0 and "
nuc_query += f"aname={','.join(nuc_bb)})"
query = pep_query + " or " + nuc_query
return_view = sel.Select(query)
else:
return_view = sel
return return_view, clashes, bad_bonds, bad_angles
def GetDefaultStereoData():
""" Get default stereo data derived from CCP4 MON_LIB
Used as default if not provided in :func:`GetBadBonds`, :func:`GetBadAngles`
and :func:`StereoCheck`.
MON_LIB is licensed under GNU LESSER GENERAL PUBLIC LICENSE Version 3.
Consult the latest CCP4 for the full license text.
"""
data_path = os.path.join(ost.GetSharedDataPath(), "stereo_data.json")
with open(data_path, 'r') as fh:
return json.load(fh)
def GetDefaultStereoLinkData():
""" Get default stereo data for links between compounds
Hardcoded from arbitrary sources, see comments in the code.
:returns: Data for peptide bonds, nucleotide links and disulfid bonds that
are used as default if not provided in :func:`GetBadBonds`,
:func:`GetBadAngles` and :func:`StereoCheck`.
"""
data = {"bond_data": dict(),
"angle_data": dict()}
# data for nucleotides - deliberately stolen from
# geostd (https://github.com/phenix-project/geostd) which is basically
# the Phenix equivalent for MON_LIB
# used file: $GEOSTD_DIR/rna_dna/chain_link_rna2p.cif
# Reason to not use the same data origin as peptides is that in CCP4
# there is a bit a more fine grained differentiation of NA types
# which makes things more complicated.
data["bond_data"]["NA"] = dict()
data["bond_data"]["NA"]["O3'_P"] = [1.607, 0.015]
data["angle_data"]["NA"] = dict()
data["angle_data"]["NA"]["O3'_P_O5'"] = [104.000, 1.500]
data["angle_data"]["NA"]["O3'_P_OP1"] = [108.000, 3.000]
data["angle_data"]["NA"]["O3'_P_OP2"] = [108.000, 3.000]
data["angle_data"]["NA"]["C3'_O3'_P"] = [120.200, 1.500]
# data for peptides - deliberately stolen from standard_geometry.cif file
# which is shipped with CCP4
# (_standard_geometry.version "Fri Feb 22 17:25:15 GMT 2013").
data["bond_data"]["PEPTIDE"] = dict()
data["bond_data"]["PEPTIDE"]["C_N"] = [1.336, 0.023]
data["bond_data"]["PEPTIDE"]["SG_SG"] = [2.033, 0.016]
data["bond_data"]["GLY"] = dict()
data["bond_data"]["GLY"]["C_N"] = [1.326, 0.018]
data["bond_data"]["PRO_CIS"] = dict()
data["bond_data"]["PRO_CIS"]["C_N"] = [1.338, 0.019]
data["bond_data"]["PRO_TRANS"] = dict()
data["bond_data"]["PRO_TRANS"]["C_N"] = [1.338, 0.019]
data["angle_data"]["PEPTIDE"] = dict()
data["angle_data"]["PEPTIDE"]["CA_C_N"] = [117.2, 2.2]
data["angle_data"]["PEPTIDE"]["O_C_N"] = [122.7, 1.6]
data["angle_data"]["PEPTIDE"]["C_N_CA"] = [121.7, 2.5]
data["angle_data"]["GLY"] = dict()
data["angle_data"]["GLY"]["CA_C_N"] = [116.2, 2.0]
data["angle_data"]["GLY"]["O_C_N"] = [123.2, 1.7]
data["angle_data"]["GLY"]["C_N_CA"] = [122.3, 2.1]
data["angle_data"]["PRO_TRANS"] = dict()
data["angle_data"]["PRO_TRANS"]["CA_C_N"] = [117.1, 2.8]
data["angle_data"]["PRO_TRANS"]["O_C_N"] = [121.1, 1.9]
data["angle_data"]["PRO_TRANS"]["C_N_CA"] = [119.3, 1.5]
data["angle_data"]["PRO_TRANS"]["C_N_CD"] = [128.4, 2.1]
data["angle_data"]["PRO_CIS"] = dict()
data["angle_data"]["PRO_CIS"]["CA_C_N"] = [117.1, 2.8]
data["angle_data"]["PRO_CIS"]["O_C_N"] = [121.1, 1.9]
data["angle_data"]["PRO_CIS"]["C_N_CA"] = [127.0, 2.4]
data["angle_data"]["PRO_CIS"]["C_N_CD"] = [120.6, 2.2]
return data
|