1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
|
#line 0 "examples/mtlViewer/mtlViewer.metal"
//
// Copyright 2013 Pixar
//
// Licensed under the Apache License, Version 2.0 (the "Apache License")
// with the following modification; you may not use this file except in
// compliance with the Apache License and the following modification to it:
// Section 6. Trademarks. is deleted and replaced with:
//
// 6. Trademarks. This License does not grant permission to use the trade
// names, trademarks, service marks, or product names of the Licensor
// and its affiliates, except as required to comply with Section 4(c) of
// the License and to reproduce the content of the NOTICE file.
//
// You may obtain a copy of the Apache License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the Apache License with the above modification is
// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the Apache License for the specific
// language governing permissions and limitations under the Apache License.
//
#include <metal_stdlib>
using namespace metal;
#if OSD_IS_ADAPTIVE
static_assert(!OSD_ENABLE_SCREENSPACE_TESSELLATION || !USE_PTVS_FACTORS, "USE_PTVS_FACTORS cannot be enabled if OSD_ENABLE_SCREENSPACE_TESSELLATION is enabled");
#endif
#define SHADING_TYPE_MATERIAL 0
#define SHADING_TYPE_FACE_VARYING_COLOR 1
#define SHADING_TYPE_PATCH_TYPE 2
#define SHADING_TYPE_PATCH_DEPTH 3
#define SHADING_TYPE_PATCH_COORD 4
#define SHADING_TYPE_NORMAL 5
struct PerFrameConstants {
float4x4 ModelViewMatrix;
float4x4 ProjectionMatrix;
float4x4 ModelViewProjectionMatrix;
float4x4 ModelViewInverseMatrix;
float TessLevel;
};
struct OutputVertex {
float4 positionOut [[position]];
float3 position;
float3 normal;
#if SHADING_TYPE == SHADING_TYPE_PATCH_TYPE || SHADING_TYPE == SHADING_TYPE_PATCH_DEPTH || SHADING_TYPE == SHADING_TYPE_PATCH_COORD || SHADING_TYPE_FACE_VARYING_COLOR
float3 patchColor;
#endif
};
struct SolidColorVertex {
float4 positionOut [[position]];
half4 getColor() const {
return unpack_unorm4x8_to_half(_color);
}
void setColor(half4 color) {
_color = pack_half_to_unorm4x8(color);
}
private:
uint _color [[flat, user(color)]];
};
struct PackedInputVertex {
packed_float3 position;
};
struct Light {
float3 Position;
float3 ambient;
float3 diffuse;
float3 specular;
};
float3 lighting(float3 diffuseColor, const constant Light* lightData, float3 eyePos, float3 eyeN)
{
float3 color(0);
for(int i = 0; i < 2; i++)
{
const auto l = lightData[i].Position;
const auto h = normalize(l + float3(0,0,1));
const auto d = max(0.0, dot(eyeN, l));
const auto s = powr(max(0.0, dot(eyeN, h)), 500.0f);
color += lightData[i].ambient
+ d * lightData[i].diffuse * diffuseColor
+ s * lightData[i].specular;
}
return color;
}
const constant float4 patchColors[] = {
float4(1.0f, 1.0f, 1.0f, 1.0f), // regular
float4(0.0f, 1.0f, 1.0f, 1.0f), // regular pattern 0
float4(0.0f, 0.5f, 1.0f, 1.0f), // regular pattern 1
float4(0.0f, 0.5f, 0.5f, 1.0f), // regular pattern 2
float4(0.5f, 0.0f, 1.0f, 1.0f), // regular pattern 3
float4(1.0f, 0.5f, 1.0f, 1.0f), // regular pattern 4
float4(1.0f, 0.5f, 0.5f, 1.0f), // single crease
float4(1.0f, 0.70f, 0.6f, 1.0f), // single crease pattern 0
float4(1.0f, 0.65f, 0.6f, 1.0f), // single crease pattern 1
float4(1.0f, 0.60f, 0.6f, 1.0f), // single crease pattern 2
float4(1.0f, 0.55f, 0.6f, 1.0f), // single crease pattern 3
float4(1.0f, 0.50f, 0.6f, 1.0f), // single crease pattern 4
float4(0.8f, 0.0f, 0.0f, 1.0f), // boundary
float4(0.0f, 0.0f, 0.75f, 1.0f), // boundary pattern 0
float4(0.0f, 0.2f, 0.75f, 1.0f), // boundary pattern 1
float4(0.0f, 0.4f, 0.75f, 1.0f), // boundary pattern 2
float4(0.0f, 0.6f, 0.75f, 1.0f), // boundary pattern 3
float4(0.0f, 0.8f, 0.75f, 1.0f), // boundary pattern 4
float4(0.0f, 1.0f, 0.0f, 1.0f), // corner
float4(0.5f, 1.0f, 0.5f, 1.0f), // corner pattern 0
float4(0.5f, 1.0f, 0.5f, 1.0f), // corner pattern 1
float4(0.5f, 1.0f, 0.5f, 1.0f), // corner pattern 2
float4(0.5f, 1.0f, 0.5f, 1.0f), // corner pattern 3
float4(0.5f, 1.0f, 0.5f, 1.0f), // corner pattern 4
float4(1.0f, 1.0f, 0.0f, 1.0f), // gregory
float4(1.0f, 1.0f, 0.0f, 1.0f), // gregory
float4(1.0f, 1.0f, 0.0f, 1.0f), // gregory
float4(1.0f, 1.0f, 0.0f, 1.0f), // gregory
float4(1.0f, 1.0f, 0.0f, 1.0f), // gregory
float4(1.0f, 1.0f, 0.0f, 1.0f), // gregory
float4(1.0f, 0.5f, 0.0f, 1.0f), // gregory boundary
float4(1.0f, 0.5f, 0.0f, 1.0f), // gregory boundary
float4(1.0f, 0.5f, 0.0f, 1.0f), // gregory boundary
float4(1.0f, 0.5f, 0.0f, 1.0f), // gregory boundary
float4(1.0f, 0.5f, 0.0f, 1.0f), // gregory boundary
float4(1.0f, 0.5f, 0.0f, 1.0f), // gregory boundary
float4(1.0f, 0.7f, 0.3f, 1.0f), // gregory basis
float4(1.0f, 0.7f, 0.3f, 1.0f), // gregory basis
float4(1.0f, 0.7f, 0.3f, 1.0f), // gregory basis
float4(1.0f, 0.7f, 0.3f, 1.0f), // gregory basis
float4(1.0f, 0.7f, 0.3f, 1.0f), // gregory basis
float4(1.0f, 0.7f, 0.3f, 1.0f) // gregory basis
};
float4
getAdaptivePatchColor(int3 patchParam
#if OSD_PATCH_ENABLE_SINGLE_CREASE
, float2 vSegments
#else
#endif
)
{
int patchType = 0;
int edgeCount = popcount(OsdGetPatchBoundaryMask(patchParam));
if (edgeCount == 1) {
patchType = 2; // BOUNDARY
}
if (edgeCount > 1) {
patchType = 3; // CORNER
}
#if OSD_PATCH_ENABLE_SINGLE_CREASE
// check this after boundary/corner since single crease patch also has edgeCount.
if (vSegments.y > 0) {
patchType = 1;
}
#elif OSD_PATCH_GREGORY
patchType = 4;
#elif OSD_PATCH_GREGORY_BOUNDARY
patchType = 5;
#elif OSD_PATCH_GREGORY_BASIS
patchType = 6;
#elif OSD_PATCH_GREGORY_TRIANGLE
patchType = 6;
#endif
int pattern = popcount(OsdGetPatchTransitionMask(patchParam));
return patchColors[6*patchType + pattern];
}
float4
getAdaptiveDepthColor(int3 patchParam)
{
// Represent depth with repeating cycle of four colors:
const float4 depthColors[4] = {
float4(0.0f, 0.5f, 0.5f, 1.0f),
float4(1.0f, 1.0f, 1.0f, 1.0f),
float4(0.0f, 1.0f, 1.0f, 1.0f),
float4(0.5f, 1.0f, 0.5f, 1.0f)
};
return depthColors[OsdGetPatchRefinementLevel(patchParam) & 3];
}
#if OSD_IS_ADAPTIVE
#if USE_STAGE_IN
#if OSD_PATCH_REGULAR || OSD_PATCH_BOX_SPLINE_TRIANGLE
struct ControlPoint
{
float3 P [[attribute(0)]];
#if OSD_PATCH_ENABLE_SINGLE_CREASE
float3 P1 [[attribute(1)]];
float3 P2 [[attribute(2)]];
#if !USE_PTVS_SHARPNESS
float2 vSegments [[attribute(3)]];
#endif
#endif
};
#elif OSD_PATCH_GREGORY || OSD_PATCH_GREGORY_BOUNDARY
struct ControlPoint
{
float3 P [[attribute(0)]];
float3 Ep [[attribute(1)]];
float3 Em [[attribute(2)]];
float3 Fp [[attribute(3)]];
float3 Fm [[attribute(4)]];
};
#elif OSD_PATCH_GREGORY_BASIS || OSD_PATCH_GREGORY_TRIANGLE
struct ControlPoint
{
float3 position [[attribute(0)]];
};
#endif
struct PatchInput
{
patch_control_point<ControlPoint> cv;
#if !USE_PTVS_FACTORS
float4 tessOuterLo [[attribute(5)]];
float4 tessOuterHi [[attribute(6)]];
#endif
int3 patchParam [[attribute(10)]];
};
#endif
#if OSD_PATCH_REGULAR || OSD_PATCH_GREGORY_BASIS || OSD_PATCH_GREGORY || OSD_PATCH_GREGORY_BOUNDARY
typedef MTLQuadTessellationFactorsHalf PatchTessFactors;
#elif OSD_PATCH_BOX_SPLINE_TRIANGLE || OSD_PATCH_GREGORY_TRIANGLE
typedef MTLTriangleTessellationFactorsHalf PatchTessFactors;
#endif
//----------------------------------------------------------
// OSD Kernel
//----------------------------------------------------------
//The user of OSD should define this kernel which serves as the landing point for all patch computation
//This compute function should just be copied and pasted, modifying the section under "User Vertex Transform"
//Or the entire function may be moddified as needed (for example to add a patch index buffer)
kernel void compute_main(
const constant PerFrameConstants& frameConsts [[buffer(FRAME_CONST_BUFFER_INDEX)]],
unsigned thread_position_in_grid [[thread_position_in_grid]],
unsigned thread_position_in_threadgroup [[thread_position_in_threadgroup]],
unsigned threadgroup_position_in_grid [[threadgroup_position_in_grid]],
OsdPatchParamBufferSet osdBuffers, //This struct contains all of the buffers needed by OSD
device PatchTessFactors* patchTessellationFactors [[buffer(PATCH_TESSFACTORS_INDEX)]]
#if OSD_USE_PATCH_INDEX_BUFFER
,device unsigned* patchIndex [[buffer(OSD_PATCH_INDEX_BUFFER_INDEX)]]
,device MTLDrawPatchIndirectArguments* drawIndirectCommands [[buffer(OSD_DRAWINDIRECT_BUFFER_INDEX)]]
#endif
)
{
//----------------------------------------------------------
// OSD Kernel Setup
//----------------------------------------------------------
#define PATCHES_PER_THREADGROUP (THREADS_PER_THREADGROUP / THREADS_PER_PATCH)
int const primitiveID = thread_position_in_grid / THREADS_PER_PATCH;
int const primitiveIDInTG = thread_position_in_threadgroup / THREADS_PER_PATCH;
int const vertexIndex = threadgroup_position_in_grid * PATCHES_PER_THREADGROUP * CONTROL_POINTS_PER_PATCH +
thread_position_in_threadgroup * CONTROL_POINTS_PER_THREAD;
int const vertexIndexInTG = thread_position_in_threadgroup * CONTROL_POINTS_PER_THREAD;
int const invocationID = (thread_position_in_threadgroup * VERTEX_CONTROL_POINTS_PER_THREAD) % (THREADS_PER_PATCH*VERTEX_CONTROL_POINTS_PER_THREAD);
//Contains the shared patchParam value used by all threads that act upon a single patch
//the .z (sharpness) field is set to -1 (NAN) if that patch should be culled to signal other threads to return.
threadgroup int3 patchParam[PATCHES_PER_THREADGROUP];
threadgroup PatchVertexType patchVertices[PATCHES_PER_THREADGROUP * CONTROL_POINTS_PER_PATCH];
//----------------------------------------------------------
// OSD Vertex Transform
//----------------------------------------------------------
{
patchParam[primitiveIDInTG] = OsdGetPatchParam(primitiveID, osdBuffers.patchParamBuffer);
for (unsigned threadOffset = 0; threadOffset < CONTROL_POINTS_PER_THREAD; ++threadOffset)
{
if (vertexIndexInTG + threadOffset < PATCHES_PER_THREADGROUP * CONTROL_POINTS_PER_PATCH)
{
const auto vertexId = osdBuffers.indexBuffer[(vertexIndex + threadOffset)];
const auto v = osdBuffers.vertexBuffer[vertexId];
threadgroup auto& patchVertex = patchVertices[vertexIndexInTG + threadOffset];
//----------------------------------------------------------
// User Vertex Transform
//----------------------------------------------------------
OsdComputePerVertex(float4(v.position,1), patchVertex, vertexId, frameConsts.ModelViewProjectionMatrix, osdBuffers);
}
}
}
#if NEEDS_BARRIER
threadgroup_barrier(mem_flags::mem_threadgroup);
#endif
//----------------------------------------------------------
// OSD Patch Cull
//----------------------------------------------------------
{
auto patch = patchVertices + primitiveIDInTG * CONTROL_POINTS_PER_PATCH;
if (!OsdCullPerPatchVertex(patch, frameConsts.ModelViewMatrix))
{
#if !OSD_USE_PATCH_INDEX_BUFFER
#if OSD_PATCH_REGULAR || OSD_PATCH_GREGORY_BASIS || OSD_PATCH_GREGORY || OSD_PATCH_GREGORY_BOUNDARY
patchTessellationFactors[primitiveID].edgeTessellationFactor[0] = 0.0h;
patchTessellationFactors[primitiveID].edgeTessellationFactor[1] = 0.0h;
patchTessellationFactors[primitiveID].edgeTessellationFactor[2] = 0.0h;
patchTessellationFactors[primitiveID].edgeTessellationFactor[3] = 0.0h;
patchTessellationFactors[primitiveID].insideTessellationFactor[0] = 0.0h;
patchTessellationFactors[primitiveID].insideTessellationFactor[1] = 0.0h;
#elif OSD_PATCH_BOX_SPLINE_TRIANGLE || OSD_PATCH_GREGORY_TRIANGLE
patchTessellationFactors[primitiveID].edgeTessellationFactor[0] = 0.0h;
patchTessellationFactors[primitiveID].edgeTessellationFactor[1] = 0.0h;
patchTessellationFactors[primitiveID].edgeTessellationFactor[2] = 0.0h;
patchTessellationFactors[primitiveID].insideTessellationFactor = 0.0h;
#endif
#endif
patchParam[primitiveIDInTG].z = -1;
#if !NEEDS_BARRIER
return;
#endif
}
}
#if NEEDS_BARRIER
threadgroup_barrier(mem_flags::mem_threadgroup);
#endif
//----------------------------------------------------------
// OSD Patch Compute
//----------------------------------------------------------
if (patchParam[primitiveIDInTG].z != -1)
{
for (unsigned threadOffset = 0; threadOffset < VERTEX_CONTROL_POINTS_PER_THREAD; ++threadOffset)
{
if (invocationID + threadOffset < VERTEX_CONTROL_POINTS_PER_PATCH)
{
OsdComputePerPatchVertex(
patchParam[primitiveIDInTG],
invocationID + threadOffset,
primitiveID,
invocationID + threadOffset + primitiveID * VERTEX_CONTROL_POINTS_PER_PATCH,
patchVertices + primitiveIDInTG * CONTROL_POINTS_PER_PATCH,
osdBuffers
);
}
}
}
#if NEEDS_BARRIER
threadgroup_barrier(mem_flags::mem_device_and_threadgroup);
#endif
//----------------------------------------------------------
// OSD Tessellation Factors
//----------------------------------------------------------
if (invocationID == 0)
{
#if OSD_USE_PATCH_INDEX_BUFFER
const auto patchId = atomic_fetch_add_explicit((device atomic_uint*)&drawIndirectCommands->patchCount, 1, memory_order_relaxed);
patchIndex[patchId] = primitiveID;
#else
const auto patchId = primitiveID;
#endif
OsdComputePerPatchFactors(
patchParam[primitiveIDInTG],
frameConsts.TessLevel,
primitiveID,
frameConsts.ProjectionMatrix,
frameConsts.ModelViewMatrix,
osdBuffers,
patchVertices + primitiveIDInTG * CONTROL_POINTS_PER_PATCH,
patchTessellationFactors[patchId]
);
}
}
#if SHADING_TYPE == SHADING_TYPE_FACE_VARYING_COLOR
float3
interpolateFaceVaryingColor(
int patch_id,
float2 uv,
const device float* fvarData,
const device int* fvarIndices,
const device packed_int3* fvarPatchParams,
const constant int* fvarPatchArrays)
{
OsdPatchArray fvarPatchArray = OsdPatchArrayInit(
fvarPatchArrays[0],
fvarPatchArrays[1],
fvarPatchArrays[2],
fvarPatchArrays[3],
fvarPatchArrays[4],
fvarPatchArrays[5]);
OsdPatchParam fvarParam = OsdPatchParamInit(
fvarPatchParams[patch_id][0],
fvarPatchParams[patch_id][1],
fvarPatchParams[patch_id][2]);
int fvarPatchType = OsdPatchParamIsRegular(fvarParam)
? fvarPatchArray.regDesc
: fvarPatchArray.desc;
float wP[20], wDu[20], wDv[20], wDuu[20], wDuv[20], wDvv[20];
int numPoints = OsdEvaluatePatchBasisNormalized(fvarPatchType, fvarParam,
uv.x, uv.y, wP, wDu, wDv, wDuu, wDuv, wDvv);
int primOffset = patch_id * fvarPatchArray.stride;
float2 interpUV = float2(0);
for (int i = 0; i < numPoints; ++i) {
int index = fvarIndices[primOffset + i] * 2 /* OSD_FVAR_WIDTH */ + 0 /* fvarOffset */;
float2 cv = float2(fvarData[index + 0], fvarData[index + 1]);
interpUV += wP[i] * cv;
}
return float3(interpUV, 0);
}
#endif
#if OSD_PATCH_REGULAR || OSD_PATCH_GREGORY_BASIS || OSD_PATCH_GREGORY || OSD_PATCH_GREGORY_BOUNDARY
[[patch(quad, VERTEX_CONTROL_POINTS_PER_PATCH)]]
#elif OSD_PATCH_BOX_SPLINE_TRIANGLE || OSD_PATCH_GREGORY_TRIANGLE
[[patch(triangle, VERTEX_CONTROL_POINTS_PER_PATCH)]]
#endif
vertex OutputVertex vertex_main(
const constant PerFrameConstants& frameConsts [[buffer(FRAME_CONST_BUFFER_INDEX)]],
#if USE_STAGE_IN
const PatchInput patchInput [[stage_in]],
#else
const OsdVertexBufferSet patchInput,
#endif
const device float* osdFaceVaryingData [[buffer(OSD_FVAR_DATA_BUFFER_INDEX)]],
const device int* osdFaceVaryingIndices [[buffer(OSD_FVAR_INDICES_BUFFER_INDEX)]],
const device packed_int3* osdFaceVaryingPatchParams [[buffer(OSD_FVAR_PATCHPARAM_BUFFER_INDEX)]],
const constant int* osdFaceVaryingPatchArrays [[buffer(OSD_FVAR_PATCH_ARRAYS_BUFFER_INDEX)]],
#if OSD_PATCH_REGULAR || OSD_PATCH_GREGORY_BASIS || OSD_PATCH_GREGORY || OSD_PATCH_GREGORY_BOUNDARY
float2 position_in_patch [[position_in_patch]],
#elif OSD_PATCH_BOX_SPLINE_TRIANGLE || OSD_PATCH_GREGORY_TRIANGLE
float3 position_in_patch [[position_in_patch]],
#endif
uint patch_id [[patch_id]]
)
{
OutputVertex out;
#if USE_STAGE_IN
int3 patchParam = patchInput.patchParam;
#else
int3 patchParam = patchInput.patchParamBuffer[patch_id];
#endif
int refinementLevel = OsdGetPatchRefinementLevel(patchParam);
float tessLevel = min(frameConsts.TessLevel, (float)OSD_MAX_TESS_LEVEL) /
exp2((float)refinementLevel - 1);
auto patchVertex = OsdComputePatch(tessLevel, position_in_patch, patch_id, patchInput);
out.position = (frameConsts.ModelViewMatrix * float4(patchVertex.position, 1.0f)).xyz;
out.positionOut = frameConsts.ModelViewProjectionMatrix * float4(patchVertex.position, 1.0f);
out.normal = mul(frameConsts.ModelViewMatrix, patchVertex.normal);
#if SHADING_TYPE == SHADING_TYPE_PATCH_TYPE
#if OSD_PATCH_ENABLE_SINGLE_CREASE
out.patchColor = getAdaptivePatchColor(patchParam, patchVertex.vSegments).xyz;
#else
out.patchColor = getAdaptivePatchColor(patchParam).xyz;
#endif
#elif SHADING_TYPE == SHADING_TYPE_PATCH_DEPTH
out.patchColor = getAdaptiveDepthColor(patchParam).xyz;
#elif SHADING_TYPE == SHADING_TYPE_NORMAL
#elif SHADING_TYPE == SHADING_TYPE_PATCH_COORD
out.patchColor = patchVertex.patchCoord.xyz;
#elif SHADING_TYPE == SHADING_TYPE_FACE_VARYING_COLOR
out.patchColor = interpolateFaceVaryingColor(
patch_id,
patchVertex.tessCoord.xy,
osdFaceVaryingData,
osdFaceVaryingIndices,
osdFaceVaryingPatchParams,
osdFaceVaryingPatchArrays);
#endif
return out;
}
#endif
#if OSD_PATCH_REGULAR
const constant unsigned BSplineControlLineIndices[] = {
0, 1, //Outer lines
1, 2,
2, 3,
3, 7,
7, 11,
11, 15,
15, 14,
14, 13,
13, 12,
12, 8,
8, 4,
4, 0,
//Inner lines
5, 6,
6, 10,
10, 9,
9, 5,
//TL edge lines
1, 5,
4, 5,
//TR edge lines
2, 6,
6, 7,
//BL edge lines
8, 9,
9, 13,
//BR edge lines
10, 14,
10, 11
};
vertex SolidColorVertex vertex_lines(
const device unsigned* indicesBuffer [[buffer(INDICES_BUFFER_INDEX)]],
const device OsdPerPatchVertexBezier* osdPerPatchVertexBezier [[buffer(OSD_PERPATCHVERTEX_BUFFER_INDEX)]],
const constant PerFrameConstants& frameConsts [[buffer(FRAME_CONST_BUFFER_INDEX)]],
uint vertex_id [[vertex_id]]
)
{
const auto idx_size = sizeof(BSplineControlLineIndices) / sizeof(BSplineControlLineIndices[0]);
const auto idx = vertex_id % idx_size;
const auto patch_id = vertex_id / idx_size;
const auto in = osdPerPatchVertexBezier[patch_id * VERTEX_CONTROL_POINTS_PER_PATCH + BSplineControlLineIndices[idx]];
SolidColorVertex out;
out.positionOut = frameConsts.ModelViewProjectionMatrix * float4(in.P, 1.0);
out.positionOut.z -= 0.001;
if(idx > 22) {
out.setColor(half4(0,1,0,1));
}
else
{
out.setColor(half4(1,0,0,1));
}
return out;
}
#endif
#if OSD_PATCH_GREGORY_BASIS || OSD_PATCH_GREGORY || OSD_PATCH_GREGORY_BOUNDARY
const constant uint GregoryBasisControlLineIndices[] = {
//Outer Edge
0, 2,
2, 16,
16, 15,
15, 17,
17, 11,
11, 10,
10, 12,
12, 6,
6, 5,
5, 7,
7, 1,
1, 0,
//Outside-Inside Edges
1, 3,
2, 4,
16, 18,
17, 19,
11, 13,
12, 14,
6, 8,
7, 9,
//Inner Edge
3, 4,
4, 18,
18, 19,
19, 13,
13, 14,
14, 8,
8, 9,
9, 3,
};
vertex SolidColorVertex vertex_lines(
#ifdef OSD_PATCH_GREGORY_BASIS
const device unsigned* indicesBuffer [[buffer(INDICES_BUFFER_INDEX)]],
const device PackedInputVertex* vertexBuffer [[buffer(VERTEX_BUFFER_INDEX)]],
#else
const device PackedInputVertex* vertexBuffer [[buffer(OSD_PERPATCHVERTEX_BUFFER_INDEX)]],
#endif
const constant PerFrameConstants& frameConsts [[buffer(FRAME_CONST_BUFFER_INDEX)]],
uint vertex_id [[vertex_id]]
)
{
const auto idx_size = sizeof(GregoryBasisControlLineIndices) / sizeof(GregoryBasisControlLineIndices[0]);
const auto idx = vertex_id % idx_size;
const auto patch_id = vertex_id / idx_size;
#ifdef OSD_PATCH_GREGORY_BASIS
const auto in = vertexBuffer[indicesBuffer[patch_id * VERTEX_CONTROL_POINTS_PER_PATCH + GregoryBasisControlLineIndices[idx]]];
#else
const auto in = vertexBuffer[patch_id * 20 + GregoryBasisControlLineIndices[idx]];
#endif
SolidColorVertex out;
out.positionOut = frameConsts.ModelViewProjectionMatrix * float4(in.position, 1.0);
out.positionOut.z -= 0.001;
if(idx > 22) {
out.setColor(half4(0,1,0,1));
}
else
{
out.setColor(half4(1,0,0,1));
}
return out;
}
#endif
#if OSD_PATCH_QUADS || OSD_PATCH_TRIANGLES
#if OSD_PATCH_QUADS
const constant uint triangleIdx[6] = {
0, 2, 1, 3, 2, 0
};
#endif
vertex OutputVertex vertex_main(
device unsigned* indicesBuffer [[buffer(INDICES_BUFFER_INDEX)]],
device PackedInputVertex* vertexBuffer [[buffer(VERTEX_BUFFER_INDEX)]],
const constant PerFrameConstants& frameConsts [[buffer(FRAME_CONST_BUFFER_INDEX)]],
const device float2* osdFaceVaryingData[[buffer(OSD_FVAR_DATA_BUFFER_INDEX)]],
const device int* osdFaceVaryingIndices[[buffer(OSD_FVAR_INDICES_BUFFER_INDEX)]],
uint vertex_id [[vertex_id]]
)
{
#if OSD_PATCH_QUADS
const auto quadId = vertex_id / 6;
#else
const auto primID = vertex_id / 3;
#endif
#if OSD_PATCH_QUADS
float3 p0 = vertexBuffer[indicesBuffer[quadId * 4 + 0]].position;
float3 p1 = vertexBuffer[indicesBuffer[quadId * 4 + 1]].position;
float3 p2 = vertexBuffer[indicesBuffer[quadId * 4 + 2]].position;
float3 position = vertexBuffer[indicesBuffer[quadId * 4 + triangleIdx[vertex_id % 6]]].position;
float2 uv = osdFaceVaryingData[osdFaceVaryingIndices[quadId * 4 + triangleIdx[vertex_id % 6]]].xy;
#else
float3 p0 = vertexBuffer[indicesBuffer[primID * 3 + 0]].position;
float3 p1 = vertexBuffer[indicesBuffer[primID * 3 + 1]].position;
float3 p2 = vertexBuffer[indicesBuffer[primID * 3 + 2]].position;
float3 position = vertexBuffer[indicesBuffer[vertex_id]].position;
float2 uv = osdFaceVaryingData[osdFaceVaryingIndices[vertex_id]].xy;
#endif
float3 normal = normalize(cross(p2 - p1, p0 - p1));
OutputVertex out;
out.position = (frameConsts.ModelViewMatrix * float4(position, 1.0)).xyz;
out.positionOut = frameConsts.ModelViewProjectionMatrix * float4(position, 1.0);
out.normal = (frameConsts.ModelViewMatrix * float4(normal, 0.0)).xyz;
#if SHADING_TYPE == SHADING_TYPE_PATCH_TYPE || SHADING_TYPE == SHADING_TYPE_PATCH_DEPTH || SHADING_TYPE == SHADING_TYPE_PATCH_COORD
out.patchColor = out.normal;
#elif SHADING_TYPE == SHADING_TYPE_FACE_VARYING_COLOR
out.patchColor.rg = uv;
#endif
return out;
}
vertex SolidColorVertex vertex_lines(
device unsigned* indicesBuffer [[buffer(INDICES_BUFFER_INDEX)]],
device PackedInputVertex* vertexBuffer [[buffer(VERTEX_BUFFER_INDEX)]],
const constant PerFrameConstants& frameConsts [[buffer(FRAME_CONST_BUFFER_INDEX)]],
uint vertex_id [[vertex_id]]
)
{
#if OSD_PATCH_QUADS
const auto quadId = vertex_id / 6;
#else
const auto primID = vertex_id / 3;
#endif
#if OSD_PATCH_QUADS
float3 position = vertexBuffer[indicesBuffer[quadId * 4 + triangleIdx[vertex_id % 6]]].position;
#else
float3 position = vertexBuffer[indicesBuffer[vertex_id]].position;
#endif
SolidColorVertex out;
out.positionOut = frameConsts.ModelViewProjectionMatrix * float4(position, 1.0);
return out;
}
#endif
fragment half4 fragment_solidcolor(SolidColorVertex in [[stage_in]])
{
return in.getColor();
}
fragment float4 fragment_main(OutputVertex in [[stage_in]],
const constant Light* lightData [[buffer(0)]],
const constant PerFrameConstants& frameConsts [[buffer(1)]],
const constant float4& shade [[buffer(2)]])
{
float4 color;
#if SHADING_TYPE == SHADING_TYPE_MATERIAL
const float3 diffuseColor = float3(0.4f, 0.4f, 0.8f);
#elif SHADING_TYPE == SHADING_TYPE_PATCH_TYPE || SHADING_TYPE == SHADING_TYPE_PATCH_DEPTH
const float3 diffuseColor = in.patchColor;
#endif
#if SHADING_TYPE == SHADING_TYPE_NORMAL
color.xyz = normalize(in.normal) * 0.5 + 0.5;
#elif SHADING_TYPE == SHADING_TYPE_PATCH_COORD || SHADING_TYPE == SHADING_TYPE_FACE_VARYING_COLOR
color.xyz = lighting(1.0, lightData, in.position, normalize(in.normal));
int checker = int(floor(20*in.patchColor.r)+floor(20*in.patchColor.g))&1;
color.xyz *= float3(in.patchColor.rg*checker, 1-checker);
color.xyz = pow(color.xyz, 1/2.2);
#else
color.xyz = lighting(diffuseColor, lightData, in.position, normalize(in.normal));
#endif
color.w = 1;
return max(color,shade);
}
|