1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
|
"""
Evaluate model with non-polymer/small molecule ligands against reference.
Example: ost compare-ligand-structures \\
-m model.pdb \\
-ml ligand.sdf \\
-r reference.cif \\
--lddt-pli --rmsd
Structures of polymer entities (proteins and nucleotides) can be given in PDB
or mmCIF format. In case of PDB format, the full loaded structure undergoes
processing described below. In case of mmCIF format, chains representing
"polymer" entities according to _entity.type are selected and further processed
as described below.
Structure cleanup is heavily based on the PDB component dictionary and performs
1) removal of hydrogens, 2) removal of residues for which there is no entry in
component dictionary, 3) removal of residues that are not peptide linking or
nucleotide linking according to the component dictionary 4) removal of atoms
that are not defined for respective residues in the component dictionary. Except
step 1), every cleanup is logged and a report is available in the json outfile.
Ligands can be given as path to SDF files containing the ligand for both model
(--model-ligands/-ml) and reference (--reference-ligands/-rl). If omitted,
ligands are optionally detected from a structure file if it is given in mmCIF
format. This is based on "non-polymer" _entity.type annotation and the
respective entries must exist in the PDB component dictionary in order to get
connectivity information. For example, receptor structure and ligand(s) are
loaded from the same mmCIF file given as '-m'/'-r'. This does not work for
structures provided in PDB format and an error is raised if ligands are not
explitely given in SDF format.
Ligands undergo gentle processing where hydrogens are removed. Connectivity
is relevant for scoring. It is read directly from SDF input. If ligands are
extracted from mmCIF, connectivity is derived from the PDB component
dictionary. Polymer/oligomeric ligands (saccharides, peptides, nucleotides)
are not supported.
Output can be written in two format: JSON (default) or CSV, controlled by the
--output-format/-of argument.
Without additional options, the JSON ouput is a dictionary with the following
keys:
* "model_ligands": A list of ligands in the model. If ligands were provided
explicitly with --model-ligands, elements of the list will be the paths to
the ligand SDF file(s). Otherwise, they will be the chain name, residue
number and insertion code of the ligand, separated by a dot.
* "reference_ligands": Same for reference ligands.
* "status": SUCCESS if everything ran through. In case of failure, the only
content of the JSON output will be \"status\" set to FAILURE and an
additional key: "traceback".
* "ost_version": The OpenStructure version used for computation.
* "model_cleanup_log": Lists residues/atoms that have been removed in model
cleanup process.
* "reference_cleanup_log": Same for reference.
* "reference": Parameter provided for --reference/-r
* "model": Parameter provided for --model/-m
* "resnum_alignments": Parameter provided for --residue-number-alignment/-rna
* "substructure_match": Parameter provided for --substructure-match/-sm
* "coverage_delta": Parameter provided for --coverage-delta/-cd
* "max_symmetries": Parameter provided for --max-symmetries/-ms
Each score is opt-in and the respective results are available in three keys:
* "assigned_scores": A list with data for each pair of assigned ligands.
Data is yet another dict containing score specific information for that
ligand pair. The following keys are there in any case:
* "model_ligand": The model ligand
* "reference_ligand": The target ligand to which model ligand is assigned to
* "score": The score
* "coverage": Fraction of model ligand atoms which are covered by target
ligand. Will only deviate from 1.0 if --substructure-match is enabled.
* "model_ligand_unassigned_reason": Dictionary with unassigned model ligands
as key and an educated guess why this happened.
* "reference_ligand_unassigned_reason": Dictionary with unassigned target ligands
as key and an educated guess why this happened.
If --full-results is enabled, another element with key "full_results" is added.
This is a list of data items for each pair of model/reference ligands. The data
items follow the same structure as in "assigned_scores". If no score for a
specific pair of ligands could be computed, "score" and "coverage" are set to
null and a key "reason" is added giving an educated guess why this happened.
CSV output is a table of comma-separated values, with one line for each
reference ligand (or one model ligand if the --by-model-ligand-output flag was
set).
The following column is always available:
* reference_ligand/model_ligand: If reference ligands were provided explicitly
with --reference-ligands, elements of the list will be the paths to the
ligand SDF file(s). Otherwise, they will be the chain name, residue number
and insertion code of the ligand, separated by a dot. If the
--by-model-ligand-output flag was set, this will be model ligand instead,
following the same rules.
If lDDT-PLI was enabled with --lddt-pli, the following columns are added:
* "lddt_pli", "lddt_pli_coverage" and "lddt_pli_(model|reference)_ligand"
are the lDDT-PLI score result, the corresponding coverage and assigned model
ligand (or reference ligand if the --by-model-ligand-output flag was set)
if an assignment was found, respectively, empty otherwise.
* "lddt_pli_unassigned" is empty if an assignment was found, otherwise it
lists the short reason this reference ligand was unassigned.
If BiSyRMSD was enabled with --rmsd, the following columns are added:
* "rmsd", "rmsd_coverage". "lddt_lp" "bb_rmsd" and
"rmsd_(model|reference)_ligand" are the BiSyRMSD, the corresponding
coverage, lDDT-LP, backbone RMSD and assigned model ligand (or reference
ligand if the --by-model-ligand-output flag was set) if an assignment
was found, respectively, empty otherwise.
* "rmsd_unassigned" is empty if an assignment was found, otherwise it
lists the short reason this reference ligand was unassigned.
"""
import argparse
import csv
from io import StringIO
import json
import os
import sys
import traceback
import ost
from ost import io
from ost.mol.alg import ligand_scoring_base
from ost.mol.alg import ligand_scoring_lddtpli
from ost.mol.alg import ligand_scoring_scrmsd
def _ParseArgs():
parser = argparse.ArgumentParser(description = __doc__,
formatter_class=argparse.RawDescriptionHelpFormatter,
prog="ost compare-ligand-structures")
parser.add_argument(
"-m",
"--mdl",
"--model",
dest="model",
required=True,
help=("Path to model file."))
parser.add_argument(
"-ml",
"--mdl-ligands",
"--model-ligands",
dest="model_ligands",
nargs="*",
default=None,
help=("Path to model ligand files."))
parser.add_argument(
"-r",
"--ref",
"--reference",
dest="reference",
required=True,
help=("Path to reference file."))
parser.add_argument(
"-rl",
"--ref-ligands",
"--reference-ligands",
dest="reference_ligands",
nargs="*",
default=None,
help=("Path to reference ligand files."))
parser.add_argument(
"-o",
"--out",
"--output",
dest="output",
default=None,
help=("Output file name. "
"Default depends on format: out.json or out.csv"))
parser.add_argument(
"-mf",
"--mdl-format",
"--model-format",
dest="model_format",
required=False,
default=None,
choices=["pdb", "cif", "mmcif"],
help=("Format of model file. pdb reads pdb but also pdb.gz, same "
"applies to cif/mmcif. Inferred from filepath if not given."))
parser.add_argument(
"-rf",
"--reference-format",
"--ref-format",
dest="reference_format",
required=False,
default=None,
choices=["pdb", "cif", "mmcif"],
help=("Format of reference file. pdb reads pdb but also pdb.gz, same "
"applies to cif/mmcif. Inferred from filepath if not given."))
parser.add_argument(
"-of",
"--out-format",
"--output-format",
dest="output_format",
choices=["json", "csv"],
default="json",
help=("Output format, JSON or CSV, in lowercase. "
"default: json"))
parser.add_argument(
"-csvm",
"--by-model-ligand",
"--by-model-ligand-output",
dest="output_by_model_ligand",
default=False,
action="store_true",
help=("For CSV output, this flag changes the output so that each line "
"reports one model ligand, instead of a reference ligand. "
"Has no effect with JSON output."))
parser.add_argument(
"--csv-extra-header",
dest="csv_extra_header",
default=None,
type=str,
help=("Extra header prefix for CSV output. This allows adding "
"additional annotations (such as target ID, group, etc) to the "
"output"))
parser.add_argument(
"--csv-extra-data",
dest="csv_extra_data",
default=None,
type=str,
help=("Additional data (columns) for CSV output."))
parser.add_argument(
"-mb",
"--model-biounit",
dest="model_biounit",
required=False,
default=None,
type=str,
help=("Only has an effect if model is in mmcif format. By default, "
"the asymmetric unit (AU) is used for scoring. If there are "
"biounits defined in the mmcif file, you can specify the "
"ID (as a string) of the one which should be used."))
parser.add_argument(
"-rb",
"--reference-biounit",
dest="reference_biounit",
required=False,
default=None,
type=str,
help=("Only has an effect if reference is in mmcif format. By default, "
"the asymmetric unit (AU) is used for scoring. If there are "
"biounits defined in the mmcif file, you can specify the "
"ID (as a string) of the one which should be used."))
parser.add_argument(
"-ft",
"--fault-tolerant",
dest="fault_tolerant",
default=False,
action="store_true",
help=("Fault tolerant parsing."))
parser.add_argument(
"-rna",
"--residue-number-alignment",
dest="residue_number_alignment",
default=False,
action="store_true",
help=("Make alignment based on residue number instead of using "
"a global BLOSUM62-based alignment (NUC44 for nucleotides)."))
parser.add_argument(
"-sm",
"--substructure-match",
dest="substructure_match",
default=False,
action="store_true",
help=("Allow incomplete (ie partially resolved) target ligands."))
parser.add_argument(
"-cd",
"--coverage-delta",
dest="coverage_delta",
default=0.2,
type=float,
help=("Coverage delta for partial ligand assignment."))
parser.add_argument(
'-v',
'--verbosity',
dest="verbosity",
type=int,
default=2,
help="Set verbosity level. Defaults to 2 (Script).")
parser.add_argument(
"--full-results",
dest="full_results",
default=False,
action="store_true",
help=("Outputs scoring results for all model/reference ligand pairs "
"and store as key \"full_results\""))
# arguments relevant for lddt-pli
parser.add_argument(
"--lddt-pli",
dest="lddt_pli",
default=False,
action="store_true",
help=("Compute lDDT-PLI scores and store as key \"lddt_pli\"."))
parser.add_argument(
"--lddt-pli-radius",
dest="lddt_pli_radius",
default=6.0,
type=float,
help=("lDDT inclusion radius for lDDT-PLI."))
parser.add_argument(
"--lddt-pli-add-mdl-contacts",
dest="lddt_pli_add_mdl_contacts",
default=True,
action="store_true",
help=("Add model contacts when computing lDDT-PLI."))
parser.add_argument(
"--no-lddt-pli-add-mdl-contacts",
dest="lddt_pli_add_mdl_contacts",
default=True,
action="store_false",
help=("DO NOT add model contacts when computing lDDT-PLI."))
# arguments relevant for rmsd
parser.add_argument(
"--rmsd",
dest="rmsd",
default=False,
action="store_true",
help=("Compute RMSD scores and store as key \"rmsd\"."))
parser.add_argument(
"--radius",
dest="radius",
default=4.0,
type=float,
help=("Inclusion radius to extract reference binding site that is used "
"for RMSD computation. Any residue with atoms within this "
"distance of the ligand will be included in the binding site."))
parser.add_argument(
"--lddt-lp-radius",
dest="lddt_lp_radius",
default=15.0,
type=float,
help=("lDDT inclusion radius for lDDT-LP."))
parser.add_argument(
"-fbs",
"--full-bs-search",
dest="full_bs_search",
default=False,
action="store_true",
help=("Enumerate all potential binding sites in the model when "
"searching rigid superposition for RMSD computation"))
parser.add_argument(
"-ms",
"--max-symmetries",
dest="max_symmetries",
default=1e4,
type=int,
help=("If more than that many isomorphisms exist for a target-ligand "
"pair, it will be ignored and reported as unassigned."))
args = parser.parse_args()
if args.output is None:
args.output = "out.%s" % args.output_format
return args
def _CheckCompoundLib():
clib = ost.conop.GetDefaultLib()
if not clib:
ost.LogError("A compound library is required for this action. "
"Please refer to the OpenStructure website: "
"https://openstructure.org/docs/conop/compoundlib/.")
raise RuntimeError("No compound library found")
def _GetStructureFormat(structure_path, sformat=None):
"""Get the structure format and return it as "pdb" or "mmcif".
"""
if sformat is None:
# Determine file format from suffix.
ext = structure_path.split(".")
if ext[-1] == "gz":
ext = ext[:-1]
if len(ext) <= 1:
raise Exception(f"Could not determine format of file "
f"{structure_path}.")
sformat = ext[-1].lower()
if sformat in ["mmcif", "cif"]:
return "mmcif"
elif sformat == "pdb":
return sformat
else:
raise Exception(f"Unknown/unsupported file format found for "
f"file {structure_path}.")
def _LoadLigands(ligands):
"""
Load a list of ligands from file names. Return a list of entities oif the
same size.
"""
if ligands is None:
return None
else:
return [_LoadLigand(lig) for lig in ligands]
def _LoadLigand(file):
"""
Load a single ligand from file names. Return an entity.
Removes hydrogens.
"""
ent = ost.io.LoadEntity(file, format="sdf")
ent = ost.mol.CreateEntityFromView(ent.Select(
"ele != H and ele != D"), include_exlusive_atoms=False)
ed = ent.EditXCS()
ed.RenameChain(ent.chains[0], file)
ed.UpdateICS()
return ent
def _QualifiedResidueNotation(r):
"""Return a parsable string of the residue in the format:
ChainName.ResidueNumber.InsertionCode."""
resnum = r.number
return "{cname}.{rnum}.{ins_code}".format(
cname=r.chain.name,
rnum=resnum.num,
ins_code=resnum.ins_code.strip("\u0000"),
)
def _LoadStructureData(receptor_path,
ligand_path,
sformat = None,
bu_id = None,
fault_tolerant = False):
receptor = None
ligands = None
receptor_format = _GetStructureFormat(receptor_path, sformat = sformat)
if receptor_format == "pdb":
if ligand_path is None:
raise RuntimeError(f"Must provide ligand as SDF file(s) when "
f"receptor ({receptor_path}) is given in PDB "
f"format.")
if bu_id is not None:
raise RuntimeError(f"Cannot specify biounit ({bu_id}) for receptor "
f"in PDB format ({receptor_path})")
receptor = ligand_scoring_base.PDBPrep(receptor_path,
fault_tolerant=fault_tolerant)
ligands = _LoadLigands(ligand_path)
elif receptor_format == "mmcif":
if ligand_path is None:
receptor, ligands = ligand_scoring_base.MMCIFPrep(receptor_path,
biounit = bu_id,
extract_nonpoly = True,
fault_tolerant = fault_tolerant)
else:
receptor = ligand_scoring_base.MMCIFPrep(receptor_path,
biounit = bu_id,
extract_nonpoly = False,
fault_tolerant = fault_tolerant)
ligands = _LoadLigands(ligand_path)
else:
raise RuntimeError("This should never happen")
# assign filename as name to receptor
receptor.SetName(receptor_path)
return (receptor, ligands)
def _SetupLDDTPLIScorer(model, model_ligands, reference, reference_ligands, args):
return ligand_scoring_lddtpli.LDDTPLIScorer(model, reference,
model_ligands = model_ligands,
target_ligands = reference_ligands,
resnum_alignments = args.residue_number_alignment,
rename_ligand_chain = True,
substructure_match = args.substructure_match,
coverage_delta = args.coverage_delta,
lddt_pli_radius = args.lddt_pli_radius,
add_mdl_contacts = args.lddt_pli_add_mdl_contacts,
max_symmetries = args.max_symmetries)
def _SetupSCRMSDScorer(model, model_ligands, reference, reference_ligands, args):
return ligand_scoring_scrmsd.SCRMSDScorer(model, reference,
model_ligands = model_ligands,
target_ligands = reference_ligands,
resnum_alignments = args.residue_number_alignment,
rename_ligand_chain = True,
substructure_match = args.substructure_match,
coverage_delta = args.coverage_delta,
bs_radius = args.radius,
lddt_lp_radius = args.lddt_lp_radius,
full_bs_search = args.full_bs_search,
max_symmetries = args.max_symmetries)
def _Process(model, model_ligands, reference, reference_ligands, args):
out = dict()
##########################
# Setup required scorers #
##########################
lddtpli_scorer = None
scrmsd_scorer = None
if args.lddt_pli:
lddtpli_scorer = _SetupLDDTPLIScorer(model, model_ligands,
reference, reference_ligands,
args)
if args.rmsd:
scrmsd_scorer = _SetupSCRMSDScorer(model, model_ligands,
reference, reference_ligands,
args)
# basic info on ligands only requires baseclass functionality
# doesn't matter which scorer we use
scorer = None
if lddtpli_scorer is not None:
scorer = lddtpli_scorer
elif scrmsd_scorer is not None:
scorer = scrmsd_scorer
else:
ost.LogWarning("No score selected, output will be empty.")
# just create SCRMSD scorer to fill basic ligand info
scorer = _SetupSCRMSDScorer(model, model_ligands,
reference, reference_ligands,
args)
####################################
# Extract / Map ligand information #
####################################
if args.model_ligands is not None:
# Replace model ligand by path
if len(model_ligands) == len(scorer.model_ligands):
# Map ligand => path
out["model_ligands"] = args.model_ligands
elif len(model_ligands) < len(scorer.model_ligands):
# Multi-ligand SDF files were given
# Map ligand => path:idx
out["model_ligands"] = list()
for ligand, filename in zip(model_ligands, args.model_ligands):
assert isinstance(ligand, ost.mol.EntityHandle)
for i, residue in enumerate(ligand.residues):
out["model_ligands"].append(f"{filename}:{i}")
else:
# This should never happen and would be a bug
raise RuntimeError("Fewer ligands in the model scorer "
"(%d) than given (%d)" % (
len(scorer.model_ligands), len(model_ligands)))
else:
# Map ligand => qualified residue
out["model_ligands"] = [_QualifiedResidueNotation(l) for l in scorer.model_ligands]
if args.reference_ligands is not None:
# Replace reference ligand by path
if len(reference_ligands) == len(scorer.target_ligands):
# Map ligand => path
out["reference_ligands"] = args.reference_ligands
elif len(reference_ligands) < len(scorer.target_ligands):
# Multi-ligand SDF files were given
# Map ligand => path:idx
out["reference_ligands"] = list()
for ligand, filename in zip(reference_ligands, args.reference_ligands):
assert isinstance(ligand, ost.mol.EntityHandle)
for i, residue in enumerate(ligand.residues):
out["reference_ligands"].append(f"{filename}:{i}")
else:
# This should never happen and would be a bug
raise RuntimeError("Fewer ligands in the reference scorer "
"(%d) than given (%d)" % (
len(scorer.target_ligands), len(reference_ligands)))
else:
# Map ligand => qualified residue
out["reference_ligands"] = [_QualifiedResidueNotation(l) for l in scorer.target_ligands]
##################
# Compute scores #
##################
if args.lddt_pli:
LogScript("Computing lDDT-PLI scores")
out["lddt_pli"] = dict()
out["lddt_pli"]["assigned_scores"] = list()
for lig_pair in lddtpli_scorer.assignment:
score = float(lddtpli_scorer.score_matrix[lig_pair[0], lig_pair[1]])
coverage = float(lddtpli_scorer.coverage_matrix[lig_pair[0], lig_pair[1]])
aux_data = lddtpli_scorer.aux_matrix[lig_pair[0], lig_pair[1]]
target_key = out["reference_ligands"][lig_pair[0]]
model_key = out["model_ligands"][lig_pair[1]]
out["lddt_pli"]["assigned_scores"].append({"score": score,
"coverage": coverage,
"lddt_pli_n_contacts": aux_data["lddt_pli_n_contacts"],
"model_ligand": model_key,
"reference_ligand": target_key,
"bs_ref_res": [_QualifiedResidueNotation(r) for r in
aux_data["bs_ref_res"]],
"bs_mdl_res": [_QualifiedResidueNotation(r) for r in
aux_data["bs_mdl_res"]]})
out["lddt_pli"]["model_ligand_unassigned_reason"] = dict()
for i in lddtpli_scorer.unassigned_model_ligands:
key = out["model_ligands"][i]
reason = lddtpli_scorer.guess_model_ligand_unassigned_reason(i)
out["lddt_pli"]["model_ligand_unassigned_reason"][key] = reason
out["lddt_pli"]["reference_ligand_unassigned_reason"] = dict()
for i in lddtpli_scorer.unassigned_target_ligands:
key = out["reference_ligands"][i]
reason = lddtpli_scorer.guess_target_ligand_unassigned_reason(i)
out["lddt_pli"]["reference_ligand_unassigned_reason"][key] = reason
if args.full_results:
out["lddt_pli"]["full_results"] = list()
shape = lddtpli_scorer.score_matrix.shape
for ref_lig_idx in range(shape[0]):
for mdl_lig_idx in range(shape[1]):
state = int(lddtpli_scorer.state_matrix[(ref_lig_idx, mdl_lig_idx)])
target_key = out["reference_ligands"][ref_lig_idx]
model_key = out["model_ligands"][mdl_lig_idx]
if state == 0:
score = float(lddtpli_scorer.score_matrix[(ref_lig_idx, mdl_lig_idx)])
coverage = float(lddtpli_scorer.coverage_matrix[(ref_lig_idx, mdl_lig_idx)])
aux_data = lddtpli_scorer.aux_matrix[(ref_lig_idx, mdl_lig_idx)]
out["lddt_pli"]["full_results"].append({"score": score,
"coverage": coverage,
"lddt_pli_n_contacts": aux_data["lddt_pli_n_contacts"],
"model_ligand": model_key,
"reference_ligand": target_key,
"bs_ref_res": [_QualifiedResidueNotation(r) for r in
aux_data["bs_ref_res"]],
"bs_mdl_res": [_QualifiedResidueNotation(r) for r in
aux_data["bs_mdl_res"]]})
else:
reason = lddtpli_scorer.state_decoding[state]
out["lddt_pli"]["full_results"].append({"score": None,
"coverage": None,
"model_ligand": model_key,
"reference_ligand": target_key,
"reason": reason})
if args.rmsd:
LogScript("Computing BiSyRMSD scores")
out["rmsd"] = dict()
out["rmsd"]["assigned_scores"] = list()
for lig_pair in scrmsd_scorer.assignment:
score = float(scrmsd_scorer.score_matrix[lig_pair[0], lig_pair[1]])
coverage = float(scrmsd_scorer.coverage_matrix[lig_pair[0], lig_pair[1]])
aux_data = scrmsd_scorer.aux_matrix[lig_pair[0], lig_pair[1]]
target_key = out["reference_ligands"][lig_pair[0]]
model_key = out["model_ligands"][lig_pair[1]]
transform_data = aux_data["transform"].data
out["rmsd"]["assigned_scores"].append({"score": score,
"coverage": coverage,
"lddt_lp": aux_data["lddt_lp"],
"bb_rmsd": aux_data["bb_rmsd"],
"model_ligand": model_key,
"reference_ligand": target_key,
"chain_mapping": aux_data["chain_mapping"],
"bs_ref_res": [_QualifiedResidueNotation(r) for r in
aux_data["bs_ref_res"]],
"bs_ref_res_mapped": [_QualifiedResidueNotation(r) for r in
aux_data["bs_ref_res_mapped"]],
"bs_mdl_res_mapped": [_QualifiedResidueNotation(r) for r in
aux_data["bs_mdl_res_mapped"]],
"inconsistent_residues": [_QualifiedResidueNotation(r[0]) + \
"-" +_QualifiedResidueNotation(r[1]) for r in
aux_data["inconsistent_residues"]],
"transform": [transform_data[i:i + 4]
for i in range(0, len(transform_data), 4)]})
out["rmsd"]["model_ligand_unassigned_reason"] = dict()
for i in scrmsd_scorer.unassigned_model_ligands:
key = out["model_ligands"][i]
reason = scrmsd_scorer.guess_model_ligand_unassigned_reason(i)
out["rmsd"]["model_ligand_unassigned_reason"][key] = reason
out["rmsd"]["reference_ligand_unassigned_reason"] = dict()
for i in scrmsd_scorer.unassigned_target_ligands:
key = out["reference_ligands"][i]
reason = scrmsd_scorer.guess_target_ligand_unassigned_reason(i)
out["rmsd"]["reference_ligand_unassigned_reason"][key] = reason
if args.full_results:
out["rmsd"]["full_results"] = list()
shape = scrmsd_scorer.score_matrix.shape
for ref_lig_idx in range(shape[0]):
for mdl_lig_idx in range(shape[1]):
state = int(scrmsd_scorer.state_matrix[(ref_lig_idx, mdl_lig_idx)])
target_key = out["reference_ligands"][ref_lig_idx]
model_key = out["model_ligands"][mdl_lig_idx]
if state == 0:
score = float(scrmsd_scorer.score_matrix[(ref_lig_idx, mdl_lig_idx)])
coverage = float(scrmsd_scorer.coverage_matrix[(ref_lig_idx, mdl_lig_idx)])
aux_data = scrmsd_scorer.aux_matrix[(ref_lig_idx, mdl_lig_idx)]
transform_data = aux_data["transform"].data
out["rmsd"]["full_results"].append({"score": score,
"coverage": coverage,
"lddt_lp": aux_data["lddt_lp"],
"bb_rmsd": aux_data["bb_rmsd"],
"model_ligand": model_key,
"reference_ligand": target_key,
"chain_mapping": aux_data["chain_mapping"],
"bs_ref_res": [_QualifiedResidueNotation(r) for r in
aux_data["bs_ref_res"]],
"bs_ref_res_mapped": [_QualifiedResidueNotation(r) for r in
aux_data["bs_ref_res_mapped"]],
"bs_mdl_res_mapped": [_QualifiedResidueNotation(r) for r in
aux_data["bs_mdl_res_mapped"]],
"inconsistent_residues": [_QualifiedResidueNotation(r[0]) + \
"-" +_QualifiedResidueNotation(r[1]) for r in
aux_data["inconsistent_residues"]],
"transform": [transform_data[i:i + 4]
for i in range(0, len(transform_data), 4)]})
else:
reason = scrmsd_scorer.state_decoding[state]
out["rmsd"]["full_results"].append({"score": None,
"coverage": None,
"model_ligand": model_key,
"reference_ligand": target_key,
"reason": reason})
# add cleanup logs and parameters relevant for reproducibility
out["model"] = args.model
out["reference"] = args.reference
out["model_cleanup_log"] = scorer.model_cleanup_log
out["reference_cleanup_log"] = scorer.target_cleanup_log
out["resnum_alignments"] = scorer.resnum_alignments
out["substructure_match"] = scorer.substructure_match
out["coverage_delta"] = scorer.coverage_delta
out["max_symmetries"] = scorer.max_symmetries
return out
def _WriteCSV(out, args):
csv_dict = {}
if args.output_by_model_ligand:
ligand_by = "model_ligand"
ligand_other = "reference_ligand"
else:
ligand_by = "reference_ligand"
ligand_other = "model_ligand"
# Always fill-in basic reference ligand info
fieldnames = [ligand_by]
for ligand in out["%ss" % ligand_by]:
csv_dict[ligand] = {
ligand_by: ligand,
}
if args.lddt_pli:
fieldnames.extend(["lddt_pli", "lddt_pli_coverage",
"lddt_pli_%s" % ligand_other, "lddt_pli_unassigned"])
for score in out["lddt_pli"]["assigned_scores"]:
csv_dict[score[ligand_by]].update({
ligand_by: score[ligand_by],
"lddt_pli": score["score"],
"lddt_pli_coverage": score["coverage"],
"lddt_pli_%s" % ligand_other: score[ligand_other],
})
for ligand, reason in out["lddt_pli"][
"%s_unassigned_reason" % ligand_by].items():
csv_dict[ligand].update({
ligand_by: ligand,
"lddt_pli_unassigned": reason[0],
})
if args.rmsd:
fieldnames.extend(["rmsd", "lddt_lp", "bb_rmsd", "rmsd_coverage",
"rmsd_%s" % ligand_other, "rmsd_unassigned"])
for score in out["rmsd"]["assigned_scores"]:
csv_dict[score[ligand_by]].update({
ligand_by: score[ligand_by],
"rmsd": score["score"],
"lddt_lp": score["lddt_lp"],
"bb_rmsd": score["bb_rmsd"],
"rmsd_coverage": score["coverage"],
"rmsd_%s" % ligand_other: score[ligand_other],
})
for ligand, reason in out["rmsd"][
"%s_unassigned_reason" % ligand_by].items():
csv_dict[ligand].update({
ligand_by: ligand,
"rmsd_unassigned": reason[0],
})
if args.csv_extra_header or args.csv_extra_data:
extra_csv = StringIO(
args.csv_extra_header + os.linesep + args.csv_extra_data)
reader = csv.DictReader(extra_csv)
extra_data = next(iter(reader))
if None in extra_data:
raise ValueError("Not enough columns in --csv-extra-header")
fieldnames = reader.fieldnames + fieldnames
for ligand, row in csv_dict.items():
row.update(extra_data)
with open(args.output, 'w', newline='') as csvfile:
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
writer.writeheader()
for row in csv_dict.values():
writer.writerow(row)
def _Main():
args = _ParseArgs()
ost.PushVerbosityLevel(args.verbosity)
if args.verbosity < 4:
# Hide tracebacks by default
# Run script with -v 4 (Verbose) or higher to display them
sys.tracebacklimit = 0
_CheckCompoundLib()
try:
# Load structures
LogScript("Loading data")
LogInfo("Loading reference data")
reference, reference_ligands = _LoadStructureData(args.reference,
args.reference_ligands,
sformat = args.reference_format,
bu_id = args.reference_biounit,
fault_tolerant = args.fault_tolerant)
LogInfo("Loading model data")
model, model_ligands = _LoadStructureData(args.model,
args.model_ligands,
sformat = args.model_format,
bu_id = args.model_biounit,
fault_tolerant = args.fault_tolerant)
out = _Process(model, model_ligands, reference, reference_ligands, args)
out["ost_version"] = ost.__version__
out["status"] = "SUCCESS"
if args.output_format == "json":
with open(args.output, 'w') as fh:
json.dump(out, fh, indent=4, sort_keys=False)
else:
_WriteCSV(out, args)
LogScript("Saved results in %s" % args.output)
except Exception as exc:
if args.output_format == "json":
out = dict()
out["status"] = "FAILURE"
out["traceback"] = traceback.format_exc(limit=1000)
etype, evalue, tb = sys.exc_info()
out["exception"] = " ".join(traceback.format_exception_only(etype, evalue))
with open(args.output, 'w') as fh:
json.dump(out, fh, indent=4, sort_keys=False)
LogWarning("Error information saved in %s" % args.output)
else:
LogScript("Error encountered, no output saved")
raise
if __name__ == '__main__':
_Main()
|