File: seqalg.rst

package info (click to toggle)
openstructure 2.11.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 206,240 kB
  • sloc: cpp: 188,571; python: 36,686; ansic: 34,298; fortran: 3,275; sh: 312; xml: 146; makefile: 29
file content (1044 lines) | stat: -rw-r--r-- 40,997 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
:mod:`~ost.seq.alg` -- Algorithms for Sequences
================================================================================

.. module:: ost.seq.alg
  :synopsis: Algorithms for sequences

Submodules
--------------------------------------------------------------------------------

.. toctree::
  :maxdepth: 1

  aaindex
  renumber

Algorithms for Alignments
--------------------------------------------------------------------------------

.. function:: MergePairwiseAlignments(pairwise_alns, ref_seq)

  :param pairwise_alns: A list of pairwise alignments
  :type pairwise_alns: :class:`~ost.seq.AlignmentList`

  :param ref_seq: The reference sequence
  :type ref_seq: :class:`~ost.seq.SequenceHandle`

  :returns: The merged alignment
  :rtype: :class:`~ost.seq.AlignmentHandle`

  Merge a list of pairwise alignments into a multiple sequence alignments. This
  function uses the reference sequence as the anchor and inserts gaps where
  needed. This is also known as the *star method*.

  The resulting multiple sequence alignment provides a simple way to map between 
  residues of pairwise alignments, e.g. to compare distances in two structural 
  templates.
  
  There are a few things to keep in mind when using this function:
  
   - The reference sequence mustn't contain any gaps
   
   - The first sequence of each pairwise alignments corresponds to the reference 
     sequence. Apart from the presence of gaps, these two sequences must be 
     completely identical.

   - If the reference sequence has an offset, the first sequence of each pairwise alignment 
     must have the same offset. This offset is inherited by the first sequence of the final
     output alignment.
   
   - The resulting multiple sequence alignment is by no means optimal. For 
     better results, consider using a multiple-sequence alignment program such 
     as MUSCLE or ClustalW.
   
   - Residues in columns where the reference sequence has gaps should not be 
     considered as aligned. There is no information in the pairwise alignment to 
     guide the merging, the result is undefined.


     **Example:**

     .. code-block:: python

       ref_seq = ost.seq.CreateSequence('ref', 'acdefghiklmn')
       seq_a1 = seq.CreateSequence('A1', 'acdefghikl-mn')
       seq_a2 = seq.CreateSequence('A2', 'atd-fghikllmn')
       seq_b1 = seq.CreateSequence('B1', 'acdefg-hiklmn')
       seq_b2 = seq.CreateSequence('B2', 'acd---qhirlmn')

       aln_a = seq.CreateAlignment()
       aln_a.AddSequence(seq_a1)
       aln_a.AddSequence(seq_a2)
       print(aln_a)
       # >>> A1  acdefghikl-mn
       # >>> A2  atd-fghikllmn

       aln_b = seq.CreateAlignment()
       aln_b.AddSequence(seq_b1)
       aln_b.AddSequence(seq_b2)
       print(aln_b)
       # >>> B1  acdefg-hiklmn
       # >>> B2  acd---qhirlmn

       aln_list = ost.seq.AlignmentList()
       aln_list.append(aln_a)
       aln_list.append(aln_b)

       merged_aln = ost.seq.alg.MergePairwiseAlignments(aln_list, ref_seq)
       print(merged_aln)
       # >>> ref  acdefg-hikl-mn
       # >>> A2   atd-fg-hikllmn
       # >>> B2   acd---qhirl-mn


.. autofunction:: ValidateSEQRESAlignment

.. autofunction:: AlignToSEQRES

.. autofunction:: AlignmentFromChainView

.. function:: Conservation(aln, assign=true, prop_name="cons", ignore_gap=false)

  Calculates conservation scores for each column in the alignment, according to
  the ConSurf method (Armon et al., J. Mol. Biol. (2001) 307, 447-463).
  
  The conservation score is a value between 0 and 1. The bigger the number 
  the more conserved the aligned residues are. 
  
  :param aln: An alignment handle
  :type aln: :class:`~ost.seq.AlignmentHandle`
  :param assign: If true, the conservation scores are assigned to attached 
      residues. The name of the property can be changed with the *prop_name* 
      parameter. Useful when coloring entities based on sequence conservation.
  :param prop_name: The property name for assigning the conservation to 
      attached residues. Defaults to 'cons'.
  :param ignore_gap: If true, the dissimilarity between two gaps is increased to
      6.0 instead of 0.5 as defined in the original version. Without this, a
      stretch where in the alignment there is only one sequence which is
      aligned to only gaps, is considered highly conserved (depending on the
      number of gap sequences).

.. function:: ShannonEntropy(aln, ignore_gaps=True)

  Returns the per-column Shannon entropies of the alignment. The entropy
  describes how conserved a certain column in the alignment is. The higher
  the entropy is, the less conserved the column. For a column with no amino 
  aids, the entropy value is set to NAN.

  :param aln: Multiple sequence alignment
  :type aln: :class:`~ost.seq.AlignmentHandle`
  :param ignore_gaps: Whether to ignore gaps in the column.
  :type ignore_gaps: bool

  :returns: List of column entropies

.. function:: SequenceIdentity(aln, ref_mode=seq.alg.RefMode.ALIGNMENT, seq_a=0, seq_b=1)

  Calculates the sequence identity between two sequences at index seq_a and seq_b in
  a multiple sequence alignment.

  :param aln: multiple sequence alignment
  :type aln: :class:`~ost.seq.AlignmentHandle`
  :param ref_mode: influences the way the sequence identity is calculated. When
    set to `seq.alg.RefMode.LONGER_SEQUENCE`, the sequence identity is 
    calculated as the number of matches divided by the length of the longer
    sequence. If set to `seq.alg.RefMode.ALIGNMENT` (the default), the sequence
    identity is calculated as the number of matches divided by the number of
    aligned residues (not including the gaps).
  :type ref_mode: int
  :param seq_a: the index of the first sequence
  :type seq_a: int
  :param seq_b: the index of the second sequence
  :type seq_b: int
  :returns: sequence identity in the range 0 to 100.
  :rtype: float

.. function:: SequenceSimilarity(aln, subst_weight, normalize=false, seq_a=0, seq_b=1)

  Calculates the sequence similarity between two sequences at index seq_a and seq_b in
  a multiple sequence alignment.

  :param aln: Multiple sequence alignment
  :type aln: :class:`~ost.seq.AlignmentHandle`
  :param subst_weight: the substitution weight matrix 
    (see the :ref:`BLOSUM Matrix<blosum>` section below)
  :type subst_weight: :class:`~SubstWeightMatrix` 
  :param normalize: if set to True, normalize to the range of the
    substitution weight matrix
  :type normalize: bool
  :param seq_a: the index of the first sequence
  :type seq_a: int
  :param seq_b: the index of the second sequence
  :type seq_b: int
  :returns: sequence similarity
  :rtype: float


Create pairwise alignments
--------------------------------------------------------------------------------

OpenStructure provides naive implementations to create pairwise local, global
and semi-global alignments between two sequences:

* :func:`LocalAlign`
* :func:`GlobalAlign`
* :func:`SemiGlobalAlign`

The use of `parasail <https://github.com/jeffdaily/parasail/>`_ as a drop
in replacement is optional and provides significant speedups.
It must be enabled at compile time - see installation instructions.

Reference:

  Jeff Daily. Parasail: SIMD C library for global, semi-global,
  and local pairwise sequence alignments. (2016) BMC Bioinformatics

Parasail allows to choose from various strategies but for the sake of
simplicity, this Python binding always calls
``parasail_<mode>_trace_scan_sat`` which seems reasonably fast across the
global, semi-global and local modes. See parasail documentation for more
information.

You can always check if the alignment algorithms use parasail or the naive
implementations by calling:

.. function:: ParasailAvailable()

  Returns True if OpenStructure has been compiled with parasail support,
  False if not.

.. function:: LocalAlign(seq1, seq2, subst_weight, gap_open=-5, gap_ext=-2)

  Performs a Smith/Waterman local alignment of *seq1* and *seq2* and returns
  the best-scoring alignments as a list of pairwise alignments.
  
  **Example:**
  
  .. code-block:: python
  
    seq_a = seq.CreateSequence('A', 'acdefghiklmn')
    seq_b = seq.CreateSequence('B', 'acdhiklmn')
    alns = seq.alg.LocalAlign(seq_a, seq_b, seq.alg.BLOSUM62)
    print(alns[0].ToString(80))
    # >>> A acdefghiklmn
    # >>> B acd---hiklmn

  :param seq1: A valid sequence
  :type seq1: :class:`~ost.seq.ConstSequenceHandle`
  :param seq2: A valid sequence  
  :type seq2: :class:`~ost.seq.ConstSequenceHandle`
  :param subst_weigth: The substitution weights matrix
  :type subst_weight: :class:`SubstWeightMatrix`
  :param gap_open: The gap opening penalty. Must be a negative number
  :param gap_ext: The gap extension penalty. Must be a negative number
  :returns: A list of best-scoring, non-overlapping alignments of *seq1* and 
     *seq2*. Since alignments always start with a replacement, the start is
     stored in the sequence offset of the two sequences.


.. function:: GlobalAlign(seq1, seq2, subst_weight, gap_open=-5, gap_ext=-2)

  Performs a Needleman/Wunsch global alignment of *seq1* and *seq2* and returns
  the best-scoring alignment.
  
  **Example:**
  
  .. code-block:: python
  
    seq_a = seq.CreateSequence('A', 'acdefghiklmn')
    seq_b = seq.CreateSequence('B', 'acdhiklmn')
    alns = seq.alg.GlobalAlign(seq_a, seq_b, seq.alg.BLOSUM62)
    print(alns[0].ToString(80))
    # >>> A acdefghiklmn
    # >>> B acd---hiklmn

  :param seq1: A valid sequence
  :type seq1: :class:`~ost.seq.ConstSequenceHandle`
  :param seq2: A valid sequence  
  :type seq2: :class:`~ost.seq.ConstSequenceHandle`
  :param subst_weigth: The substitution weights matrix
  :type subst_weight: :class:`SubstWeightMatrix`
  :param gap_open: The gap opening penalty. Must be a negative number
  :param gap_ext: The gap extension penalty. Must be a negative number
  :returns: Best-scoring alignment of *seq1* and *seq2*.

.. function:: SemiGlobalAlign(seq1, seq2, subst_weight, gap_open=-5, gap_ext=-2)

  Performs a semi-global alignment of *seq1* and *seq2* and returns the best-
  scoring alignment. The algorithm is Needleman/Wunsch same as GlobalAlign, but
  without any gap penalty for starting or ending gaps. This is prefereble 
  whenever one of the sequences is significantly shorted than the other.
  This make it also suitable for fragment assembly.
  
  **Example:**
  
  .. code-block:: python
  
    seq_a = seq.CreateSequence('A', 'abcdefghijklmnok')
    seq_b = seq.CreateSequence('B', 'cdehijk')
    alns = seq.alg.GlobalAlign(seq_a, seq_b, seq.alg.BLOSUM62)
    print(alns[0].ToString(80))
    # >>> A abcdefghijklmnok
    # >>> B --cde--hi-----jk
    alns = seq.alg.SemiGlobalAlign(seq_a, seq_b, seq.alg.BLOSUM62)
    print(alns[0].ToString(80))
    # >>> A abcdefghijklmnok
    # >>> B --cde--hijk-----

  :param seq1: A valid sequence
  :type seq1: :class:`~ost.seq.ConstSequenceHandle`
  :param seq2: A valid sequence  
  :type seq2: :class:`~ost.seq.ConstSequenceHandle`
  
  :param subst_weigth: The substitution weights matrix
  :type subst_weight: :class:`SubstWeightMatrix`
  :param gap_open: The gap opening penalty. Must be a negative number
  :param gap_ext: The gap extension penalty. Must be a negative number
  :returns: best-scoring alignment of *seq1* and *seq2*.


.. _substitution-weight-matrices:

Substitution Weight Matrices and BLOSUM Matrices
--------------------------------------------------------------------------------

.. class:: SubstWeightMatrix

  Substitution weights for alignment algorithms

  .. method:: GetWeight(olc_one, olc_two)

    Get :class:`int` weight for pair of characters

    :param olc_one: first character
    :type olc_one: :class:`string`
    :param olc_two: second character
    :type olc_two: :class:`string`

  .. method:: SetWeight(olc_one, olc_two, weight)

    Set :class:`int` weight for pair of characters

    :param olc_one: first character
    :type olc_one: :class:`string`
    :param olc_two: second character
    :type olc_two: :class:`string`
    :param weight: the weight
    :type weight: :class:`int`

  .. method:: GetMinWeight()

    Returns the minimal weight of the matrix

  .. method:: GetMaxWeight()

    Returns the maximum weight of the matrix

  .. method:: GetName()

    Getter for name (empty string if not set)

  .. method:: SetName(name)

    Setter for name

    :param name: Name to be set
    :type name: :class:`str`

.. _blosum:

Four already preset BLOSUM (BLOcks SUbstitution Matrix) matrices are available
at different levels of sequence identity:

- BLOSUM45
- BLOSUM62
- BLOSUM80
- BLOSUM100

Nucleotide substitution matrices:

- NUC44: Nucleotide substitution matrix used in blastn that can deal with IUPAC
  ambiguity codes. ATTENTION: has been edited to explicitely encode T/U
  equivalence, i.e. you can just do `m.GetWeight('G', 'U')` instead of first
  translating 'U' to 'T'. 

They can be directly accessed upon importing the sequence module:

.. code-block:: python

  from ost import seq
  mat = seq.alg.BLOSUM62
  print(mat.GetWeight('A', 'A'))


.. _contact-prediction:

Contact Prediction
--------------------------------------------------------------------------------

This is a set of functions for predicting pairwise contacts from a multiple
sequence alignment (MSA). The core method here is mutual information which uses 
coevolution to predict contacts. Mutual information is complemented by two other 
methods which score pairs of columns of a MSA from the likelyhood of certain
amino acid pairs to form contacts (statistical potential) and the likelyhood
of finding certain substitutions of aminio-acid pairs in columns of the MSA
corresponding to interacting residues.

.. class:: ContactPredictionScoreResult
  
  Object containing the results form a contact prediction. 

  .. attribute:: matrix

    An *NxN* :class:`~ost.FloatMatrix` where *N* is the length of the alignment.
    The element *i,j* corresponds to the score of the corresponding
    columns of the MSA. High scores correspond to high likelyhood of
    a contact.

  .. attribute:: sorted_indices

    List of all indices pairs *i,j*, containing (N*N-1)/2 elements,
    as the **matrix** is symmetrical and elements in the diagonal
    are ignored. The indices are sorted from the pair most likely to form
    a contact to the least likely one.

  .. method:: GetScore(i,j)

    returns **matrix(i,j)**

    :param i: First index
    :param j: Second index
    :type i:  :class:`int`
    :type j:  :class:`int`

  .. method:: SetScore(i,j,score)

    Sets **matrix(i,j)** to **score**

    :param i: First index
    :param j: Second index
    :param score: The score
    :type i:  :class:`int`
    :type j:  :class:`int`
    :type score:  :class:`float`

.. autofunction:: PredictContacts

.. function:: CalculateMutualInformation(aln, \
                weights=LoadConstantContactWeightMatrix(), \
                apc_correction=true, zpx_transformation=true, \
                small_number_correction=0.05)

    Calculates the mutual information (MI) from a multiple sequence alignemnt. Contributions of each pair of amino-acids are weighted using the matrix **weights** (weighted mutual information). The average product correction (**apc_correction**) correction and transformation into Z-scores (**zpx_transofrmation**) increase prediciton accuracy by reducing the effect of phylogeny and other noise sources. The small number correction reduces noise for alignments with small number of sequences of low diversity.

    :param aln: The multiple sequences alignment
    :type aln:  :class:`~ost.seq.AlignmentHandle`
    :param weights: The weight matrix
    :type weights:  :class`ContactWeightMatrix`
    :param apc_correction: Whether to use the APC correction
    :type apc_correction:  :class:`bool`
    :param zpx_transformation:  Whether to transform the scores into Z-scores
    :type zpx_transformation: :class:`bool`
    :param small_number_correction: initial values for the probabilities of having a given pair of amino acids *p(a,b)*.
    :type small_number_correction: :class:`float`

.. autofunction:: CalculateContactProbability

.. function:: CalculateContactScore(aln, \
                weights=LoadDefaultContactWeightMatrix())
  
  Calculates the Contact Score (*CoSc*) from a multiple sequence alignment. For each pair of residues *(i,j)* (pair of columns in the MSA), *CoSc(i,j)* is the average over the values of the **weights** corresponding to the amino acid pairs in the columns.

  :param aln: The multiple sequences alignment
  :type aln:  :class:`~ost.seq.AlignmentHandle`
  :param weights: The contact weight matrix
  :type weights:  :class`ContactWeightMatrix`

.. function:: CalculateContactSubstitutionScore(aln, ref_seq_index=0, \
                weights=LoadDefaultPairSubstWeightMatrix())

  Calculates the Contact Substitution Score (*CoEvoSc*) from a multiple sequence alignment. For each pair of residues *(i,j)* (pair of columns in the MSA), *CoEvoSc(i,j)* is the average over the values of the **weights** corresponding to substituting the amino acid pair in the reference sequence (given by **ref_seq_index**) with all other pairs in columns *(i,j)* of the **aln**.

  :param aln: The multiple sequences alignment
  :type aln:  :class:`~ost.seq.AlignmentHandle`
  :param weights: The pair substitution weight matrix
  :type weights:  :class`ContactWeightMatrix`

.. function:: LoadDefaultContactWeightMatrix()
  
  :returns: *CPE*, a :class:`ContactWeightMatrix` that was calculated from a large (>15000) set of
    high quality crystal structures as *CPE=log(CF(a,b)/NCF(a,b))* and then normalised so that all its elements are comprised between 0 and 1. *CF(a,b)* is the frequency of amino acids *a* and *b* for pairs of contacting residues and *NCF(a,b)* is the frequency of amino acids *a* and *b* for pairs of non-contacting residues. Apart from weights for the standard amino acids, this matrix gives a weight of 0 to all pairs for which at least one amino-acid is a gap.

.. function:: LoadConstantContactWeightMatrix()
  
  :returns: A :class:`ContactWeightMatrix`. This matrix gives a weight of one to all pairs of
   standard amino-acids and a weight of 0 to pairs for which at least one amino-acid is a gap.

.. function:: LoadDefaultPairSubstWeightMatrix()
  
  :returns: *CRPE*, a :class:`PairSubstWeightMatrix` that was calculated from a large (>15000) set of
    high quality crystal structures as *CRPE=log(CRF(ab->cd)/NCRF(ab->cd))* and then normalised so that all its elements are comprised between 0 and 1. *CRF(ab->cd)* is the frequency of replacement of a pair of amino acids  *a* and *b* by a pair *c* and *d* in columns of the MSA corresponding to contacting residues and *NCRF(ab->cd)* is the frequency of replacement of a pair of amino acids  *a* and *b* by a pair *c* and *d* in columns of the MSA corresponding to non-contacting residues. Apart from weights for the standard amino acids, this matrix gives a weight of 0 to all pair substitutions for which at least one amino-acid is a gap.


.. class:: PairSubstWeightMatrix(weights, aa_list)

  This class is used to associate a weight to any substitution from one amino-acid pair *(a,b)* to any other pair *(c,d)*.

  .. attribute:: weights

    A :class:`~ost.FloatMatrix4` of size *NxNxNxN*, where *N=len(aa_list)*

  .. attribute:: aa_list

    A :class:`CharList` of one letter codes of the amino acids for which weights are found in the **weights** matrix.

.. class:: ContactWeightMatrix(weights, aa_list)

  This class is used to associate a weight to any pair of amino-acids.

  .. attribute:: weights

    A :class:`~ost.FloatMatrix` of size *NxN*, where *N=len(aa_list)*

  .. attribute:: aa_list

    A :class:`CharList` of one letter codes of the amino acids for which weights are found in the **weights** matrix.

Get and analyze distance matrices from alignments
--------------------------------------------------------------------------------

Given a multiple sequence alignment between a reference sequence (first sequence
in alignment) and a list of structures (remaining sequences in alignment with an
attached view to the structure), this set of functions can be used to analyze
differences between the structures.

**Example:**

.. code-block:: python
  
  # SETUP: aln is multiple sequence alignment, where first sequence is the
  #        reference sequence and all others have a structure attached

  # clip alignment to only have parts with at least 3 sequences (incl. ref.)
  # -> aln will be cut and clip_start is 1st column of aln that was kept
  clip_start = seq.alg.ClipAlignment(aln, 3)
  
  # get variance measure and distance to mean for each residue pair
  d_map = seq.alg.CreateDistanceMap(aln)
  var_map = seq.alg.CreateVarianceMap(d_map)
  dist_to_mean = seq.alg.CreateDist2Mean(d_map)

  # report min. and max. variances
  print("MIN-MAX:", var_map.Min(), "-", var_map.Max())
  # get data and json-strings for further processing
  var_map_data = var_map.GetData()
  var_map_json = var_map.GetJsonString()
  dist_to_mean_data = dist_to_mean.GetData()
  dist_to_mean_json = dist_to_mean.GetJsonString()

.. function:: ClipAlignment(aln, n_seq_thresh=2, set_offset=true, \
                            remove_empty=true)

  Clips alignment so that first and last column have at least the desired number
  of structures.

  :param aln: Multiple sequence alignment. Will be cut!
  :type aln:  :class:`~ost.seq.AlignmentHandle`
  :param n_seq_thresh: Minimal number of sequences desired.
  :type n_seq_thresh:  :class:`int`
  :param set_offset: Shall we update offsets for attached views?
  :type set_offset:  :class:`bool`
  :param remove_empty: Shall we remove sequences with only gaps in cut aln?
  :type remove_empty:  :class:`bool`
  :returns: Starting column (0-indexed), where cut region starts (w.r.t.
            original aln). -1, if there is no region in the alignment with
            at least the desired number of structures.
  :rtype:   :class:`int`

.. function:: CreateDistanceMap(aln)

  Create distance map from a multiple sequence alignment.
  
  The algorithm requires that the sequence alignment consists of at least two
  sequences. The sequence at index 0 serves as a frame of reference. All the
  other sequences must have an attached view and a properly set sequence offset
  (see :meth:`~ost.seq.AlignmentHandle.SetSequenceOffset`).
  
  For each of the attached views, the C-alpha distance pairs are extracted and
  mapped onto the corresponding C-alpha distances in the reference sequence.

  :param aln: Multiple sequence alignment.
  :type aln:  :class:`~ost.seq.AlignmentHandle`
  :returns: Distance map.
  :rtype:   :class:`DistanceMap`
  :raises:  Exception if *aln* has less than 2 sequences or any sequence (apart
            from index 0) is lacking an attached view.

.. function:: CreateVarianceMap(d_map, sigma=25)

  :returns: Variance measure for each entry in *d_map*.
  :rtype:   :class:`VarianceMap`
  :param d_map: Distance map as created with :func:`CreateDistanceMap`.
  :type d_map:  :class:`DistanceMap`
  :param sigma: Used for weighting of variance measure
                (see :meth:`Distances.GetWeightedStdDev`)
  :type sigma:  :class:`float`
  :raises:  Exception if *d_map* has no entries.

.. function:: CreateDist2Mean(d_map)

  :returns: Distances to mean for each structure in *d_map*.
            Structures are in the same order as passed when creating *d_map*.
  :rtype:   :class:`Dist2Mean`
  :param d_map: Distance map as created with :func:`CreateDistanceMap`.
  :type d_map:  :class:`DistanceMap`
  :raises:  Exception if *d_map* has no entries.

.. function:: CreateMeanlDDTHA(d_map)

  :returns: lDDT calculation based on CA carbons of the structures with lddt 
            distance threshold of 15 Angstrom and distance difference thresholds 
            of [0.5, 1.0, 2.0, 4.0]. The reported values for a certain structure 
            are the mean per-residue lDDT values given all other structures as 
            reference. Structures are in the same order as passed when creating 
            *d_map*.

  :rtype:   :class:`MeanlDDT`
  :param d_map: Distance map as created with :func:`CreateDistanceMap`.
  :type d_map:  :class:`DistanceMap`
  :raises:  Exception if *d_map* has no entries.

.. class:: Distances
  
  Container used by :class:`DistanceMap` to store a pair wise distance for each
  structure. Each structure is identified by its index in the originally used
  alignment (see :func:`CreateDistanceMap`).

  .. method:: GetDataSize()

    :returns: Number of pairwise distances.
    :rtype:   :class:`int`

  .. method:: GetAverage()

    :returns: Average of all distances.
    :rtype:   :class:`float`
    :raises:  Exception if there are no distances.

  .. method:: GetMin()
              GetMax()

    :returns: Minimal/maximal distance.
    :rtype:   :class:`tuple` (distance (:class:`float`), index (:class:`int`))
    :raises:  Exception if there are no distances.

  .. method:: GetDataElement(index)

    :returns: Element at given *index*.
    :rtype:   :class:`tuple` (distance (:class:`float`), index (:class:`int`))
    :param index: Index within list of distances (must be < :meth:`GetDataSize`).
    :type index:  :class:`int`
    :raises:  Exception if there are no distances or *index* out of bounds.

  .. method:: GetStdDev()

    :returns: Standard deviation of all distances.
    :rtype:   :class:`float`
    :raises:  Exception if there are no distances.

  .. method:: GetWeightedStdDev(sigma)

    :returns: Standard deviation of all distances multiplied by
              exp( :meth:`GetAverage` / (-2*sigma) ).
    :rtype:   :class:`float`
    :param sigma: Defines weight.
    :type sigma:  :class:`float`
    :raises:  Exception if there are no distances.

  .. method:: GetNormStdDev()

    :returns: Standard deviation of all distances divided by :meth:`GetAverage`.
    :rtype:   :class:`float`
    :raises:  Exception if there are no distances.

.. class:: DistanceMap

  Container returned by :func:`CreateDistanceMap`.
  Essentially a symmetric :meth:`GetSize` x :meth:`GetSize` matrix containing
  up to :meth:`GetNumStructures` distances (list stored as :class:`Distances`).
  Indexing of residues starts at 0 and corresponds to the positions in the
  originally used alignment (see :func:`CreateDistanceMap`).

  .. method:: GetDistances(i_res1, i_res2)

    :returns: List of distances for given pair of residue indices.
    :rtype:   :class:`Distances`
    :param i_res1: Index of residue.
    :type i_res1:  :class:`int`
    :param i_res2: Index of residue.
    :type i_res2:  :class:`int`

  .. method:: GetSize()

    :returns: Number of residues in map.
    :rtype:   :class:`int`

  .. method:: GetNumStructures()

    :returns: Number of structures originally used when creating the map
              (see :func:`CreateDistanceMap`).
    :rtype:   :class:`int`

.. class:: VarianceMap

  Container returned by :func:`CreateVarianceMap`.
  Like :class:`DistanceMap`, it is a symmetric :meth:`GetSize` x :meth:`GetSize`
  matrix containing variance measures.
  Indexing of residues is as in :class:`DistanceMap`.

  .. method:: Get(i_res1, i_res2)

    :returns: Variance measure for given pair of residue indices.
    :rtype:   :class:`float`
    :param i_res1: Index of residue.
    :type i_res1:  :class:`int`
    :param i_res2: Index of residue.
    :type i_res2:  :class:`int`

  .. method:: GetSize()

    :returns: Number of residues in map.
    :rtype:   :class:`int`

  .. method:: Min()
              Max()

    :returns: Minimal/maximal variance in the map.
    :rtype:   :class:`float`

  .. method:: ExportDat(file_name)
              ExportCsv(file_name)
              ExportJson(file_name)

    Write all variance measures into a file. The possible formats are:

    - "dat" file: a list of "*i_res1+1* *i_res2+1* variance" lines
    - "csv" file: a list of ";" separated variances (one line for each *i_res1*)
    - "json" file: a JSON formatted file (see :meth:`GetJsonString`)

    :param file_name: Path to file to be created.
    :type file_name:  :class:`str`
    :raises:  Exception if the file cannot be opened for writing.

  .. method:: GetJsonString()

    :returns: A JSON formatted list of :meth:`GetSize` lists with
              :meth:`GetSize` variances
    :rtype:   :class:`str`

  .. method:: GetData()

    Gets all the data in this map at once. Note that this is much faster (10x
    speedup observed) than parsing :meth:`GetJsonString` or using :meth:`Get`
    on each element.

    :returns: A list of :meth:`GetSize` lists with :meth:`GetSize` variances.
    :rtype:   :class:`list` of :class:`list` of :class:`float`

  .. method:: GetSubData(num_res_to_avg)

    Gets subset of data in this map by averaging neighboring values for
    *num_res_to_avg* residues.

    :returns: A list of ceil(:meth:`GetSize`/*num_res_to_avg*) lists with
              ceil(:meth:`GetSize`/*num_res_to_avg*) variances.
    :rtype:   :class:`list` of :class:`list` of :class:`float`

.. class:: Dist2Mean

  Container returned by :func:`CreateDist2Mean`.
  Stores distances to mean for :meth:`GetNumResidues` residues of
  :meth:`GetNumStructures` structures.
  Indexing of residues is as in :class:`DistanceMap`.
  Indexing of structures goes from 0 to :meth:`GetNumStructures` - 1 and is in
  the same order as the structures in the originally used alignment.

  .. method:: Get(i_res, i_str)

    :returns: Distance to mean for given residue and structure indices.
    :rtype:   :class:`float`
    :param i_res: Index of residue.
    :type i_res:  :class:`int`
    :param i_str: Index of structure.
    :type i_str:  :class:`int`

  .. method:: GetNumResidues()

    :returns: Number of residues.
    :rtype:   :class:`int`

  .. method:: GetNumStructures()

    :returns: Number of structures.
    :rtype:   :class:`int`

  .. method:: ExportDat(file_name)
              ExportCsv(file_name)
              ExportJson(file_name)

    Write all distance measures into a file. The possible formats are:

    - "dat" file: a list of "*i_res+1* distances" lines (distances are space
      separated)
    - "csv" file: a list of ";" separated distances (one line for each *i_res*)
    - "json" file: a JSON formatted file (see :meth:`GetJsonString`)

    :param file_name: Path to file to be created.
    :type file_name:  :class:`str`
    :raises:  Exception if the file cannot be opened for writing.

  .. method:: GetJsonString()

    :returns: A JSON formatted list of :meth:`GetNumResidues` lists with
              :meth:`GetNumStructures` distances.
    :rtype:   :class:`str`

  .. method:: GetData()

    Gets all the data in this map at once. Note that this is much faster (10x
    speedup observed) than parsing :meth:`GetJsonString` or using :meth:`Get`
    on each element.

    :returns: A list of :meth:`GetNumResidues` lists with
              :meth:`GetNumStructures` distances.
    :rtype:   :class:`list` of :class:`list` of :class:`float`

  .. method:: GetSubData(num_res_to_avg)

    Gets subset of data in this map by averaging neighboring values for
    *num_res_to_avg* residues.

    :returns: A list of ceil(:meth:`GetNumResidues`/*num_res_to_avg*) lists with
              :meth:`GetNumStructures` distances.
    :rtype:   :class:`list` of :class:`list` of :class:`float`


.. class:: MeanlDDT

  Container returned by :func:`CreateMeanlDDTHA`.
  Stores mean lDDT values for :meth:`GetNumResidues` residues of
  :meth:`GetNumStructures` structures.
  Has the exact same functionality and behaviour as :class:`Dist2Mean`


HMM Algorithms
--------------------------------------------------------------------------------
Openstructure implements basic HMM-related functionality that aims at
calculating an HMM-HMM alignment score as described in
Soding, Bioinformatics (2005) 21(7), 951-60. This is the score which is
optimized in the Viterbi algorithm of the hhalign tool. 
As a prerequisite, OpenStructure also implements adding pseudo counts to 
:class:`ost.seq.ProfileHandle` in order to avoid zero probabilities for 
unobserved transitions/emissions. Given these requirements, all functions
in this section require HMM related data (transition probabilities, neff values,
etc.) to be set, which is the case if you load a file in hhm format.

.. method:: HMMScore(profile_0, profile_1, aln, s_0_idx, s_1_idx, \
                     match_score_offset=-0.03,correl_score_weight=0.1, \
                     del_start_penalty_factor=0.6, \
                     del_extend_penalty_factor=0.6, \
                     ins_start_penalty_factor=0.6, \
                     ins_extend_penalty_factor=0.6)

  Scores an HMM-HMM alignment given in *aln* between *profile_0* and 
  *profile_1*.
  The score is described in Soding, Bioinformatics (2005) 21(7), 951-60 and 
  consists of three components: 

    * sum of column alignment scores of all aligned columns, the 
      *match_score_offset* is applied to each of those scores
    * sum of transition probability scores, the prefactor of those scores can 
      be controlled with penalty factors (*del_start_penalty_factor* etc.)
    * correlation score which rewards conserved columns occuring in clusters,
      *correl_score_weight* controls its contribution to the total score

  You have to make sure that proper pseudo counts are already assigned before 
  calling this function. You can find a usage example in this documentation.
  This score is not necessarily consistent with the output generated with 
  hhalign, i.e. you take the hhalign output alignment and directly feed it
  into this function with the same profiles and expect an equal score. 
  The reason is that by default, hhalign performs a re-alignment step but the 
  output score actually relates to the initial alignment coming from the 
  Viterbi alignment. To get consistent results, run hhalign with the 
  -norealign flag.

  :param profile_0:     First profile to be scored
  :param profile_1:     Second profile to be scored
  :param aln:           Alignment connecting the two profiles
  :param s_0_idx:       Idx of sequence in *aln* that describes *profile_0*
  :param s_1_idx:       Idx of sequence in *aln* that describes *profile_1*
  :param match_score_offset: Offset which is applied to each column alignment 
                             score
  :param correl_score_weight: Prefactor to control contribution of correlation 
                              score to total score
  :param del_start_penalty_factor: Factor which is applied for each transition 
                                   score starting a deletion
  :param del_extend_penalty_factor: Factor which is applied for each transition 
                                    score extending a deletion
  :param ins_start_penalty_factor: Factor which is applied for each transition 
                                   score starting an insertion
  :param ins_extend_penalty_factor: Factor which is applied for each transition 
                                    score extending an insertion

  :type profile_0:      :class:`ost.seq.ProfileHandle`
  :type profile_1:      :class:`ost.seq.ProfileHandle`
  :type aln:            :class:`ost.seq.AlignmentHandle`
  :type s_0_idx:        :class:`int`
  :type s_1_idx:        :class:`int`
  :type match_score_offset: :class:`float`
  :type correl_score_weight: :class:`float`
  :type del_start_penalty_factor: :class:`float`
  :type del_extend_penalty_factor: :class:`float`
  :type ins_start_penalty_factor: :class:`float`
  :type ins_extend_penalty_factor: :class:`float`

  :raises:  Exception if profiles don't have HMM information assigned or 
            specified sequences in *aln* don't match with profile SEQRES. 
            Potentially set sequence offsets are taken into account.


**Example with pseudo count assignment:**

.. code-block:: python

  from ost import io, seq

  prof_query = io.LoadSequenceProfile("query.hhm")
  prof_tpl = io.LoadSequenceProfile("tpl.hhm")
  aln = io.LoadAlignment("aln.fasta")

  # assign pseudo counts to transition probabilities
  seq.alg.AddTransitionPseudoCounts(prof_query)
  seq.alg.AddTransitionPseudoCounts(prof_tpl)

  # hhblits/hhalign 3 assign different pseudo counts to 
  # query and template. The reason is computational efficiency.
  # The more expensive Angermueller et al. pseudo counts
  # are assigned to the query.
  path_to_crf = "/path/to/hh-suite/data/context_data.crf"
  lib = seq.alg.ContextProfileDB.FromCRF(path_to_crf)
  seq.alg.AddAAPseudoCounts(prof_query, lib)

  # templates are assigned the computationally cheaper pseudo
  # counts derived from a Gonnet substitution matrix
  seq.alg.AddAAPseudoCounts(prof_tpl)

  # assign null model pseudo counts
  # this should be done AFTER you assigned pseudo counts to emission
  # probabilities as this affects the result
  seq.alg.AddNullPseudoCounts(prof_query)
  seq.alg.AddNullPseudoCounts(prof_tpl)

  print("score:", seq.alg.HMMScore(prof_query, prof_tpl, aln, 0, 1))


.. method:: AddNullPseudoCounts(profile)

  Adds pseudo counts to null model in *profile* as implemented in hhalign.
  Conceptually we're mixing the original null model with the frequencies 
  observed in the columns of *profile*. The weight of the original null model
  depends on the neff value of *profile*. This function should be called
  AFTER you already assigned pseudo counts to the emission probabilities
  as this affects the result. 

  :param profile:       Profile to add pseudo counts
  :type profile:        :class:`ost.seq.ProfileHandle`

  :raises:  Exception if profile doesn't have HMM information assigned


.. method:: AddTransitionPseudoCounts(profile, gapb=1.0, gapd=0.15, gape=1.0)

  Adds pseudo counts to the transition probabilities in *profile* as implemented 
  in hhalign with equivalent parameter naming and default parameterization.
  The original transition probabilities are mixed with prior
  probabilities that are controlled by *gapd* and *gape*. Priors:

    * priorM2I = priorM2D = *gapd* * 0.0286
    * priorM2M = 1.0 - priorM2D - priorM2I
    * priorI2I = priorD2D = 1.0 * *gape* / (gape - 1.0 + 1.0/0.75)
    * priorI2M = priorD2M = 1.0 - priorI2I

  Transition probabilities of column i starting from a match state are 
  then estimated with pM2X = (neff[i] - 1) * pM2X + *gape* * priorM2X.
  Starting from an insertion/deletion state we have 
  pI2X = neff_ins[i] * pI2X + *gape* * priorI2X. In the end, all
  probabilities are normalized such that (pM2M, pM2I, pM2D) sum up to one,
  (pI2M, pI2I) sum up to one and (pD2I, pD2D) sum up to one.

  :param profile:       Profile to add pseudo counts
  :type profile:        :class:`ost.seq.ProfileHandle`

  :raises:  Exception if profile doesn't have HMM information assigned


.. method:: AddAAPseudoCounts(profile, a=1.0, b=1.5, c=1.0)

  Adds pseudo counts to the emission probabilities in *profile* by mixing in
  probabilities from the Gonnet matrix as implemented in hhalign with equivalent 
  parameter naming and default parameterization. We only implement the 
  diversity-dependent mode for the mixing factor tau (default in hhalign), which
  for column *i* depends on *neff[i]* , *a* , *b* and *c* .

  :param profile:       Profile to add pseudo counts
  :type profile:        :class:`ost.seq.ProfileHandle`

  :raises:  Exception if profile doesn't have HMM information assigned


.. class:: ContextProfileDB

  Database that contains context profiles which will be used to add pseudo 
  counts as described by 
  Angermueller et al., Bioinformatics (2012) 28, 3240-3247. 

  .. method:: FromCRF(filename)

    Static load function which reads a crf file provided in an hh-suite 
    installation. Default location: "path/to/hhsuite/data/context_data.crf"

    :param filename:    Filename of CRF file
    :type filename:     :class:`str`

  .. method:: Save(filename)

    Saves database in OST-internal binary format which can be loaded faster than
    a crf file.

    :param filename:    Filename to save db
    :type filename:     :class:`str`

  .. method:: Load(filename)

    Static load function that loads database in OST-internal binary format.

    :param filename:    Filename of db
    :type filename:     :class:`str`

.. method:: AddAAPseudoCounts(profile, db, a=0.9, b=4.0, c=1.0)
  :noindex:

  Adds pseudo counts to the emission probabilities in *profile* by utilizing 
  context profiles as described in 
  Angermueller et al., Bioinformatics (2012) 28, 3240-3247.
  We only implement the 
  diversity-dependent mode for the mixing factor tau (default in hhalign), which
  for column *i* depends on *neff[i]* , *a* , *b* and *c* .

  :param profile:       Profile to add pseudo counts
  :type profile:        :class:`ost.seq.ProfileHandle`
  :param db:            Database of context profiles
  :type db:             :class:`ContextProfileDB`

  :raises:  Exception if profile doesn't have HMM information assigned