1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
|
"""
Evaluate model against reference
Example: ost compare-structures -m model.pdb -r reference.cif
Loads the structures and performs basic cleanup:
* Assign elements according to the PDB Chemical Component Dictionary
* Map nonstandard residues to their parent residues as defined by the PDB
Chemical Component Dictionary, e.g. phospho-serine => serine
* Remove hydrogens
* Remove OXT atoms
* Remove unknown atoms, i.e. atoms that are not expected according to the PDB
Chemical Component Dictionary
* Select for peptide/nucleotide residues
The cleaned structures are optionally dumped using -d/--dump-structures
Output is written in JSON format (default: out.json). In case of no additional
options, this is a dictionary with 8 keys describing model/reference comparison:
* "reference_chains": Chain names of reference
* "model_chains": Chain names of model
* "chem_groups": Groups of polypeptides/polynucleotides from reference that
are considered chemically equivalent. You can derive stoichiometry from this.
Contains only chains that are considered in chain mapping, i.e. pass a
size threshold (defaults: 6 for peptides, 4 for nucleotides).
* "chem_mapping": List of same length as "chem_groups". Assigns model chains to
the respective chem group. Again, only contains chains that are considered
in chain mapping.
* "chain_mapping": A dictionary with reference chain names as keys and the
mapped model chain names as values. Missing chains are either not mapped
(but present in "chem_groups", "chem_mapping") or were not considered in
chain mapping (short peptides etc.)
* "aln": Pairwise sequence alignment for each pair of mapped chains in fasta
format.
* "inconsistent_residues": List of strings that represent name mismatches of
aligned residues in form
<trg_cname>.<trg_rnum>.<trg_ins_code>-<mdl_cname>.<mdl_rnum>.<mdl_ins_code>.
Inconsistencies may lead to corrupt results but do not abort the program.
Program abortion in these cases can be enforced with
-ec/--enforce-consistency.
* "status": SUCCESS if everything ran through. In case of failure, the only
content of the JSON output will be \"status\" set to FAILURE and an
additional key: "traceback".
The following additional keys store relevant input parameters to reproduce
results:
* "model"
* "reference"
* "fault_tolerant"
* "model_biounit"
* "reference_biounit"
* "residue_number_alignment"
* "enforce_consistency"
* "cad_exec"
* "usalign_exec"
* "lddt_no_stereochecks"
* "min_pep_length"
* "min_nuc_length"
* "lddt_add_mdl_contacts"
* "lddt_inclusion_radius"
* "dockq_capri_peptide"
* "ost_version"
The pairwise sequence alignments are computed with Needleman-Wunsch using
BLOSUM62 (NUC44 for nucleotides). Many benchmarking scenarios preprocess the
structures to ensure matching residue numbers (CASP/CAMEO). In these cases,
enabling -rna/--residue-number-alignment is recommended.
Each score is opt-in and can be enabled with optional arguments.
Example to compute global and per-residue lDDT values as well as QS-score:
ost compare-structures -m model.pdb -r reference.cif --lddt --local-lddt \
--qs-score
Example to inject custom chain mapping
ost compare-structures -m model.pdb -r reference.cif -c A:B B:A
"""
import argparse
import os
import json
import sys
import traceback
import math
import ost
from ost import io
from ost.mol.alg import scoring
def _ParseArgs():
parser = argparse.ArgumentParser(description = __doc__,
formatter_class=argparse.RawDescriptionHelpFormatter,
prog = "ost compare-structures")
parser.add_argument(
"-m",
"--model",
dest="model",
required=True,
help=("Path to model file."))
parser.add_argument(
"-r",
"--reference",
dest="reference",
required=True,
help=("Path to reference file."))
parser.add_argument(
"-o",
"--output",
dest="output",
required=False,
default="out.json",
help=("Output file name. The output will be saved as a JSON file. "
"default: out.json"))
parser.add_argument(
"-mf",
"--model-format",
dest="model_format",
required=False,
default=None,
choices=["pdb", "cif", "mmcif"],
help=("Format of model file. pdb reads pdb but also pdb.gz, same "
"applies to cif/mmcif. Inferred from filepath if not given."))
parser.add_argument(
"-rf",
"--reference-format",
dest="reference_format",
required=False,
default=None,
choices=["pdb", "cif", "mmcif"],
help=("Format of reference file. pdb reads pdb but also pdb.gz, same "
"applies to cif/mmcif. Inferred from filepath if not given."))
parser.add_argument(
"-mb",
"--model-biounit",
dest="model_biounit",
required=False,
default=None,
type=str,
help=("Only has an effect if model is in mmcif format. By default, "
"the asymmetric unit (AU) is used for scoring. If there are "
"biounits defined in the mmcif file, you can specify the "
"ID (as a string) of the one which should be used."))
parser.add_argument(
"-rb",
"--reference-biounit",
dest="reference_biounit",
required=False,
default=None,
type=str,
help=("Only has an effect if reference is in mmcif format. By default, "
"the asymmetric unit (AU) is used for scoring. If there are "
"biounits defined in the mmcif file, you can specify the "
"ID (as a string) of the one which should be used."))
parser.add_argument(
"-rna",
"--residue-number-alignment",
dest="residue_number_alignment",
default=False,
action="store_true",
help=("Make alignment based on residue number instead of using "
"a global BLOSUM62-based alignment (NUC44 for nucleotides)."))
parser.add_argument(
"-ec",
"--enforce-consistency",
dest="enforce_consistency",
default=False,
action="store_true",
help=("Enforce consistency. By default residue name discrepancies "
"between a model and reference are reported but the program "
"proceeds. If this flag is ON, the program fails for these "
"cases."))
parser.add_argument(
"-d",
"--dump-structures",
dest="dump_structures",
default=False,
action="store_true",
help=("Dump cleaned structures used to calculate all the scores as PDB"
" or mmCIF files using specified suffix. Files will be dumped to"
" the same location and in the same format as original files."))
parser.add_argument(
"-ds",
"--dump-suffix",
dest="dump_suffix",
default="_compare_structures",
help=("Use this suffix to dump structures.\n"
"Defaults to _compare_structures"))
parser.add_argument(
"-ft",
"--fault-tolerant",
dest="fault_tolerant",
default=False,
action="store_true",
help=("Fault tolerant parsing."))
parser.add_argument(
"-c",
"--chain-mapping",
nargs="+",
dest="chain_mapping",
help=("Custom mapping of chains between the reference and the model. "
"Each separate mapping consist of key:value pairs where key "
"is the chain name in reference and value is the chain name in "
"model."))
parser.add_argument(
"--lddt",
dest="lddt",
default=False,
action="store_true",
help=("Compute global lDDT score with default parameterization and "
"store as key \"lddt\". Stereochemical irregularities affecting "
"lDDT are reported as keys \"model_clashes\", "
"\"model_bad_bonds\", \"model_bad_angles\" and the respective "
"reference counterparts."))
parser.add_argument(
"--local-lddt",
dest="local_lddt",
default=False,
action="store_true",
help=("Compute per-residue lDDT scores with default parameterization "
"and store as key \"local_lddt\". Score for each residue is "
"accessible by key <chain_name>.<resnum>.<resnum_inscode>. "
"Residue with number 42 in chain X can be extracted with: "
"data[\"local_lddt\"][\"X.42.\"]. If there is an insertion "
"code, lets say A, the residue key becomes \"X.42.A\". "
"Stereochemical irregularities affecting lDDT are reported as "
"keys \"model_clashes\", \"model_bad_bonds\", "
"\"model_bad_angles\" and the respective reference "
"counterparts. Atoms specified in there follow the following "
"format: <chain_name>.<resnum>.<resnum_inscode>.<atom_name>"))
parser.add_argument(
"--aa-local-lddt",
dest="aa_local_lddt",
default=False,
action="store_true",
help=("Compute per-atom lDDT scores with default parameterization "
"and store as key \"aa_local_lddt\". Score for each atom is "
"accessible by key "
"<chain_name>.<resnum>.<resnum_inscode>.<aname>. "
"Alpha carbon from residue with number 42 in chain X can be "
"extracted with: data[\"aa_local_lddt\"][\"X.42..CA\"]. "
"If there is a residue insertion code, lets say A, the atom key "
"becomes \"X.42.A.CA\". "
"Stereochemical irregularities affecting lDDT are reported as "
"keys \"model_clashes\", \"model_bad_bonds\", "
"\"model_bad_angles\" and the respective reference "
"counterparts. Atoms specified in there follow the following "
"format: <chain_name>.<resnum>.<resnum_inscode>.<atom_name>"))
parser.add_argument(
"--bb-lddt",
dest="bb_lddt",
default=False,
action="store_true",
help=("Compute global lDDT score with default parameterization and "
"store as key \"bb_lddt\". lDDT in this case is only computed on "
"backbone atoms: CA for peptides and C3' for nucleotides"))
parser.add_argument(
"--bb-local-lddt",
dest="bb_local_lddt",
default=False,
action="store_true",
help=("Compute per-residue lDDT scores with default parameterization "
"and store as key \"bb_local_lddt\". lDDT in this case is only "
"computed on backbone atoms: CA for peptides and C3' for "
"nucleotides. Per-residue scores are accessible as described for "
"local_lddt."))
parser.add_argument(
"--ilddt",
dest="ilddt",
default=False,
action="store_true",
help=("Compute global lDDT score which is solely based on inter-chain "
"contacts and store as key \"ilddt\". Same stereochemical "
"irregularities as for lddt apply."))
parser.add_argument(
"--cad-score",
dest="cad_score",
default=False,
action="store_true",
help=("Compute global CAD's atom-atom (AA) score and store as key "
"\"cad_score\". --residue-number-alignment must be enabled "
"to compute this score. Requires voronota_cadscore executable "
"in PATH. Alternatively you can set cad-exec."))
parser.add_argument(
"--local-cad-score",
dest="local_cad_score",
default=False,
action="store_true",
help=("Compute local CAD's atom-atom (AA) scores and store as key "
"\"local_cad_score\". Per-residue scores are accessible as "
"described for local_lddt. --residue-number-alignments must be "
"enabled to compute this score. Requires voronota_cadscore "
"executable in PATH. Alternatively you can set cad-exec."))
parser.add_argument(
"--cad-exec",
dest="cad_exec",
default=None,
help=("Path to voronota-cadscore executable (installed from "
"https://github.com/kliment-olechnovic/voronota). Searches PATH "
"if not set."))
parser.add_argument(
"--usalign-exec",
dest="usalign_exec",
default=None,
help=("Path to USalign executable to compute TM-score. If not given, "
"an OpenStructure internal copy of USalign code is used."))
parser.add_argument(
"--override-usalign-mapping",
dest="oum",
default=False,
action="store_true",
help=("Override USalign mapping and inject our own rigid mapping. Only "
"works if external usalign executable is provided that is "
"reasonably new and contains that feature."))
parser.add_argument(
"--qs-score",
dest="qs_score",
default=False,
action="store_true",
help=("Compute QS-score, stored as key \"qs_global\", and the QS-best "
"variant, stored as key \"qs_best\". Interfaces in the reference "
"with non-zero contribution to QS-score are available as key "
"\"qs_reference_interfaces\", the ones from the model as key "
"\"qs_model_interfaces\". \"qs_interfaces\" is a subset of "
"\"qs_reference_interfaces\" that contains interfaces that "
"can be mapped to the model. They are stored as lists in format "
"[ref_ch1, ref_ch2, mdl_ch1, mdl_ch2]. The respective "
"per-interface scores for \"qs_interfaces\" are available as "
"keys \"per_interface_qs_global\" and \"per_interface_qs_best\""))
parser.add_argument(
"--dockq",
dest="dockq",
default=False,
action="store_true",
help=("Compute DockQ scores and its components. Relevant interfaces "
"with at least one contact (any atom within 5A) of the reference "
"structure are available as key \"dockq_reference_interfaces\". "
"Protein-protein, protein-nucleotide and nucleotide-nucleotide "
"interfaces are considered. "
"Key \"dockq_interfaces\" is a subset of "
"\"dockq_reference_interfaces\" that contains interfaces that "
"can be mapped to the model. They are stored as lists in format "
"[ref_ch1, ref_ch2, mdl_ch1, mdl_ch2]. The respective "
"DockQ scores for \"dockq_interfaces\" are available as key "
"\"dockq\". It's components are available as keys: "
"\"fnat\" (fraction of reference contacts which are also there "
"in model) \"irmsd\" (interface RMSD), \"lrmsd\" (ligand RMSD). "
"The DockQ score is strictly designed to score each interface "
"individually. We also provide two averaged versions to get one "
"full model score: \"dockq_ave\", \"dockq_wave\". The first is "
"simply the average of \"dockq_scores\", the latter is a "
"weighted average with weights derived from number of contacts "
"in the reference interfaces. These two scores only consider "
"interfaces that are present in both, the model and the "
"reference. \"dockq_ave_full\" and \"dockq_wave_full\" add zeros "
"in the average computation for each interface that is only "
"present in the reference but not in the model."))
parser.add_argument(
"--dockq-capri-peptide",
dest="dockq_capri_peptide",
default=False,
action="store_true",
help=("Flag that changes two things in the way DockQ and its "
"underlying scores are computed which is proposed by the CAPRI "
"community when scoring peptides (PMID: 31886916). "
"ONE: Two residues are considered in contact if any of their "
"atoms is within 5A. This is relevant for fnat and fnonat "
"scores. CAPRI suggests to lower this threshold to 4A for "
"protein-peptide interactions. "
"TWO: irmsd is computed on interface residues. A residue is "
"defined as interface residue if any of its atoms is within 10A "
"of another chain. CAPRI suggests to lower the default of 10A to "
"8A in combination with only considering CB atoms for "
"protein-peptide interactions. "
"Note that the resulting DockQ is not evaluated for these "
"slightly updated fnat and irmsd (lrmsd stays the same). "
"Raises an error if reference contains nucleotide chains. "
"This flag has no influence on patch_dockq scores."))
parser.add_argument(
"--ics",
dest="ics",
default=False,
action="store_true",
help=("Computes interface contact similarity (ICS) related scores. "
"A contact between two residues of different chains is defined "
"as having at least one heavy atom within 5A. Contacts in "
"reference structure are available as key "
"\"reference_contacts\". Each contact specifies the interacting "
"residues in format \"<cname>.<rnum>.<ins_code>\". Model "
"contacts are available as key \"model_contacts\". The precision "
"which is available as key \"ics_precision\" reports the "
"fraction of model contacts that are also present in the "
"reference. The recall which is available as key \"ics_recall\" "
"reports the fraction of reference contacts that are correctly "
"reproduced in the model. "
"The ICS score (Interface Contact Similarity) available as key "
"\"ics\" combines precision and recall using the F1-measure. "
"All these measures are also available on a per-interface basis "
"for each interface in the reference structure that are defined "
"as chain pairs with at least one contact (available as key "
" \"contact_reference_interfaces\"). The respective metrics are "
"available as keys \"per_interface_ics_precision\", "
"\"per_interface_ics_recall\" and \"per_interface_ics\"."))
parser.add_argument(
"--ics-trimmed",
dest="ics_trimmed",
default=False,
action="store_true",
help=("Computes interface contact similarity (ICS) related scores but "
"on a trimmed model. That means that a mapping between model and "
"reference is performed and all model residues without reference "
"counterpart are removed. As a consequence, model contacts for "
"which we have no experimental evidence do not affect the score. "
"The effect of these added model contacts without mapping to "
"target would be decreased precision and thus lower ics. Recall is "
"not affected. Enabling this flag adds the following keys: "
"\"ics_trimmed\", \"ics_precision_trimmed\", "
"\"ics_recall_trimmed\", \"model_contacts_trimmed\". "
"The reference contacts and reference interfaces are the same "
"as for ics and available as keys: \"reference_contacts\", "
"\"contact_reference_interfaces\". "
"All these measures are also available on a per-interface basis "
"for each interface in the reference structure that are defined "
"as chain pairs with at least one contact (available as key "
" \"contact_reference_interfaces\"). The respective metrics are "
"available as keys \"per_interface_ics_precision_trimmed\", "
"\"per_interface_ics_recall_trimmed\" and "
"\"per_interface_ics_trimmed\"."))
parser.add_argument(
"--ips",
dest="ips",
default=False,
action="store_true",
help=("Computes interface patch similarity (IPS) related scores. "
"They focus on interface residues. They are defined as having "
"at least one contact to a residue from any other chain. "
"In short: if they show up in the contact lists used to compute "
"ICS. If ips is enabled, these contacts get reported too and are "
"available as keys \"reference_contacts\" and \"model_contacts\"."
"The precision which is available as key \"ips_precision\" "
"reports the fraction of model interface residues, that are also "
"interface residues in the reference. "
"The recall which is available as key \"ips_recall\" "
"reports the fraction of reference interface residues that are "
"also interface residues in the model. "
"The IPS score (Interface Patch Similarity) available as key "
"\"ips\" is the Jaccard coefficient between interface residues "
"in reference and model. "
"All these measures are also available on a per-interface basis "
"for each interface in the reference structure that are defined "
"as chain pairs with at least one contact (available as key "
" \"contact_reference_interfaces\"). The respective metrics are "
"available as keys \"per_interface_ips_precision\", "
"\"per_interface_ips_recall\" and \"per_interface_ips\"."))
parser.add_argument(
"--ips-trimmed",
dest="ips_trimmed",
default=False,
action="store_true",
help=("The IPS equivalent of ICS on trimmed models."))
parser.add_argument(
"--rigid-scores",
dest="rigid_scores",
default=False,
action="store_true",
help=("Computes rigid superposition based scores. They're based on a "
"Kabsch superposition of all mapped CA positions (C3' for "
"nucleotides). Makes the following keys available: "
"\"oligo_gdtts\": GDT with distance thresholds [1.0, 2.0, 4.0, "
"8.0] given these positions and transformation, \"oligo_gdtha\": "
"same with thresholds [0.5, 1.0, 2.0, 4.0], \"rmsd\": RMSD given "
"these positions and transformation, \"transform\": the used 4x4 "
"transformation matrix that superposes model onto reference, "
"\"rigid_chain_mapping\": equivalent of \"chain_mapping\" which "
"is used for rigid scores (optimized for RMSD instead of "
"QS-score/lDDT)."))
parser.add_argument(
"--patch-scores",
dest="patch_scores",
default=False,
action="store_true",
help=("Local interface quality score used in CASP15. Scores each "
"model residue that is considered in the interface (CB pos "
"within 8A of any CB pos from another chain (CA for GLY)). The "
"local neighborhood gets represented by \"interface patches\" "
"which are scored with QS-score and DockQ. Scores where not "
"the full patches are represented by the reference are set to "
"None. Model interface residues are available as key "
"\"model_interface_residues\", reference interface residues as "
"key \"reference_interface_residues\". Residues are represented "
"as string in form <chain_name>.<resnum>.<resnum_inscode>. "
"The respective scores are available as keys \"patch_qs\" and "
"\"patch_dockq\""))
parser.add_argument(
"--tm-score",
dest="tm_score",
default=False,
action="store_true",
help=("Computes TM-score with the USalign tool. Also computes a "
"chain mapping in case of complexes that is stored in the "
"same format as the default mapping. TM-score and the mapping "
"are available as keys \"tm_score\" and \"usalign_mapping\""))
parser.add_argument(
"--lddt-no-stereochecks",
dest="lddt_no_stereochecks",
default=False,
action="store_true",
help=("Disable stereochecks for lDDT computation"))
parser.add_argument(
"--n-max-naive",
dest="n_max_naive",
required=False,
default=40320,
type=int,
help=("Parameter for chain mapping. If the number of possible "
"mappings is <= *n_max_naive*, the full "
"mapping solution space is enumerated to find the "
"the mapping with optimal QS-score. A heuristic is used "
"otherwise. The default of 40320 corresponds to an octamer "
"(8! = 40320). A structure with stoichiometry A6B2 would be "
"6!*2! = 1440 etc."))
parser.add_argument(
"--dump-aligned-residues",
dest="dump_aligned_residues",
default=False,
action="store_true",
help=("Dump additional info on aligned model and reference residues."))
parser.add_argument(
"--dump-pepnuc-alns",
dest="dump_pepnuc_alns",
default=False,
action="store_true",
help=("Dump alignments of mapped chains but with sequences that did "
"not undergo Molck preprocessing in the scorer. Sequences are "
"extracted from model/target after undergoing selection for "
"peptide and nucleotide residues."))
parser.add_argument(
"--dump-pepnuc-aligned-residues",
dest="dump_pepnuc_aligned_residues",
default=False,
action="store_true",
help=("Dump additional info on model and reference residues that occur "
"in pepnuc alignments."))
parser.add_argument(
"--min-pep-length",
dest="min_pep_length",
default = 6,
type=int,
help=("Default: 6 - "
"Relevant parameter if short peptides are involved in scoring. "
"Minimum peptide length for a chain in the target structure to "
"be considered in chain mapping. The chain mapping algorithm "
"first performs an all vs. all pairwise sequence alignment to "
"identify \"equal\" chains within the target structure. We go "
"for simple sequence identity there. Short sequences can be "
"problematic as they may produce high sequence identity "
"alignments by pure chance.")
)
parser.add_argument(
"--min-nuc-length",
dest="min_nuc_length",
default = 4,
type=int,
help=("Default: 4 - "
"Relevant parameter if short nucleotides are involved in scoring."
"Minimum nucleotide length for a chain in the target structure to "
"be considered in chain mapping. The chain mapping algorithm "
"first performs an all vs. all pairwise sequence alignment to "
"identify \"equal\" chains within the target structure. We go "
"for simple sequence identity there. Short sequences can be "
"problematic as they may produce high sequence identity "
"alignments by pure chance.")
)
parser.add_argument(
'-v',
'--verbosity',
dest="verbosity",
type=int,
default=2,
help="Set verbosity level. Defaults to 2 (Script).")
parser.add_argument(
"--lddt-add-mdl-contacts",
dest="lddt_add_mdl_contacts",
default=False,
action="store_true",
help=("Only using contacts in lDDT that "
"are within a certain distance threshold in the "
"reference does not penalize for added model "
"contacts. If set to True, this flag will also "
"consider reference contacts that are within the "
"specified distance threshold in the model but "
"not necessarily in the reference. No contact will "
"be added if the respective atom pair is not "
"resolved in the reference."))
parser.add_argument(
"--lddt-inclusion-radius",
dest="lddt_inclusion_radius",
type = float,
default=15.0,
help=("Passed to lDDT scorer. Affects all lDDT scores but not "
"chain mapping."))
return parser.parse_args()
def _CheckCompoundLib():
clib = ost.conop.GetDefaultLib()
if not clib:
ost.LogError("A compound library is required for this action. "
"Please refer to the OpenStructure website: "
"https://openstructure.org/docs/conop/compoundlib/.")
sys.tracebacklimit = 0
raise RuntimeError("No compound library found")
def _RoundOrNone(num, decimals = 3):
""" Helper to create valid JSON output
"""
if num is None or math.isnan(num) or math.isinf(num):
return None
return round(num, decimals)
def _AddSuffix(filename, dump_suffix):
"""Add dump_suffix to the file name.
"""
root, ext = os.path.splitext(filename)
if ext == ".gz":
root, ext2 = os.path.splitext(root)
ext = ext2 + ext
return root + dump_suffix + ext
def _GetStructureFormat(structure_path, sformat=None):
"""Get the structure format and return it as "pdb" or "mmcif".
"""
if sformat is None:
# Determine file format from suffix.
ext = structure_path.split(".")
if ext[-1] == "gz":
ext = ext[:-1]
if len(ext) <= 1:
raise Exception(f"Could not determine format of file "
f"{structure_path}.")
sformat = ext[-1].lower()
if sformat in ["mmcif", "cif"]:
return "mmcif"
elif sformat == "pdb":
return sformat
else:
raise Exception(f"Unknown/unsupported file format found for "
f"file {structure_path}.")
def _LoadStructure(structure_path, sformat, fault_tolerant, bu_id):
"""Read OST entity either from mmCIF or PDB.
The returned structure has structure_path attached as structure name
"""
# increase loglevel, as we would pollute the info log with weird stuff
ost.PushVerbosityLevel(ost.LogLevel.Error)
# Load the structure
if sformat == "mmcif":
if bu_id is not None:
cif_entity, cif_seqres, cif_info = \
io.LoadMMCIF(structure_path, info=True, seqres=True,
fault_tolerant=fault_tolerant)
for biounit in cif_info.biounits:
if biounit.id == bu_id:
entity = ost.mol.alg.CreateBU(cif_entity, biounit)
break
else:
raise RuntimeError(f"No biounit found with ID '{bu_id}'.")
else:
entity = io.LoadMMCIF(structure_path,
fault_tolerant = fault_tolerant)
if len(entity.residues) == 0:
raise Exception(f"No residues found in file: {structure_path}")
else:
entity = io.LoadPDB(structure_path, fault_tolerant = fault_tolerant)
if len(entity.residues) == 0:
raise Exception(f"No residues found in file: {structure_path}")
# restore old loglevel and return
ost.PopVerbosityLevel()
entity.SetName(structure_path)
return entity
def _DumpStructure(entity, structure_path, sformat):
if sformat == "mmcif":
io.SaveMMCIF(entity, structure_path)
else:
io.SavePDB(entity, structure_path)
def _AlnToFastaStr(aln):
""" Returns alignment as fasta formatted string
"""
s1 = aln.GetSequence(0)
s2 = aln.GetSequence(1)
return f">reference:{s1.name}\n{str(s1)}\n>model:{s2.name}\n{str(s2)}"
def _GetInconsistentResidues(alns):
lst = list()
for aln in alns:
for col in aln:
r1 = col.GetResidue(0)
r2 = col.GetResidue(1)
if r1.IsValid() and r2.IsValid() and r1.GetName() != r2.GetName():
ch_1 = r1.GetChain().name
num_1 = r1.number.num
ins_code_1 = r1.number.ins_code.strip("\u0000")
id_1 = f"{ch_1}.{num_1}.{ins_code_1}"
ch_2 = r2.GetChain().name
num_2 = r2.number.num
ins_code_2 = r2.number.ins_code.strip("\u0000")
id_2 = f"{ch_2}.{num_2}.{ins_code_2}"
lst.append(f"{id_1}-{id_2}")
return lst
def _LocalScoresToJSONDict(score_dict):
""" Convert ResNums to str for JSON serialization
"""
json_dict = dict()
for ch, ch_scores in score_dict.items():
for num, s in ch_scores.items():
ins_code = num.ins_code.strip("\u0000")
json_dict[f"{ch}.{num.num}.{ins_code}"] = _RoundOrNone(s)
return json_dict
def _LocalAAScoresToJSONDict(score_dict):
""" Convert ResNums and atom names to str for JSON serialization
"""
json_dict = dict()
for ch, ch_scores in score_dict.items():
for num, res_scores in ch_scores.items():
ins_code = num.ins_code.strip("\u0000")
for a, s in res_scores.items():
json_dict[f"{ch}.{num.num}.{ins_code}.{a}"] = _RoundOrNone(s)
return json_dict
def _InterfaceResiduesToJSONList(interface_dict):
""" Convert ResNums to str for JSON serialization.
Changes in this function will affect _PatchScoresToJSONList
"""
json_list = list()
for ch, ch_nums in interface_dict.items():
for num in ch_nums:
ins_code = num.ins_code.strip("\u0000")
json_list.append(f"{ch}.{num.num}.{ins_code}")
return json_list
def _PatchScoresToJSONList(interface_dict, score_dict):
""" Creates List of patch scores that are consistent with interface residue
lists
"""
json_list = list()
for ch, ch_nums in interface_dict.items():
for item in score_dict[ch]:
json_list.append(_RoundOrNone(item))
return json_list
def _GetAlignedResidues(aln):
aligned_residues = list()
for a in aln:
mdl_lst = list()
ref_lst = list()
for c in a:
mdl_r = c.GetResidue(1)
ref_r = c.GetResidue(0)
if mdl_r.IsValid():
olc = mdl_r.one_letter_code
num = mdl_r.GetNumber().num
ins_code = mdl_r.GetNumber().ins_code.strip("\u0000")
mdl_lst.append({"olc": olc,
"num": f"{num}.{ins_code}"})
else:
mdl_lst.append(None)
if ref_r.IsValid():
olc = ref_r.one_letter_code
num = ref_r.GetNumber().num
ins_code = ref_r.GetNumber().ins_code.strip("\u0000")
ref_lst.append({"olc": olc,
"num": f"{num}.{ins_code}"})
else:
ref_lst.append(None)
mdl_dct = {"chain": a.GetSequence(1).GetName(),
"residues": mdl_lst}
ref_dct = {"chain": a.GetSequence(0).GetName(),
"residues": ref_lst}
aligned_residues.append({"model": mdl_dct,
"reference": ref_dct})
return aligned_residues
def _Process(model, reference, args, model_format, reference_format):
mapping = None
if args.chain_mapping is not None:
mapping = {x.split(':')[0]: x.split(':')[1] for x in args.chain_mapping}
scorer = scoring.Scorer(model, reference,
resnum_alignments = args.residue_number_alignment,
cad_score_exec = args.cad_exec,
custom_mapping = mapping,
usalign_exec = args.usalign_exec,
lddt_no_stereochecks = args.lddt_no_stereochecks,
n_max_naive = args.n_max_naive,
oum = args.oum,
min_pep_length = args.min_pep_length,
min_nuc_length = args.min_nuc_length,
lddt_add_mdl_contacts = args.lddt_add_mdl_contacts,
dockq_capri_peptide = args.dockq_capri_peptide,
lddt_inclusion_radius = args.lddt_inclusion_radius)
ir = _GetInconsistentResidues(scorer.aln)
if len(ir) > 0 and args.enforce_consistency:
raise RuntimeError(f"Inconsistent residues observed: {' '.join(ir)}")
out = dict()
out["reference_chains"] = [ch.GetName() for ch in scorer.target.chains]
out["model_chains"] = [ch.GetName() for ch in scorer.model.chains]
out["chem_groups"] = scorer.chain_mapper.chem_groups
out["chem_mapping"] = scorer.mapping.chem_mapping
out["chain_mapping"] = scorer.mapping.GetFlatMapping()
out["aln"] = [_AlnToFastaStr(aln) for aln in scorer.aln]
out["inconsistent_residues"] = ir
if args.dump_aligned_residues:
out["aligned_residues"] = _GetAlignedResidues(scorer.aln)
if args.dump_pepnuc_alns:
out["pepnuc_aln"] = [_AlnToFastaStr(aln) for aln in scorer.pepnuc_aln]
if args.dump_pepnuc_aligned_residues:
out["pepnuc_aligned_residues"] = _GetAlignedResidues(scorer.pepnuc_aln)
if args.lddt:
out["lddt"] = _RoundOrNone(scorer.lddt)
if args.local_lddt:
out["local_lddt"] = _LocalScoresToJSONDict(scorer.local_lddt)
if args.aa_local_lddt:
out["aa_local_lddt"] = _LocalAAScoresToJSONDict(scorer.aa_local_lddt)
if args.lddt or args.local_lddt or args.aa_local_lddt:
out["model_clashes"] = [x.ToJSON() for x in scorer.model_clashes]
out["model_bad_bonds"] = [x.ToJSON() for x in scorer.model_bad_bonds]
out["model_bad_angles"] = [x.ToJSON() for x in scorer.model_bad_angles]
out["reference_clashes"] = [x.ToJSON() for x in scorer.target_clashes]
out["reference_bad_bonds"] = [x.ToJSON() for x in scorer.target_bad_bonds]
out["reference_bad_angles"] = [x.ToJSON() for x in scorer.target_bad_angles]
if args.bb_lddt:
out["bb_lddt"] = _RoundOrNone(scorer.bb_lddt)
if args.bb_local_lddt:
out["bb_local_lddt"] = _LocalScoresToJSONDict(scorer.bb_local_lddt)
if args.ilddt:
out["ilddt"] = _RoundOrNone(scorer.ilddt)
if args.cad_score:
out["cad_score"] = scorer.cad_score
if args.local_cad_score:
out["local_cad_score"] = _LocalScoresToJSONDict(scorer.local_cad_score)
if args.qs_score:
out["qs_global"] = _RoundOrNone(scorer.qs_global)
out["qs_best"] = _RoundOrNone(scorer.qs_best)
out["qs_reference_interfaces"] = scorer.qs_target_interfaces
out["qs_model_interfaces"] = scorer.qs_model_interfaces
out["qs_interfaces"] = scorer.qs_interfaces
out["per_interface_qs_global"] = \
[_RoundOrNone(x) for x in scorer.per_interface_qs_global]
out["per_interface_qs_best"] = \
[_RoundOrNone(x) for x in scorer.per_interface_qs_best]
if args.ics or args.ips:
out["model_contacts"] = scorer.model_contacts
if args.ics_trimmed or args.ips_trimmed:
out["model_contacts_trimmed"] = scorer.trimmed_model_contacts
if args.ics or args.ips or args.ics_trimmed or args.ips_trimmed:
out["reference_contacts"] = scorer.native_contacts
out["contact_reference_interfaces"] = scorer.contact_target_interfaces
if args.ics:
out["ics_precision"] = _RoundOrNone(scorer.ics_precision)
out["ics_recall"] = _RoundOrNone(scorer.ics_recall)
out["ics"] = _RoundOrNone(scorer.ics)
out["per_interface_ics_precision"] = \
[_RoundOrNone(x) for x in scorer.per_interface_ics_precision]
out["per_interface_ics_recall"] = \
[_RoundOrNone(x) for x in scorer.per_interface_ics_recall]
out["per_interface_ics"] = \
[_RoundOrNone(x) for x in scorer.per_interface_ics]
if args.ips:
out["ips_precision"] = _RoundOrNone(scorer.ips_precision)
out["ips_recall"] = _RoundOrNone(scorer.ips_recall)
out["ips"] = _RoundOrNone(scorer.ips)
out["per_interface_ips_precision"] = \
[_RoundOrNone(x) for x in scorer.per_interface_ips_precision]
out["per_interface_ips_recall"] = \
[_RoundOrNone(x) for x in scorer.per_interface_ips_recall]
out["per_interface_ips"] = \
[_RoundOrNone(x) for x in scorer.per_interface_ips]
if args.ics_trimmed:
out["ics_trimmed"] = _RoundOrNone(scorer.ics_trimmed)
out["ics_precision_trimmed"] = _RoundOrNone(scorer.ics_precision_trimmed)
out["ics_recall_trimmed"] = _RoundOrNone(scorer.ics_recall_trimmed)
out["per_interface_ics_precision_trimmed"] = \
[_RoundOrNone(x) for x in scorer.per_interface_ics_precision_trimmed]
out["per_interface_ics_recall_trimmed"] = \
[_RoundOrNone(x) for x in scorer.per_interface_ics_recall_trimmed]
out["per_interface_ics_trimmed"] = \
[_RoundOrNone(x) for x in scorer.per_interface_ics_trimmed]
if args.ips_trimmed:
out["ips_trimmed"] = _RoundOrNone(scorer.ips_trimmed)
out["ips_precision_trimmed"] = _RoundOrNone(scorer.ips_precision_trimmed)
out["ips_recall_trimmed"] = _RoundOrNone(scorer.ips_recall_trimmed)
out["per_interface_ips_precision_trimmed"] = \
[_RoundOrNone(x) for x in scorer.per_interface_ips_precision_trimmed]
out["per_interface_ips_recall_trimmed"] = \
[_RoundOrNone(x) for x in scorer.per_interface_ips_recall_trimmed]
out["per_interface_ips_trimmed"] = \
[_RoundOrNone(x) for x in scorer.per_interface_ips_trimmed]
if args.dockq:
out["dockq_reference_interfaces"] = scorer.dockq_target_interfaces
out["dockq_interfaces"] = scorer.dockq_interfaces
out["dockq"] = [_RoundOrNone(x) for x in scorer.dockq_scores]
out["fnat"] = [_RoundOrNone(x) for x in scorer.fnat]
out["fnonnat"] = [_RoundOrNone(x) for x in scorer.fnonnat]
out["irmsd"] = [_RoundOrNone(x) for x in scorer.irmsd]
out["lrmsd"] = [_RoundOrNone(x) for x in scorer.lrmsd]
out["nnat"] = scorer.nnat
out["nmdl"] = scorer.nmdl
out["dockq_ave"] = _RoundOrNone(scorer.dockq_ave)
out["dockq_wave"] = _RoundOrNone(scorer.dockq_wave)
out["dockq_ave_full"] = _RoundOrNone(scorer.dockq_ave_full)
out["dockq_wave_full"] = _RoundOrNone(scorer.dockq_wave_full)
if args.rigid_scores:
out["oligo_gdtts"] = _RoundOrNone(scorer.gdtts)
out["oligo_gdtha"] = _RoundOrNone(scorer.gdtha)
out["rmsd"] = _RoundOrNone(scorer.rmsd)
data = scorer.rigid_transform.data
out["transform"] = [data[i:i + 4] for i in range(0, len(data), 4)]
out["rigid_chain_mapping"] = scorer.rigid_mapping.GetFlatMapping()
if args.patch_scores:
out["model_interface_residues"] = \
_InterfaceResiduesToJSONList(scorer.model_interface_residues)
out["reference_interface_residues"] = \
_InterfaceResiduesToJSONList(scorer.target_interface_residues)
out["patch_qs"] = _PatchScoresToJSONList(scorer.model_interface_residues,
scorer.patch_qs)
out["patch_dockq"] = _PatchScoresToJSONList(scorer.model_interface_residues,
scorer.patch_dockq)
if args.tm_score:
out["tm_score"] = _RoundOrNone(scorer.tm_score)
out["usalign_mapping"] = scorer.usalign_mapping
if args.dump_structures:
# Dump model
model_dump_filename = _AddSuffix(model.GetName(), args.dump_suffix)
_DumpStructure(model, model_dump_filename, model_format)
# Dump reference
reference_dump_filename = _AddSuffix(reference.GetName(), args.dump_suffix)
_DumpStructure(reference, reference_dump_filename, reference_format)
return out
def _Main():
args = _ParseArgs()
ost.PushVerbosityLevel(args.verbosity)
if args.verbosity < 4:
# Hide tracebacks by default
# Run script with -v 4 (Verbose) or higher to display them
sys.tracebacklimit = 0
_CheckCompoundLib()
try:
compute_cad = args.cad_score or args.local_cad_score
if compute_cad and not args.residue_number_alignment:
raise RuntimeError("Only support CAD score when residue numbers in "
"model and reference match. Use -rna flag if "
"this is the case.")
reference_format = _GetStructureFormat(args.reference,
sformat=args.reference_format)
reference = _LoadStructure(args.reference,
sformat=reference_format,
bu_id=args.reference_biounit,
fault_tolerant = args.fault_tolerant)
model_format = _GetStructureFormat(args.model,
sformat=args.model_format)
model = _LoadStructure(args.model,
sformat=model_format,
bu_id=args.model_biounit,
fault_tolerant = args.fault_tolerant)
out = _Process(model, reference, args, model_format, reference_format)
# append input arguments
out["model"] = args.model
out["reference"] = args.reference
out["fault_tolerant"] = args.fault_tolerant
out["model_biounit"] = args.model_biounit
out["reference_biounit"] = args.reference_biounit
out["residue_number_alignment"] = args.residue_number_alignment
out["enforce_consistency"] = args.enforce_consistency
out["cad_exec"] = args.cad_exec
out["usalign_exec"] = args.usalign_exec
out["lddt_no_stereochecks"] = args.lddt_no_stereochecks
out["min_pep_length"] = args.min_pep_length
out["min_nuc_length"] = args.min_nuc_length
out["lddt_add_mdl_contacts"] = args.lddt_add_mdl_contacts
out["lddt_inclusion_radius"] = args.lddt_inclusion_radius
out["dockq_capri_peptide"] = args.dockq_capri_peptide
out["ost_version"] = ost.__version__
out["status"] = "SUCCESS"
with open(args.output, 'w') as fh:
json.dump(out, fh, indent=4, sort_keys=False)
except Exception as exc:
out = dict()
out["status"] = "FAILURE"
out["traceback"] = traceback.format_exc(limit=1000)
etype, evalue, tb = sys.exc_info()
out["exception"] = " ".join(traceback.format_exception_only(etype, evalue))
with open(args.output, 'w') as fh:
json.dump(out, fh, indent=4, sort_keys=False)
raise
if __name__ == '__main__':
_Main()
|