1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
|
"""
**This Module requires numpy**
This module contains functions to analyze trajectories, mainly
similiraty measures baed on RMSDS and pairwise distances.
Author: Niklaus Johner (niklaus.johner@unibas.ch)
"""
import ost.mol.alg
import ost.geom
from ost import LogError
import os
def smooth(vec,n):
#Function to smooth a vector or a list of floats
#for each element it takes the average over itself and the
#n elements on each side, so over (2n+1) elements
try:
vec2=vec.copy()
except:
vec2=vec[:]
for i in range(n):
v=0.0
count=1.0
v+=vec[i]
for j in range(n):
count+=1
v+=vec[i+j+1]
for j in range(i):
count+=1
v+=vec[i-(j+1)]
vec2[i]=v/float(count)
for i in range(1,n+1):
v=0.0
count=1.0
v+=vec[-i]
for j in range(n):
count+=1
v+=vec[-(i+j+1)]
for j in range(i-1):
count+=1
v+=vec[-i+j+1]
vec2[-i]=v/float(count)
for i in range(n,len(vec2)-n):
v=vec[i]
for j in range(n):
v+=vec[i+j+1]
v+=vec[i-j-1]
vec2[i]=v/float(2.*n+1.)
return vec2
"""
From here on the module needs numpy
"""
def RMSD_Matrix_From_Traj(t,sele,first=0,last=-1,align=True,align_sele=None):
"""
This function calculates a matrix M such that M[i,j] is the
RMSD (calculated on **sele**) between frames i and j of the trajectory **t**
aligned on sele.
:param t: the trajectory
:param sele: the selection used for alignment and RMSD calculation
:param first: the first frame of t to be used
:param last: the last frame of t to be used
:type t: :class:`~ost.mol.CoordGroupHandle`
:type sele: :class:`~ost.mol.EntityView`
:type first: :class:`int`
:type last: :class:`int`
:return: Returns a numpy N\\ :subscript:`frames`\\ xN\\ :subscript:`frames` matrix,
where N\\ :subscript:`frames` is the number of frames.
"""
if not align_sele:align_sele=sele
try:
import numpy as npy
if last==-1:last=t.GetFrameCount()
n_frames=last-first
rmsd_matrix=npy.identity(n_frames)
for i in range(n_frames):
if align:
t=ost.mol.alg.SuperposeFrames(t,align_sele,begin=first,end=last,ref=i)
eh=t.GetEntity()
t.CopyFrame(i)
rmsd_matrix[i,:]=ost.mol.alg.AnalyzeRMSD(t,sele,sele)
if i==0:
last=last-first
first=0
return rmsd_matrix
except ImportError:
LogError("Function needs numpy, but I could not import it.")
raise
def PairwiseDistancesFromTraj(t,sele,first=0,last=-1,seq_sep=1):
"""
This function calculates the distances between any pair of atoms in **sele**
with sequence separation larger than **seq_sep** from a trajectory **t**.
It return a matrix containing one line for each atom pair and N\\ :subscript:`frames` columns, where
N\\ :subscript:`frames` is the number of frames in the trajectory.
:param t: the trajectory
:param sele: the selection used to determine the atom pairs
:param first: the first frame of t to be used
:param last: the last frame of t to be used
:param seq_sep: The minimal sequence separation between atom pairs
:type t: :class:`~ost.mol.CoordGroupHandle`
:type sele: :class:`~ost.mol.EntityView`
:type first: :class:`int`
:type last: :class:`int`
:type seq_sep: :class:`int`
:return: a numpy N\\ :subscript:`pairs`\\ xN\\ :subscript:`frames` matrix.
"""
try:
import numpy as npy
if last==-1:last=t.GetFrameCount()
n_frames=last-first
n_var=0
for i,a1 in enumerate(sele.atoms):
for j,a2 in enumerate(sele.atoms):
if not j-i<seq_sep:n_var+=1
#n_var=sele.GetAtomCount()
#n_var=(n_var-1)*(n_var)/2.
dist_matrix=npy.zeros(n_frames*n_var)
dist_matrix=dist_matrix.reshape(n_var,n_frames)
k=0
for i,a1 in enumerate(sele.atoms):
for j,a2 in enumerate(sele.atoms):
if j-i<seq_sep:continue
dist_matrix[k]=ost.mol.alg.AnalyzeDistanceBetwAtoms(t,a1.GetHandle(),a2.GetHandle())[first:last]
k+=1
return dist_matrix
except ImportError:
LogError("Function needs numpy, but I could not import it.")
raise
def DistanceMatrixFromPairwiseDistances(distances,p=2):
"""
This function calculates an distance matrix M(N\\ :subscript:`frames`\\ xN\\ :subscript:`frames`\\ ) from
the pairwise distances matrix D(N\\ :subscript:`pairs`\\ xN\\ :subscript:`frames`\\ ), where
N\\ :subscript:`frames` is the number of frames in the trajectory
and N\\ :subscript:`pairs` the number of atom pairs.
M[i,j] is the distance between frame i and frame j
calculated as a p-norm of the differences in distances
from the two frames (distance-RMSD for p=2).
:param distances: a pairwise distance matrix as obtained from
:py:func:`~mol.alg.trajectory_analysis.PairwiseDistancesFromTraj`
:param p: exponent used for the p-norm.
:return: a numpy N\\ :subscript:`frames`\\ xN\\ :subscript:`frames` matrix, where N\\ :subscript:`frames`
is the number of frames.
"""
try:
import numpy as npy
n1=distances.shape[0]
n2=distances.shape[1]
dist_mat=npy.identity(n2)
for i in range(n2):
for j in range(n2):
if j<=i:continue
d=(((abs(distances[:,i]-distances[:,j])**p).sum())/float(n1))**(1./p)
dist_mat[i,j]=d
dist_mat[j,i]=d
return dist_mat
except ImportError:
LogError("Function needs numpy, but I could not import it.")
raise
def DistRMSDFromTraj(t,sele,ref_sele,radius=7.0,average=False,seq_sep=4,first=0,last=-1):
"""
This function calculates the distance RMSD from a trajectory.
The distances selected for the calculation are all the distances
between pair of atoms from residues that are at least **seq_sep** apart
in the sequence and that are smaller than **radius** in **ref_sel**.
The number and order of atoms in **ref_sele** and **sele** should be the same.
:param t: the trajectory
:param sele: the selection used to calculate the distance RMSD
:param ref_sele: the reference selection used to determine the atom pairs and reference distances
:param radius: the upper limit of distances in ref_sele considered for the calculation
:param seq_sep: the minimal sequence separation between atom pairs considered for the calculation
:param average: use the average distance in the trajectory as reference instead of the distance obtained from ref_sele
:param first: the first frame of t to be used
:param last: the last frame of t to be used
:type t: :class:`~ost.mol.CoordGroupHandle`
:type sele: :class:`~ost.mol.EntityView`
:type ref_sele: :class:`~ost.mol.EntityView`
:type radius: :class:`float`
:type average: :class:`bool`
:type first: :class:`int`
:type last: :class:`int`
:type seq_sep: :class:`int`
:return: a numpy vecor dist_rmsd(N\\ :subscript:`frames`).
"""
if not sele.GetAtomCount()==ref_sele.GetAtomCount():
print('Not same number of atoms in the two views')
return
try:
import numpy as npy
if last==-1:last=t.GetFrameCount()
n_frames=last-first
dist_rmsd=npy.zeros(n_frames)
pair_count=0.0
for i,a1 in enumerate(ref_sele.atoms):
for j,a2 in enumerate(ref_sele.atoms):
if j<=i:continue
r1=a1.GetResidue()
c1=r1.GetChain()
r2=a2.GetResidue()
c2=r2.GetChain()
if c1==c2 and abs(r2.GetNumber().num-r1.GetNumber().num)<seq_sep:continue
d=ost.geom.Distance(a1.pos,a2.pos)
if d<radius:
a3=sele.atoms[i]
a4=sele.atoms[j]
d_traj=ost.mol.alg.AnalyzeDistanceBetwAtoms(t,a3.GetHandle(),a4.GetHandle())[first:last]
if average:d=npy.mean(d_traj)
for k,el in enumerate(d_traj):
dist_rmsd[k]+=(el-d)**2.0
pair_count+=1.0
return (dist_rmsd/float(pair_count))**0.5
except ImportError:
LogError("Function needs numpy, but I could not import it.")
raise
def AverageDistanceMatrixFromTraj(t,sele,first=0,last=-1):
"""
This function calcultes the distance between each pair of atoms
in **sele**, averaged over the trajectory **t**.
:param t: the trajectory
:param sele: the selection used to determine the atom pairs
:param first: the first frame of t to be used
:param last: the last frame of t to be used
:type t: :class:`~ost.mol.CoordGroupHandle`
:type sele: :class:`~ost.mol.EntityView`
:type first: :class:`int`
:type last: :class:`int`
:return: a numpy N\\ :subscript:`pairs`\\ xN\\ :subscript:`pairs` matrix, where N\\ :subscript:`pairs`
is the number of atom pairs in **sele**.
"""
try:
import numpy as npy
except ImportError:
LogError("Function needs numpy, but I could not import it.")
raise
n_atoms=sele.GetAtomCount()
M=npy.zeros([n_atoms,n_atoms])
for i,a1 in enumerate(sele.atoms):
for j,a2 in enumerate(sele.atoms):
if j>i:continue
d=ost.mol.alg.AnalyzeDistanceBetwAtoms(t,a1.GetHandle(),a2.GetHandle())[first:last]
M[i,j]=npy.mean(d)
M[j,i]=npy.mean(d)
return M
def AnalyzeDistanceFluctuationMatrix(t,sele,first=0,last=-1):
try:
import numpy as npy
except ImportError:
LogError("Function needs numpy, but I could not import it.")
raise
n_atoms=sele.GetAtomCount()
M=npy.zeros([n_atoms,n_atoms])
for i,a1 in enumerate(sele.atoms):
for j,a2 in enumerate(sele.atoms):
if i>j:continue
d=ost.mol.alg.AnalyzeDistanceBetwAtoms(t,a1.GetHandle(),a2.GetHandle())[first:last]
M[j,i]=npy.std(d)
M[i,j]=npy.std(d)
return M
def IterativeSuperposition(t,sele,threshold=1.0,initial_sele=None,iterations=5,ref_frame=0):
if initial_sele:current_sele=initial_sele
else: current_sele=sele
for i in range(iterations):
t=ost.mol.alg.SuperposeFrames(t,current_sele,ref=ref_frame)
al=[a for a in sele.atoms if ost.mol.alg.AnalyzeRMSF(t,ost.mol.CreateViewFromAtoms([a]))<threshold]
if len(al)==0:return
current_sele=ost.mol.CreateViewFromAtoms(al)
return current_sele
|