1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
|
import unittest, os, sys
import ost
from ost import conop
from ost import io, mol, seq, settings
# check if we can import: fails if numpy or scipy not available
try:
import numpy as np
from ost.mol.alg.qsscore import *
from ost.mol.alg.chain_mapping import *
except ImportError:
print("Failed to import qsscore.py. Happens when numpy or scipy "\
"missing. Ignoring qsscore.py tests.")
sys.exit(0)
def _LoadFile(file_name):
"""Helper to avoid repeating input path over and over."""
return io.LoadPDB(os.path.join('testfiles', file_name))
class TestQSScore(unittest.TestCase):
def test_qsentity(self):
ent = _LoadFile("3l1p.1.pdb")
qsent = QSEntity(ent)
self.assertEqual(len(qsent.view.chains), 4)
self.assertEqual(qsent.GetChain("A").GetName(), "A")
self.assertEqual(qsent.GetChain("B").GetName(), "B")
self.assertEqual(qsent.GetChain("C").GetName(), "C")
self.assertEqual(qsent.GetChain("D").GetName(), "D")
self.assertRaises(Exception, qsent.GetChain, "E")
self.assertEqual(qsent.chain_names, ["A", "B", "C", "D"])
self.assertEqual(qsent.GetSequence("A"), "DMKALQKELEQFAKLLKQKRITLGYTQADVGLTLGVLFGKVFSQTTISRFEALQLSLKNMSKLRPLLEKWVEEADNNENLQEISKSVQARKRKRTSIENRVRWSLETMFLKSPKPSLQQITHIANQLGLEKDVVRVWFSNRRQKGKR")
self.assertEqual(qsent.GetSequence("B"), "KALQKELEQFAKLLKQKRITLGYTQADVGLTLGVLFGKVFSQTTISRFEALQLSLKNMSKLRPLLEKWVEEADNNENLQEISKSQARKRKRTSIENRVRWSLETMFLKSPKPSLQQITHIANQLGLEKDVVRVWFSNRRQKGKRS")
self.assertEqual(qsent.GetSequence("C"), "TCCACATTTGAAAGGCAAATGGA")
self.assertEqual(qsent.GetSequence("D"), "ATCCATTTGCCTTTCAAATGTGG")
# check for a couple of positions with manually extracted values
# GLU
pos = qsent.GetPos("B")
self.assertAlmostEqual(pos[5,0], -1.661, places=3)
self.assertAlmostEqual(pos[5,1], 27.553, places=3)
self.assertAlmostEqual(pos[5,2], 12.774, places=3)
# GLY
pos = qsent.GetPos("A")
self.assertAlmostEqual(pos[23,0], 17.563, places=3)
self.assertAlmostEqual(pos[23,1], -4.082, places=3)
self.assertAlmostEqual(pos[23,2], 29.005, places=3)
# Cytosine
pos = qsent.GetPos("C")
self.assertAlmostEqual(pos[4,0], 14.796, places=3)
self.assertAlmostEqual(pos[4,1], 24.653, places=3)
self.assertAlmostEqual(pos[4,2], 59.318, places=3)
# check pairwise dist, chain names are always sorted =>
# A is rows, C is cols
dist_one = qsent.PairDist("A", "C")
dist_two = qsent.PairDist("C", "A")
self.assertTrue(np.array_equal(dist_one, dist_two))
self.assertEqual(dist_one.shape[0], len(qsent.GetSequence("A")))
self.assertEqual(dist_one.shape[1], len(qsent.GetSequence("C")))
# check some random distance between the Gly and Cytosine that we already
# checked above
self.assertAlmostEqual(dist_one[23,4], 41.86, places=2)
# all chains interact with each other... but hey, check nevertheless
self.assertEqual(qsent.interacting_chains, [("A", "B"), ("A", "C"),
("A", "D"), ("B", "C"),
("B", "D"), ("C", "D")])
def test_qsscorer(self):
target = _LoadFile("3l1p.1.pdb")
model = _LoadFile("3l1p.1_model.pdb")
# we need to derive a chain mapping prior to scoring
mapper = ChainMapper(target)
res = mapper.GetRMSDMapping(model, strategy="greedy_iterative")
qs_scorer = QSScorer.FromMappingResult(res)
score_result = qs_scorer.Score(res.mapping)
self.assertAlmostEqual(score_result.QS_global, 0.472, places=2)
def test_hetero_case_1(self):
# additional chains
ent_1 = _LoadFile('4ux8.1.pdb') # A2 B2 C2, symmetry: C2
ent_2 = _LoadFile('3fub.2.pdb') # A2 B2 , symmetry: C2
mapper = ChainMapper(ent_1)
res = mapper.GetRMSDMapping(ent_2, strategy="greedy_iterative")
qs_scorer = QSScorer.FromMappingResult(res)
score_result = qs_scorer.Score(res.mapping)
self.assertAlmostEqual(score_result.QS_global, 0.825, 2)
self.assertAlmostEqual(score_result.QS_best, 1.0, 2)
def test_hetero_case_1_switched_order(self):
# additional chains
ent_2 = _LoadFile('4ux8.1.pdb') # A2 B2 C2, symmetry: C2
ent_1 = _LoadFile('3fub.2.pdb') # A2 B2 , symmetry: C2
mapper = ChainMapper(ent_1)
res = mapper.GetRMSDMapping(ent_2, strategy="greedy_iterative")
qs_scorer = QSScorer.FromMappingResult(res)
score_result = qs_scorer.Score(res.mapping)
self.assertAlmostEqual(score_result.QS_global, 0.825, 2)
self.assertAlmostEqual(score_result.QS_best, 1.0, 2)
def test_HeteroCase1b(self):
# as above but with assymetric unit of 3fub
# -> no overlap found: check if extensive search can deal with it
ent_1 = _LoadFile('4ux8.1.pdb')
ent_2 = _LoadFile('3fub.au.pdb')
mapper = ChainMapper(ent_1)
res = mapper.GetRMSDMapping(ent_2, strategy="greedy_iterative")
qs_scorer = QSScorer.FromMappingResult(res)
score_result = qs_scorer.Score(res.mapping)
self.assertAlmostEqual(score_result.QS_global, 0.356, 2)
self.assertAlmostEqual(score_result.QS_best, 0.419, 2)
def test_HeteroCase1b_switched_order(self):
# chain mapping differs a bit when switching the order... I'm just
# too lazy...
pass
def test_hetero_case_2(self):
# different stoichiometry
ent_1 = _LoadFile('1efu.1.pdb') # A2 B2, symmetry: C2
ent_2 = _LoadFile('4pc6.1.pdb') # A B , no symmetry
mapper = ChainMapper(ent_1)
res = mapper.GetRMSDMapping(ent_2, strategy="greedy_iterative")
qs_scorer = QSScorer.FromMappingResult(res)
score_result = qs_scorer.Score(res.mapping)
self.assertAlmostEqual(score_result.QS_global, 0.3191, 2)
self.assertAlmostEqual(score_result.QS_best, 0.9781, 2)
def test_hetero_case_2_switched_order(self):
# different stoichiometry
ent_2 = _LoadFile('1efu.1.pdb') # A2 B2, symmetry: C2
ent_1 = _LoadFile('4pc6.1.pdb') # A B , no symmetry
mapper = ChainMapper(ent_1)
res = mapper.GetRMSDMapping(ent_2, strategy="greedy_iterative")
qs_scorer = QSScorer.FromMappingResult(res)
score_result = qs_scorer.Score(res.mapping)
self.assertAlmostEqual(score_result.QS_global, 0.3191, 2)
self.assertAlmostEqual(score_result.QS_best, 0.9781, 2)
def test_hetero_case_3(self):
# more chains
ent_1 = _LoadFile('2vjt.1.pdb') # A6 B6, symmetry: D3
ent_2 = _LoadFile('3dbj.1.pdb') # A3 B3, symmetry: C3
mapper = ChainMapper(ent_1)
res = mapper.GetRMSDMapping(ent_2, strategy="greedy_iterative")
qs_scorer = QSScorer.FromMappingResult(res)
score_result = qs_scorer.Score(res.mapping)
self.assertAlmostEqual(score_result.QS_global, 0.359, 2)
self.assertAlmostEqual(score_result.QS_best, 0.958, 2)
def test_hetero_case_3_switched_order(self):
# more chains
ent_2 = _LoadFile('2vjt.1.pdb') # A6 B6, symmetry: D3
ent_1 = _LoadFile('3dbj.1.pdb') # A3 B3, symmetry: C3
mapper = ChainMapper(ent_1)
res = mapper.GetRMSDMapping(ent_2, strategy="greedy_iterative")
qs_scorer = QSScorer.FromMappingResult(res)
score_result = qs_scorer.Score(res.mapping)
self.assertAlmostEqual(score_result.QS_global, 0.359, 2)
self.assertAlmostEqual(score_result.QS_best, 0.958, 2)
def test_hetero_case_4(self):
# inverted chains
ent_1 = _LoadFile('3ia3.1.pdb') # AB, no symmetry
ent_2 = _LoadFile('3ia3.2.pdb') # BA, no symmetry
mapper = ChainMapper(ent_1)
res = mapper.GetRMSDMapping(ent_2, strategy="greedy_iterative")
qs_scorer = QSScorer.FromMappingResult(res)
score_result = qs_scorer.Score(res.mapping)
self.assertAlmostEqual(score_result.QS_global, 0.980, 2)
self.assertAlmostEqual(score_result.QS_best, 0.980, 2)
def test_hetero_case_4_switched_order(self):
# inverted chains
ent_2 = _LoadFile('3ia3.1.pdb') # AB, no symmetry
ent_1 = _LoadFile('3ia3.2.pdb') # BA, no symmetry
mapper = ChainMapper(ent_1)
res = mapper.GetRMSDMapping(ent_2, strategy="greedy_iterative")
qs_scorer = QSScorer.FromMappingResult(res)
score_result = qs_scorer.Score(res.mapping)
self.assertAlmostEqual(score_result.QS_global, 0.980, 2)
self.assertAlmostEqual(score_result.QS_best, 0.980, 2)
def test_hetero_model(self):
# uncomplete model missing 2 third of the contacts
target = _LoadFile('1eud_ref.pdb') # AB, no symmetry
model = _LoadFile('1eud_mdl_partial-dimer.pdb') # BA, no symmetry
mapper = ChainMapper(target)
res = mapper.GetRMSDMapping(model, strategy="greedy_iterative")
qs_scorer = QSScorer.FromMappingResult(res)
score_result = qs_scorer.Score(res.mapping)
self.assertAlmostEqual(score_result.QS_global, 0.321, 2)
self.assertAlmostEqual(score_result.QS_best, 0.932, 2)
def test_hetero_model_switched_order(self):
# same as above but with switched order to test for symmetric behaviour
# of QS score
target = _LoadFile('1eud_mdl_partial-dimer.pdb') # BA, no symmetry
model = _LoadFile('1eud_ref.pdb') # AB, no symmetry
mapper = ChainMapper(target)
res = mapper.GetRMSDMapping(model, strategy="greedy_iterative")
qs_scorer = QSScorer.FromMappingResult(res)
score_result = qs_scorer.Score(res.mapping)
self.assertAlmostEqual(score_result.QS_global, 0.321, 2)
self.assertAlmostEqual(score_result.QS_best, 0.932, 2)
def test_homo_1(self):
# different stoichiometry SOD
ent_1 = _LoadFile('4dvh.1.pdb') # A2, symmetry: C2
ent_2 = _LoadFile('4br6.1.pdb') # A4, symmetry: D2
# original qsscoring uses other default values for gap_open and gap_extension
# penalties, let's use those to reproduce the old results as the alignments
# would differ otherwise
mapper = ChainMapper(ent_1, pep_gap_open = -5, pep_gap_ext = -2)
res = mapper.GetRMSDMapping(ent_2, strategy="greedy_iterative")
qs_scorer = QSScorer.FromMappingResult(res)
score_result = qs_scorer.Score(res.mapping)
# The alignments from parasail slightly differ. The sequence identities
# are in the range 40% but slightly lower for parasail alignments.
# however, the parasail alignments appear less gappy and "nicer".
# They nevertheless lead to lower QS-score.
if seq.alg.ParasailAvailable():
self.assertAlmostEqual(score_result.QS_global, 0.14757304498883386, 2)
self.assertAlmostEqual(score_result.QS_best, 0.7878766697963304, 2)
else:
self.assertAlmostEqual(score_result.QS_global, 0.14797023263299844, 2)
self.assertAlmostEqual(score_result.QS_best, 0.8666616636985371, 2)
def test_homo_1_switched_order(self):
# different stoichiometry SOD
ent_2 = _LoadFile('4dvh.1.pdb') # A2, symmetry: C2
ent_1 = _LoadFile('4br6.1.pdb') # A4, symmetry: D2
# original qsscoring uses other default values for gap_open and gap_extension
# penalties, let's use those to reproduce the old results as the alignments
# would differ otherwise
mapper = ChainMapper(ent_1, pep_gap_open = -5, pep_gap_ext = -2)
res = mapper.GetRMSDMapping(ent_2, strategy="greedy_iterative")
qs_scorer = QSScorer.FromMappingResult(res)
score_result = qs_scorer.Score(res.mapping)
# The alignments from parasail slightly differ. The sequence identities
# are in the range 40% but slightly lower for parasail alignments.
# however, the parasail alignments appear less gappy and "nicer".
# They nevertheless lead to lower QS-score.
if seq.alg.ParasailAvailable():
self.assertAlmostEqual(score_result.QS_global, 0.14757304498883386, 2)
self.assertAlmostEqual(score_result.QS_best, 0.7878766697963304, 2)
else:
self.assertAlmostEqual(score_result.QS_global, 0.14797023263299844, 2)
self.assertAlmostEqual(score_result.QS_best, 0.8666616636985371, 2)
def test_homo_2(self):
# broken cyclic symmetry
ent_1 = _LoadFile('4r7y.1.pdb') # A6, symmetry: C6
ent_2 = ent_1.Select('cname=A,B') # A2, no symmetry
mapper = ChainMapper(ent_1)
res = mapper.GetRMSDMapping(ent_2, strategy="greedy_iterative")
qs_scorer = QSScorer.FromMappingResult(res)
score_result = qs_scorer.Score(res.mapping)
self.assertAlmostEqual(score_result.QS_global, 1/6, 2)
self.assertAlmostEqual(score_result.QS_best, 1.0, 2)
def test_homo_2_switched_order(self):
# same as above but with switched order to test for symmetric behaviour
# of QS score
ent_2 = _LoadFile('4r7y.1.pdb') # A6, symmetry: C6
ent_1 = ent_2.Select('cname=A,B') # A2, no symmetry
mapper = ChainMapper(ent_1)
res = mapper.GetRMSDMapping(ent_2, strategy="greedy_iterative")
qs_scorer = QSScorer.FromMappingResult(res)
score_result = qs_scorer.Score(res.mapping)
self.assertAlmostEqual(score_result.QS_global, 1/6, 2)
self.assertAlmostEqual(score_result.QS_best, 1.0, 2)
if __name__ == "__main__":
from ost import testutils
if testutils.DefaultCompoundLibIsSet():
testutils.RunTests()
else:
print('No compound lib available. Ignoring test_qsscore.py tests.')
|