1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
|
#------------------------------------------------------------------------------
# This file is part of the OpenStructure project <www.openstructure.org>
#
# Copyright (C) 2008-2020 by the OpenStructure authors
#
# This library is free software; you can redistribute it and/or modify it under
# the terms of the GNU Lesser General Public License as published by the Free
# Software Foundation; either version 3.0 of the License, or (at your option)
# any later version.
# This library is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
# details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this library; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
#------------------------------------------------------------------------------
# Functions to use Antechamber (from AmberTools) to automatically generate force
# field parameters. Allows the execution of Antechamber and the parsing of files
# generated by it.
from ost.mol import mm
import ost
from ost import settings, mol, geom
import os, subprocess, math
###############################################################################
# helper functions
def _GetInteraction(functype, atoms, params):
"""Get an mm.Interaction with the given func-type and params for the given
atoms (name and types extracted from there)."""
interaction = mm.Interaction(functype)
interaction.SetNames([a.name for a in atoms])
interaction.SetTypes([a.GetStringProp('type') for a in atoms])
interaction.SetParam(params)
return interaction
def _MakeComponentBuildingBlock(eh, ff_dict):
"""Take EntityHandle eh (from ParseModifiedPDB) and ff_dict (from
ParseAmberForceField) and return BuildingBlock."""
# converters: length: A -> nm, angles: deg -> rad, energy: kcal -> kJ
dist_scale = 1./10.0
angle_scale = math.pi/180.
# bond strength in OpenMM needs a factor of 2 compared to Amber
bond_k_scale = 418.4*2.
angle_k_scale = 4.184
# get atom typing (dictionary listing all atoms of a certain type)
atype_dict = {}
for a in eh.atoms:
atype = a.GetStringProp('type')
if not atype in atype_dict:
atype_dict[atype] = [a.handle]
else:
atype_dict[atype].append(a.handle)
# set masses in entity handle (charges and types set in ParseModifiedPDB)
for atype, mass in ff_dict['MASS']:
for a in atype_dict[atype]: a.SetMass(mass)
# start by adding atoms
bb = mm.BuildingBlock()
for a in eh.atoms:
bb.AddAtom(a.name, a.GetStringProp('type'), a.GetCharge(), a.GetMass())
# add bonds: first all bonds from the entity, then force-field params
bl = eh.GetBondList()
for b in bl:
a1 = b.GetFirst()
a2 = b.GetSecond()
bond = mm.Interaction(mm.FuncType.HarmonicBond)
bond.SetNames([a1.name, a2.name])
bond.SetTypes([a1.GetStringProp('type'), a2.GetStringProp('type')])
bb.AddBond(bond)
added_bonds = []
for atype1, atype2, d0, k in ff_dict['BOND']:
for a1 in atype_dict[atype1]:
for a2 in atype_dict[atype2]:
# check connectivity and uniqueness of bond
if not mol.BondExists(a1, a2): continue
if [a1, a2] in added_bonds or [a2, a1] in added_bonds: continue
added_bonds.append([a1,a2])
params = [d0*dist_scale, k*bond_k_scale]
bond = _GetInteraction(mm.FuncType.HarmonicBond, [a1, a2], params)
bb.AddBond(bond, replace_existing=True)
# add angles
added_angles = []
for atype1, atype2, atype3, a0, k in ff_dict['ANGL']:
# a2 is the central atom
for a2 in atype_dict[atype2]:
for a1 in atype_dict[atype1]:
if not mol.BondExists(a1, a2): continue
for a3 in atype_dict[atype3]:
# check connectivity and uniqueness of angle
if not mol.BondExists(a2, a3): continue
if a1 == a3: continue
if [a1, a2, a3] in added_angles or [a3, a2, a1] in added_angles:
continue
added_angles.append([a1, a2, a3])
angle = _GetInteraction(mm.FuncType.HarmonicAngle, [a1, a2, a3],
[a0*angle_scale, k*angle_k_scale*2])
bb.AddAngle(angle)
# add dihedrals
for atype1, atype2, atype3, atype4, idiv, period, phase, k in ff_dict['DIHE']:
# there can be multiple ones for the same set of types!
added_dihedrals = []
for a1 in atype_dict[atype1]:
for a2 in atype_dict[atype2]:
if not mol.BondExists(a1, a2): continue
for a3 in atype_dict[atype3]:
if not mol.BondExists(a2, a3): continue
if a1 == a3: continue
for a4 in atype_dict[atype4]:
# check connectivity and uniqueness of dihedral (can be mirrored)
if not mol.BondExists(a3, a4): continue
if a2 == a4: continue
if [a1, a2, a3, a4] in added_dihedrals or \
[a4, a3, a2, a1] in added_dihedrals: continue
added_dihedrals.append([a1, a2, a3, a4])
dihe = _GetInteraction(mm.FuncType.PeriodicDihedral, [a1, a2, a3, a4],
[period, phase*angle_scale, k*angle_k_scale])
bb.AddDihedral(dihe)
# add impropers
added_impropers = []
for atype1, atype2, atype3, atype4, period, phase, k in ff_dict['IMPR']:
# third atom is the central atom in amber force-field
for ac in atype_dict[atype3]:
for a1 in atype_dict[atype1]:
if not mol.BondExists(ac, a1): continue
for a2 in atype_dict[atype2]:
if not mol.BondExists(ac, a2): continue
if a1 == a2: continue
for a4 in atype_dict[atype4]:
# check connectivity and uniqueness of impr. (same central)
if not mol.BondExists(ac, a4): continue
if a2 == a4 or a1 == a4: continue
if [ac, a1, a2, a4] in added_impropers or \
[ac, a1, a4, a2] in added_impropers or \
[ac, a2, a1, a4] in added_impropers or \
[ac, a2, a4, a1] in added_impropers or \
[ac, a4, a1, a2] in added_impropers or \
[ac, a4, a2, a1] in added_impropers: continue
added_impropers.append([ac, a1, a2, a4])
impr = _GetInteraction(mm.FuncType.PeriodicImproper, [a1, a2, ac, a4],
[period, phase*angle_scale, k*angle_k_scale])
bb.AddImproper(impr)
return bb
def _ParseModifiedPDB(filename):
"""Read mpdb file produced by antechamber and return tuple of:
- EntityHandle with connectivity, atom types (property 'type') and charges
- Residue name as extracted from the mpdb file
A RuntimeError is raised if the file can contains multiple residues.
"""
eh = mol.CreateEntity()
rname = ''
edi = eh.EditXCS(mol.BUFFERED_EDIT)
chain = edi.InsertChain('A')
bond_list = []
# get all atoms and bonds from file
with open(filename, 'r') as in_file:
for line in in_file:
# atom or connectivity
# -> fixed column format assumed for both
if line.startswith('ATOM'):
aname = line[12:17].strip()
# extract res. name and ensure uniqueness
if not rname:
rname = line[17:20].strip()
r = edi.AppendResidue(chain, rname)
elif rname != line[17:20].strip():
raise RuntimeError("More than one residue in file " + filename +\
". Cannot parse!")
# extract and store type and charge
charge = float(line[54:66])
atype = line[78:80].strip()
a = edi.InsertAtom(r, aname, geom.Vec3())
a.SetStringProp('type', atype)
a.SetCharge(charge)
elif line.startswith('CONECT'):
ai1 = int(line[6:11])
# max. 4 bond partners...
for i in range(4):
try:
j = 11 + 5*i
ai2 = int(line[j:j+5])
# only unique bonds added to list
s = set([ai1, ai2])
if not s in bond_list: bond_list.append(s)
except:
# exception thrown for empty strings or non-integers
# -> skip
continue
# set all bonds in entity
for indices in bond_list:
indices = list(indices)
a1 = r.atoms[indices[0]-1]
a2 = r.atoms[indices[1]-1]
edi.Connect(a1, a2)
# finalize
edi.UpdateICS()
return eh, rname
def _ParseAmberForceField(filename):
"""Read frcmod file produced by parmchk2 and return dictionary with all
entries for masses, bonds, angles, dihedrals, impropers and non-bonded (LJ)
interactions. Stored as key/list-of-value pairs:
- 'MASS': [atype, mass]
- 'BOND': [atype1, atype2, d0, k]
- 'ANGL': [atype1, atype2, atype3, a0, k]
- 'DIHE': [atype1, atype2, atype3, atype4, idiv, period, phase, k/idiv]
- 'IMPR': [atype1, atype2, atype3, atype4, period, phase, k]
- 'NONB': [Rvdw, epsilon]
"""
keywords = ['MASS', 'BOND', 'ANGL', 'DIHE', 'IMPR', 'NONB']
with open(filename, 'r') as in_file:
ff_dict = {}
for line in in_file:
# look for keywords
keyword = line[:4]
if not keyword in keywords: continue
# loop until empty line found
ff_dict[keyword] = []
line = next(in_file)
while len(line.strip()) > 0:
# check for warnings
if 'ATTN' in line:
ost.LogWarning('The following line in ' + filename + ' (' + keyword +\
' section) needs revision:\n' + line.strip())
# fixed column format -> extract entries dep. on current keyword
if keyword == 'MASS':
atype = line[0:2].strip()
s = line[2:].split()
mass = float(s[0])
ff_dict[keyword].append([atype, mass])
elif keyword == 'BOND':
atype1 = line[:2].strip()
atype2 = line[3:5].strip()
s = line[5:].split()
k = float(s[0])
d0 = float(s[1])
ff_dict[keyword].append([atype1, atype2, d0, k])
elif keyword == 'ANGL':
atype1 = line[:2].strip()
atype2 = line[3:5].strip()
atype3 = line[6:8].strip()
s = line[8:].split()
k = float(s[0])
a0 = float(s[1])
ff_dict[keyword].append([atype1, atype2, atype3, a0, k])
elif keyword == 'DIHE':
atype1 = line[:2].strip()
atype2 = line[3:5].strip()
atype3 = line[6:8].strip()
atype4 = line[9:11].strip()
s = line[11:].split()
idiv = float(s[0])
k = float(s[1])
phase = float(s[2])
# negative periods = there is more than one term for that dihedral
# -> no need to do anything special about that here...
period = abs(float(s[3]))
ff_dict[keyword].append([atype1, atype2, atype3, atype4, idiv,
period, phase, k/float(idiv)])
elif keyword == 'IMPR':
atype1 = line[:2].strip()
atype2 = line[3:5].strip()
atype3 = line[6:8].strip()
atype4 = line[9:11].strip()
s = line[11:].split()
k = float(s[0])
phase = float(s[1])
period = float(s[2])
ff_dict[keyword].append([atype1, atype2, atype3, atype4, period,
phase, k])
elif keyword == 'NONB':
line = line.strip()
atype = line[0:2].strip()
s = line[2:].split()
Rvdw = float(s[0])
epsilon = float(s[1])
ff_dict[keyword].append([atype, Rvdw, epsilon])
# next...
line = next(in_file)
return ff_dict
###############################################################################
def RunAntechamber(res_name, filename, format='ccif', amberhome=None,
base_out_dir=None):
"""Run Antechamber to guess force field parameters for a given residue name.
This requires an installation of AmberTools (tested with AmberTools15) with
binaries ``antechamber`` and ``parmchk2``.
This has the same restrictions as Antechamber itself and we assume the input
to be uncharged. Note that Antechamber cannot deal with metal ions and other
non-organic elements.
The results are stored in a separate folder named `res_name` within
`base_out_dir` (if given, otherwise the current working directory). The main
output files are ``frcmod`` and ``out.mpdb``. The former contains force field
parameters and masses. The latter maps atom names to atom types and defines
the partial charges. The same output could be obtained as follows:
.. code-block:: console
$ antechamber -i <FILENAME> -fi <FORMAT> -bk '<RES_NAME>' -o out.mol2 -fo mol2 -c bcc -pf yes
$ parmchk2 -i out.mol2 -f mol2 -o frcmod -a Y
$ antechamber -i out.mol2 -fi mol2 -o out.mpdb -fo mpdb -pf yes
The force field parameters can be manually modified if needed. It can for
instance happen that some parameters cannot be identified. Those lines will
be marked with a comment "ATTN, need revision".
:param res_name: Residue name for which we desire force field parameters.
:type res_name: :class:`str`
:param filename: Path to a file which contains the necessary information for
`res_name`. It must include all hydrogens.
:type filename: :class:`str`
:param format: Format of file given with `filename`. Common formats are 'ccif'
for PDB's component dictionary or 'pdb' for a PDB file
containing the desired residue with all hydrogens.
:type format: :class:`str`
:param amberhome: Base path of your AmberTools installation. If not None,
we look for ``antechamber`` and ``parmchk2`` within
``AMBERHOME/bin`` additionally to the system's ``PATH``.
:type amberhome: :class:`str`
:param base_out_dir: Path to a base path, where the output will be stored.
If None, the current working directory is used.
:type base_out_dir: :class:`str`
"""
# find antechamber binaries
if amberhome is None:
search_paths = []
else:
search_paths = [os.path.join(amberhome, 'bin')]
try:
antechamber = settings.Locate('antechamber', search_paths=search_paths)
parmchk2 = settings.Locate('parmchk2', search_paths=search_paths)
except settings.FileNotFound as ex:
ost.LogError("Failed to find Antechamber binaries. Make sure you have "
"AmberTools installed!")
raise ex
# prepare path
cwd = os.getcwd()
if base_out_dir is None:
base_out_dir = cwd
out_dir = os.path.abspath(os.path.join(base_out_dir, res_name))
if not os.path.exists(out_dir):
# note: this creates intermediate folders too
try:
os.makedirs(out_dir)
except Exception as ex:
ost.LogError("Failed to create output directory " + out_dir + "!")
raise ex
# execute it
os.chdir(out_dir)
try:
cmds = [antechamber + " -i " + filename + " -fi " + format + " -bk " \
+ res_name + " -o out.mol2 -fo mol2 -c bcc -pf yes",
parmchk2 + " -i out.mol2 -f mol2 -o frcmod -a Y",
antechamber + " -i out.mol2 -fi mol2 -o out.mpdb -fo mpdb -pf yes"]
all_sout = "Generating force field parameters for " + res_name + "\n"
all_serr = ""
for cmd in cmds:
all_sout += "-"*70 + "\n" + "Stdout of: " + cmd + "\n" + "-"*70 + "\n"
all_serr += "-"*70 + "\n" + "Stderr of: " + cmd + "\n" + "-"*70 + "\n"
job = subprocess.Popen(cmd.split(" "), stdout=subprocess.PIPE,
stderr=subprocess.PIPE)
sout, serr = job.communicate()
all_sout += sout
all_serr += serr
if job.returncode != 0:
ost.LogError("Unsuccessful execution of " + cmd + ". Return code: "\
+ str(job.returncode))
# write command line outputs
with open("console.stdout", "w") as txt_file:
txt_file.write(all_sout)
with open("console.stderr", "w") as txt_file:
txt_file.write(all_serr)
except Exception as ex:
ost.LogError("Failed to excecute antechamber binaries!")
raise ex
# get back to original path
os.chdir(cwd)
# check result
frcmod_filename = os.path.join(out_dir, 'frcmod')
mpdb_filename = os.path.join(out_dir, 'out.mpdb')
if not os.path.exists(frcmod_filename):
raise RuntimeError("Failed to generate frcmod file with Antechamber!")
if not os.path.exists(mpdb_filename):
raise RuntimeError("Failed to generate out.mpdb file with Antechamber!")
def AddFromFiles(force_field, frcmod_filename, mpdb_filename):
"""Add data from a frcmod and an mpdb file to a force field.
This will add a new :class:`~ost.mol.mm.BuildingBlock` to `force_field` for
the residue defined in those files (residue name is extracted from the mpdb
file which can only contain a single residue). Charges for each atom are
extracted from the mpdb file. According to the frcmod file, an
:class:`~ost.mol.mm.Interaction` is added for each bond, angle, dihedral and
improper. Atom types with masses and non-bonded interactions are added to
`force_field` as needed.
:param force_field: A force field object to which the new parameters are
added.
:type force_field: :class:`~ost.mol.mm.Forcefield`
:param frcmod_filename: Path to ``frcmod`` file as generated by ``parmchk2``.
:type frcmod_filename: :class:`str`
:param mpdb_filename: Path to mpdb file as generated by ``antechamber``.
:type mpdb_filename: :class:`str`
:return: The updated force field (same as `force_field`).
:rtype: :class:`~ost.mol.mm.Forcefield`
"""
# check files
if not os.path.exists(frcmod_filename):
raise RuntimeError("Could not find frcmod file: " + frcmod_filename)
if not os.path.exists(mpdb_filename):
raise RuntimeError("Could not find mpdb file: " + mpdb_filename)
# read in files
try:
eh, res_name = _ParseModifiedPDB(mpdb_filename)
except Exception as ex:
ost.LogError("Failed to parse mpdb file: " + mpdb_filename)
raise ex
try:
ff_dict = _ParseAmberForceField(frcmod_filename)
except Exception as ex:
ost.LogError("Failed to parse frcmod file: " + frcmod_filename)
raise ex
ost.LogInfo("Adding force field for " + res_name)
# add atoms to force field
for aname, mass in ff_dict['MASS']:
force_field.AddMass(aname, mass)
# add LJs
lj_sigma_scale = 2./10./2**(1./6.) # Rvdw to sigma in nm
lj_epsilon_scale = 4.184 # kcal to kJ
for aname, Rvdw, epsilon in ff_dict['NONB']:
# fix 0,0 (from OpenMM's processAmberForceField.py)
if Rvdw == 0 or epsilon == 0:
Rvdw, epsilon = 1, 0
lj = mm.Interaction(mm.FuncType.LJ)
lj.SetTypes([aname])
lj.SetParam([Rvdw*lj_sigma_scale, epsilon*lj_epsilon_scale])
force_field.AddLJ(lj)
# add building block
bb = _MakeComponentBuildingBlock(eh, ff_dict)
force_field.AddBuildingBlock(res_name, bb)
return force_field
def AddFromPath(force_field, out_dir):
"""Add data from a directory created with :meth:`Run` to a force field.
See :meth:`AddFromFiles` for details.
:param force_field: A force field object to which the new parameters are
added.
:type force_field: :class:`~ost.mol.mm.Forcefield`
:param out_dir: Output directory as created with :meth:`Run`. Must contain
files ``frcmod`` and ``out.mpdb``.
:type out_dir: :class:`str`
:return: The updated force field (same as `force_field`).
:rtype: :class:`~ost.mol.mm.Forcefield`
"""
frcmod_filename = os.path.join(out_dir, 'frcmod')
mpdb_filename = os.path.join(out_dir, 'out.mpdb')
return AddFromFiles(force_field, frcmod_filename, mpdb_filename)
def AddIon(force_field, res_name, atom_name, atom_mass, atom_charge, lj_sigma,
lj_epsilon):
"""Add a single atom as an ion to a force field.
Since Antechamber cannot deal with ions, you can add simple ones easily with
this function. This adds a :class:`~ost.mol.mm.BuildingBlock` to `force_field`
for the given residue name containing a single atom. The atom will have a type
with the same name as the atom name and the given mass, charge and non-bonded
(LJ) interaction parameters.
:param force_field: A force field object to which the ion is added.
:type force_field: :class:`~ost.mol.mm.Forcefield`
:param res_name: Residue name for the ion to be added.
:type res_name: :class:`str`
:param atom_name: Atom name which is also used as atom type name.
:type atom_name: :class:`str`
:param atom_mass: Mass of the atom.
:type atom_mass: :class:`float`
:param atom_charge: Charge of the atom.
:type atom_charge: :class:`float`
:param lj_sigma: The sigma parameter for the non-bonded LJ interaction.
:type lj_sigma: :class:`float` in nm
:param lj_epsilon: The sigma parameter for the non-bonded LJ interaction.
:type lj_epsilon: :class:`float` in kJ/mol
"""
# add mass (atom_type = atom_name)
force_field.AddMass(atom_name, atom_mass)
# add building block
bb = mm.BuildingBlock()
bb.AddAtom(atom_name, atom_name, atom_charge, atom_mass)
force_field.AddBuildingBlock(res_name, bb)
# add dummy LJ
lj = mm.Interaction(mm.FuncType.LJ)
lj.SetTypes([atom_name])
lj.SetParam([lj_sigma, lj_epsilon])
force_field.AddLJ(lj)
__all__ = ('RunAntechamber', 'AddFromFiles', 'AddFromPath', 'AddIon',)
|