1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
|
//
// Copyright 2021 Pixar
//
// Licensed under the Apache License, Version 2.0 (the "Apache License")
// with the following modification; you may not use this file except in
// compliance with the Apache License and the following modification to it:
// Section 6. Trademarks. is deleted and replaced with:
//
// 6. Trademarks. This License does not grant permission to use the trade
// names, trademarks, service marks, or product names of the Licensor
// and its affiliates, except as required to comply with Section 4(c) of
// the License and to reproduce the content of the NOTICE file.
//
// You may obtain a copy of the Apache License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the Apache License with the above modification is
// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the Apache License for the specific
// language governing permissions and limitations under the Apache License.
//
#include "./types.h"
#include "./bfrSurfaceEvaluator.h"
#include "./farPatchEvaluator.h"
#include "../../regression/common/far_utils.h"
#include "init_shapes.h"
#include "init_shapes_all.h"
#include <iostream>
#include <fstream>
#include <sstream>
#include <cassert>
#include <cstdio>
using namespace OpenSubdiv;
using namespace OpenSubdiv::OPENSUBDIV_VERSION;
//
// Global set of shapes -- populated by variants of initShapes() that
// include explicit lists:
//
std::vector<ShapeDesc> g_shapes;
//
// Command line arguments and their parsing:
//
class Args {
public:
// options related to testing and reporting:
unsigned int posEvaluate : 1;
unsigned int d1Evaluate : 1;
unsigned int d2Evaluate : 1;
unsigned int uvEvaluate : 1;
unsigned int posIgnore : 1;
unsigned int d1Ignore : 1;
unsigned int d2Ignore : 1;
unsigned int uvIgnore : 1;
unsigned int printArgs : 1;
unsigned int printProgress : 1;
unsigned int printFaceDiffs : 1;
unsigned int printSummary : 1;
unsigned int printWarnings : 1;
unsigned int ptexConvert : 1;
// options affecting configuration and execution:
unsigned int evalByStencils : 1;
unsigned int doublePrecision : 1;
unsigned int noCacheFlag : 1;
// options affecting the shape of the limit surface:
int depthSharp;
int depthSmooth;
int bndInterp;
int uvInterp;
// options related to tessellation and comparison:
int uniformRes;
float relTolerance;
float absTolerance;
float uvTolerance;
// options affecting the list of shapes to be tested:
int shapeCount;
Scheme shapeScheme;
bool shapesCat2Loop;
bool shapesAll;
std::vector<ShapeDesc> shapes;
// options determining overall success/failure:
int passCount;
public:
Args(int argc, char **argv) :
posEvaluate(true),
d1Evaluate(false),
d2Evaluate(false),
uvEvaluate(false),
posIgnore(false),
d1Ignore(false),
d2Ignore(false),
uvIgnore(false),
printArgs(true),
printProgress(true),
printFaceDiffs(false),
printSummary(true),
printWarnings(true),
ptexConvert(false),
evalByStencils(false),
doublePrecision(false),
noCacheFlag(false),
depthSharp(-1),
depthSmooth(-1),
bndInterp(-1),
uvInterp(-1),
uniformRes(3),
relTolerance(0.00005f),
absTolerance(0.0f),
uvTolerance(0.0001f),
shapeCount(0),
shapeScheme(kCatmark),
shapesCat2Loop(false),
shapesAll(false),
shapes(),
passCount(0) {
std::string fileString;
std::vector<std::string> shapeNames;
for (int i = 1; i < argc; ++i) {
char * arg = argv[i];
// Options related to input .obj files:
if (strstr(arg, ".obj")) {
if (readString(arg, fileString)) {
// Use the scheme declared at the time so that multiple
// shape/scheme pairs can be specified
shapes.push_back(
ShapeDesc(arg, fileString.c_str(), shapeScheme));
} else {
fprintf(stderr,
"Error: Unable to open/read .obj file '%s'\n", arg);
exit(0);
}
// Options affecting the limit surface shapes:
} else if (!strcmp(arg, "-l")) {
if (++i < argc) {
int maxLevel = atoi(argv[i]);
depthSharp = maxLevel;
depthSmooth = maxLevel;
}
} else if (!strcmp(arg, "-lsharp")) {
if (++i < argc) depthSharp = atoi(argv[i]);
} else if (!strcmp(arg, "-lsmooth")) {
if (++i < argc) depthSmooth = atoi(argv[i]);
} else if (!strcmp(argv[i], "-bint")) {
if (++i < argc) bndInterp = atoi(argv[i]);
} else if (!strcmp(argv[i], "-uvint")) {
if (++i < argc) uvInterp = atoi(argv[i]);
// Options affecting what gets evaluated:
} else if (!strcmp(arg, "-res")) {
if (++i < argc) uniformRes = atoi(argv[i]);
} else if (!strcmp(arg, "-pos")) {
posEvaluate = true;
} else if (!strcmp(arg, "-nopos")) {
posEvaluate = false;
} else if (!strcmp(arg, "-d1")) {
d1Evaluate = true;
} else if (!strcmp(arg, "-nod1")) {
d1Evaluate = false;
} else if (!strcmp(arg, "-d2")) {
d2Evaluate = true;
} else if (!strcmp(arg, "-nod2")) {
d2Evaluate = false;
} else if (!strcmp(arg, "-uv")) {
uvEvaluate = true;
} else if (!strcmp(arg, "-nouv")) {
uvEvaluate = false;
} else if (!strcmp(arg, "-ptex")) {
ptexConvert = true;
} else if (!strcmp(arg, "-noptex")) {
ptexConvert = false;
// Options affecting what gets compared and reported:
} else if (!strcmp(arg, "-skippos")) {
posIgnore = true;
} else if (!strcmp(arg, "-skipd1")) {
d1Ignore = true;
} else if (!strcmp(arg, "-skipd2")) {
d2Ignore = true;
} else if (!strcmp(arg, "-skipuv")) {
uvIgnore = true;
} else if (!strcmp(arg, "-faces")) {
printFaceDiffs = true;
// Options affecting comparison tolerances:
} else if (!strcmp(argv[i], "-reltol")) {
if (++i < argc) relTolerance = (float)atof(argv[i]);
} else if (!strcmp(argv[i], "-abstol")) {
if (++i < argc) absTolerance = (float)atof(argv[i]);
} else if (!strcmp(argv[i], "-uvtol")) {
if (++i < argc) uvTolerance = (float)atof(argv[i]);
// Options controlling other internal processing:
} else if (!strcmp(arg, "-stencils")) {
evalByStencils = true;
} else if (!strcmp(arg, "-double")) {
doublePrecision = true;
} else if (!strcmp(arg, "-nocache")) {
noCacheFlag = true;
// Options affecting the shapes to be included:
} else if (!strcmp(arg, "-bilinear")) {
shapeScheme = kBilinear;
} else if (!strcmp(arg, "-catmark")) {
shapeScheme = kCatmark;
} else if (!strcmp(arg, "-loop")) {
shapeScheme = kLoop;
} else if (!strcmp(arg, "-cat2loop")) {
shapesCat2Loop = true;
} else if (!strcmp(arg, "-count")) {
if (++i < argc) shapeCount = atoi(argv[i]);
} else if (!strcmp(arg, "-shape")) {
if (++i < argc) {
shapeNames.push_back(std::string(argv[i]));
}
} else if (!strcmp(arg, "-all")) {
shapesAll = true;
// Printing and reporting:
} else if (!strcmp(arg, "-args")) {
printArgs = true;
} else if (!strcmp(arg, "-noargs")) {
printArgs = false;
} else if (!strcmp(arg, "-prog")) {
printProgress = true;
} else if (!strcmp(arg, "-noprog")) {
printProgress = false;
} else if (!strcmp(arg, "-sum")) {
printSummary = true;
} else if (!strcmp(arg, "-nosum")) {
printSummary = false;
} else if (!strcmp(arg, "-quiet")) {
printWarnings = false;
} else if (!strcmp(arg, "-silent")) {
printArgs = false;
printProgress = false;
printSummary = false;
printWarnings = false;
// Success/failure of the entire test:
} else if (!strcmp(argv[i], "-pass")) {
if (++i < argc) passCount = atoi(argv[i]);
// Unrecognized...
} else {
fprintf(stderr, "Error: Unrecognized argument '%s'\n", arg);
exit(0);
}
}
// Validation -- possible conflicting options, values, etc.
if (bndInterp > 2) {
fprintf(stderr, "Warning: Ignoring bad value to -bint (%d)\n",
bndInterp);
bndInterp = -1;
}
if (uvInterp > 5) {
fprintf(stderr, "Warning: Ignoring bad value to -uvint (%d)\n",
uvInterp);
uvInterp = -1;
}
if (d2Evaluate) {
if (!d1Evaluate) {
fprintf(stderr, "Warning: 2nd deriv evaluation forces 1st.\n");
d1Evaluate = true;
}
if (!posEvaluate) {
fprintf(stderr, "Warning: 2nd deriv evaluation forces pos.\n");
posEvaluate = true;
}
} else if (d1Evaluate) {
if (!posEvaluate) {
fprintf(stderr, "Warning: 1st deriv evaluation forces pos.\n");
posEvaluate = true;
}
}
if (!posEvaluate && !uvEvaluate) {
fprintf(stderr, "Error: All pos and UV evaluation disabled.\n");
exit(0);
}
if (posIgnore && d1Ignore && d2Ignore && uvIgnore) {
fprintf(stderr, "Error: All pos and UV comparisons disabled.\n");
exit(0);
}
if ((depthSmooth == 0) || (depthSharp == 0)) {
fprintf(stderr,
"Warning: Far evaluation unstable with refinement level 0.\n");
}
// Managing the list of shapes:
assert(g_shapes.empty());
if (!shapeNames.empty()) {
if (shapesAll) {
initShapesAll(g_shapes);
} else {
initShapes(g_shapes);
}
// Maybe worth building a map -- for this and more...
for (size_t i = 0; i < shapeNames.size(); ++i) {
std::string & shapeName = shapeNames[i];
bool found = false;
for (size_t j = 0; !found && (j < g_shapes.size()); ++j) {
if (g_shapes[j].name == shapeName) {
shapes.push_back(g_shapes[j]);
found = true;
break;
}
}
if (!found) {
fprintf(stderr,
"Error: Specified shape '%s' not found.\n",
shapeName.c_str());
exit(0);
}
}
}
}
~Args() { }
void
Print() const {
char const * boolStrings[2] = { "false", "true" };
char const * bIntStrings[3] = { "BOUNDARY_NONE",
"BOUNDARY_EDGE_ONLY",
"BOUNDARY_EDGE_AND_CORNER" };
char const * fvIntStrings[6] = { "LINEAR_NONE",
"LINEAR_CORNERS_ONLY",
"LINEAR_CORNERS_PLUS1",
"LINEAR_CORNERS_PLUS2",
"LINEAR_BOUNDARIES",
"LINEAR_ALL" };
printf("\n");
printf("Shape options:\n");
if (depthSharp >= 0) {
printf(" - max level sharp = %d\n", depthSharp);
} else {
printf(" - max level sharp = %d (dflt)\n",
(Bfr::SurfaceFactory::Options()).GetApproxLevelSharp());
}
if (depthSmooth >= 0) {
printf(" - max level smooth = %d\n", depthSmooth);
} else {
printf(" - max level smooth = %d (dflt)\n",
(Bfr::SurfaceFactory::Options()).GetApproxLevelSmooth());
}
if (bndInterp < 0) {
printf(" - boundary interp = (as assigned)\n");
} else {
printf(" - boundary interp = %s\n", bIntStrings[bndInterp]);
}
if (uvEvaluate) {
if (uvInterp < 0) {
printf(" - UV linear interp = (as assigned)\n");
} else {
printf(" - UV linear interp = %s\n", fvIntStrings[uvInterp]);
}
}
printf("Evaluation options:\n");
printf(" - tessellation res = %d\n", uniformRes);
printf(" - position = %s\n", boolStrings[posEvaluate]);
printf(" - 1st derivative = %s\n", boolStrings[d1Evaluate]);
printf(" - 2nd derivative = %s\n", boolStrings[d2Evaluate]);
printf(" - UV = %s\n", boolStrings[uvEvaluate]);
printf("Comparison options:\n");
if (absTolerance > 0.0f) {
printf(" - tolerance (abs) = %g\n", absTolerance);
} else {
printf(" - tolerance (rel) = %g\n", relTolerance);
}
if (uvEvaluate) {
printf(" - tolerance UV = %g\n", uvTolerance);
}
if (posEvaluate && posIgnore) {
printf(" - ignore pos = %s\n", boolStrings[posIgnore]);
}
if (d1Evaluate && d1Ignore) {
printf(" - ignore 1st deriv = %s\n", boolStrings[d1Ignore]);
}
if (d2Evaluate && d2Ignore) {
printf(" - ignore 2nd deriv = %s\n", boolStrings[d2Ignore]);
}
if (uvEvaluate && uvIgnore) {
printf(" - ignore UV = %s\n", boolStrings[uvIgnore]);
}
printf("\n");
}
private:
Args() { }
bool
readString(const char *fileName, std::string& fileString) {
std::ifstream ifs(fileName);
if (ifs) {
std::stringstream ss;
ss << ifs.rdbuf();
ifs.close();
fileString = ss.str();
return true;
}
return false;
}
};
//
// Create a TopologyRefiner from a Shape:
//
template <typename REAL>
Far::TopologyRefiner *
createTopologyRefiner(ShapeDesc const & shapeDesc,
std::vector< Vec3<REAL> > & shapePos,
std::vector< Vec3<REAL> > & shapeUVs,
Args const & args) {
typedef Vec3<REAL> Vec3Real;
//
// Load the Shape -- skip with a warning on failure:
//
Shape * shape = Shape::parseObj(shapeDesc.data.c_str(),
shapeDesc.scheme,
shapeDesc.isLeftHanded);
if (shape == 0) {
if (args.printWarnings) {
fprintf(stderr, "Warning: Failed to parse shape '%s'\n",
shapeDesc.name.c_str());
}
return 0;
}
// Verify UVs before continuing:
if (args.uvEvaluate) {
if (shape->uvs.empty() != shape->faceuvs.empty()) {
if (args.printWarnings) {
fprintf(stderr,
"Warning: Incomplete UVs assigned to Shape '%s'\n",
shapeDesc.name.c_str());
}
delete shape;
return 0;
}
}
//
// Create a TopologyRefiner and load position and UVs:
//
Sdc::SchemeType sdcType = GetSdcType(*shape);
if (args.shapesCat2Loop && (sdcType == Sdc::SCHEME_LOOP)) {
if (args.printWarnings) {
fprintf(stderr,
"\t\tWarning: Applying Catmark to Loop shape '%s'\n",
shapeDesc.name.c_str());
}
sdcType = Sdc::SCHEME_CATMARK;
}
Sdc::Options sdcOptions = GetSdcOptions(*shape);
if (args.bndInterp >= 0) {
sdcOptions.SetVtxBoundaryInterpolation(
(Sdc::Options::VtxBoundaryInterpolation) args.bndInterp);
}
if (args.uvInterp >= 0) {
sdcOptions.SetFVarLinearInterpolation(
(Sdc::Options::FVarLinearInterpolation) args.uvInterp);
}
Far::TopologyRefiner * refiner =
Far::TopologyRefinerFactory<Shape>::Create(*shape,
Far::TopologyRefinerFactory<Shape>::Options(sdcType, sdcOptions));
if (refiner == 0) {
if (args.printWarnings) {
fprintf(stderr, "Warning: Unable to interpret Shape '%s'\n",
shapeDesc.name.c_str());
}
delete shape;
return 0;
}
int numVertices = refiner->GetNumVerticesTotal();
shapePos.resize(numVertices);
for (int i = 0; i < numVertices; ++i) {
shapePos[i] = Vec3Real(shape->verts[i*3],
shape->verts[i*3+1],
shape->verts[i*3+2]);
}
shapeUVs.resize(0);
if (args.uvEvaluate) {
if (refiner->GetNumFVarChannels()) {
int numUVs = refiner->GetNumFVarValuesTotal(0);
shapeUVs.resize(numUVs);
for (int i = 0; i < numUVs; ++i) {
shapeUVs[i] = Vec3Real(shape->uvs[i*2],
shape->uvs[i*2+1],
0.0f);
}
}
}
delete shape;
return refiner;
}
//
// Compute the bounding box of a Vec3 vector and a relative tolerance:
//
template <typename REAL>
REAL
GetRelativeTolerance(std::vector< Vec3<REAL> > const & p, REAL fraction) {
Vec3<REAL> pMin = p[0];
Vec3<REAL> pMax = p[0];
for (size_t i = 1; i < p.size(); ++i) {
Vec3<REAL> const & pi = p[i];
pMin[0] = std::min(pMin[0], pi[0]);
pMin[1] = std::min(pMin[1], pi[1]);
pMin[2] = std::min(pMin[2], pi[2]);
pMax[0] = std::max(pMax[0], pi[0]);
pMax[1] = std::max(pMax[1], pi[1]);
pMax[2] = std::max(pMax[2], pi[2]);
}
Vec3<REAL> pDelta = pMax - pMin;
REAL maxSize = std::max(std::abs(pDelta[0]), std::abs(pDelta[1]));
maxSize = std::max(maxSize, std::abs(pDelta[2]));
return fraction * maxSize;
}
//
// An independent test from limit surface evaluation: comparing the
// conversion of (u,v) coordinates for Bfr::Parameterization to Ptex
// and back (subject to a given tolerance):
//
template <typename REAL>
void
ValidatePtexConversion(Bfr::Parameterization const & param,
REAL const givenCoord[2], REAL tol = 0.0001f) {
if (!param.HasSubFaces()) return;
//
// Convert the given (u,v) coordinate to Ptex and back and
// compare the final result to the original:
//
REAL ptexCoord[2];
REAL finalCoord[2];
int ptexFace = param.ConvertCoordToNormalizedSubFace(givenCoord, ptexCoord);
param.ConvertNormalizedSubFaceToCoord(ptexFace, ptexCoord, finalCoord);
bool subFaceDiff = (ptexFace != param.GetSubFace(givenCoord));
bool uCoordDiff = (std::abs(finalCoord[0] - givenCoord[0]) > tol);
bool vCoordDiff = (std::abs(finalCoord[1] - givenCoord[1]) > tol);
if (subFaceDiff || uCoordDiff || vCoordDiff) {
fprintf(stderr,
"Warning: Mismatch in sub-face Parameterization conversion:\n");
if (subFaceDiff ) {
fprintf(stderr,
" converted sub-face (%d) != original (%d)\n",
ptexFace, param.GetSubFace(givenCoord));
}
if (uCoordDiff || vCoordDiff) {
fprintf(stderr,
" converted coord (%f,%f) != original (%f,%f)\n",
finalCoord[0], finalCoord[1], givenCoord[0], givenCoord[1]);
}
}
}
//
// Compare two meshes using Bfr::Surfaces and a Far::PatchTable:
//
template <typename REAL>
int
testMesh(Far::TopologyRefiner const & mesh,
std::string const & meshName,
std::vector< Vec3<REAL> > const & meshPos,
std::vector< Vec3<REAL> > const & meshUVs,
Args const & args) {
//
// Determine what to evaluate/compare based on args and mesh content
// (remember that these are not completely independent -- position
// evaluation will have been set if evaluating any derivatives):
//
bool evalPos = args.posEvaluate;
bool evalD1 = args.d1Evaluate;
bool evalD2 = args.d2Evaluate;
bool evalUV = args.uvEvaluate && (meshUVs.size() > 0);
bool comparePos = evalPos && !args.posIgnore;
bool compareD1 = evalD1 && !args.d1Ignore;
bool compareD2 = evalD2 && !args.d2Ignore;
bool compareUV = evalUV && !args.uvIgnore;
// If nothing to compare, return 0 failures:
if ((comparePos + compareD1 + compareD2 + compareUV) == 0) {
return 0;
}
// Declare/allocate output evaluation buffers for both Bfr and Far:
std::vector<REAL> evalCoords;
EvalResults<REAL> bfrResults;
bfrResults.evalPosition = evalPos;
bfrResults.eval1stDeriv = evalD1;
bfrResults.eval2ndDeriv = evalD2;
bfrResults.evalUV = evalUV;
bfrResults.useStencils = args.evalByStencils;
EvalResults<REAL> farResults;
farResults.evalPosition = evalPos;
farResults.eval1stDeriv = evalD1;
farResults.eval2ndDeriv = evalD2;
farResults.evalUV = evalUV;
//
// Create evaluators for Bfr and Far -- using the same set of Bfr
// options to ensure consistency (the Far evaluator needs to interpret
// them appropriate to Far::PatchTable and associated refinement)
//
Bfr::SurfaceFactory::Options surfaceOptions;
// Leave approximation defaults in place unless explicitly overridden:
if (args.depthSharp >= 0) {
surfaceOptions.SetApproxLevelSharp(args.depthSharp);
}
if (args.depthSmooth >= 0) {
surfaceOptions.SetApproxLevelSmooth(args.depthSmooth);
}
surfaceOptions.SetDefaultFVarID(0);
surfaceOptions.EnableCaching(!args.noCacheFlag);
BfrSurfaceEvaluator<REAL> bfrEval(mesh, meshPos, meshUVs, surfaceOptions);
FarPatchEvaluator<REAL> farEval(mesh, meshPos, meshUVs, surfaceOptions);
//
// Initialize tolerances and variables to track differences:
//
REAL pTol = (args.absTolerance > 0.0f) ? args.absTolerance :
GetRelativeTolerance<REAL>(meshPos, args.relTolerance);
REAL d1Tol = pTol * 5.0f;
REAL d2Tol = d1Tol * 5.0f;
REAL uvTol = args.uvTolerance;
VectorDelta<REAL> pDelta(pTol);
VectorDelta<REAL> duDelta(d1Tol);
VectorDelta<REAL> dvDelta(d1Tol);
VectorDelta<REAL> duuDelta(d2Tol);
VectorDelta<REAL> duvDelta(d2Tol);
VectorDelta<REAL> dvvDelta(d2Tol);
VectorDelta<REAL> uvDelta(uvTol);
FaceDelta<REAL> faceDelta;
MeshDelta<REAL> meshDelta;
bool meshHasBeenLabeled = false;
int numFaces = mesh.GetNumFacesTotal();
for (int faceIndex = 0; faceIndex < numFaces; ++faceIndex) {
//
// Make sure both match in terms of identifying a limit surface:
//
assert(bfrEval.FaceHasLimit(faceIndex) ==
farEval.FaceHasLimit(faceIndex));
if (!farEval.FaceHasLimit(faceIndex)) continue;
//
// Declare/define a Tessellation to generate a consistent set of
// (u,v) locations to compare and evaluate:
//
int faceSize = mesh.GetLevel(0).GetFaceVertices(faceIndex).size();
Bfr::Parameterization faceParam(mesh.GetSchemeType(), faceSize);
assert(faceParam.IsValid());
Bfr::Tessellation faceTess(faceParam, args.uniformRes);
assert(faceTess.IsValid());
evalCoords.resize(2 * faceTess.GetNumCoords());
faceTess.GetCoords(&evalCoords[0]);
//
// Before evaluating and comparing, run the test to convert the
// parametric coords to Ptex and back:
//
if (args.ptexConvert) {
for (int i = 0; i < faceTess.GetNumCoords(); ++i) {
ValidatePtexConversion<REAL>(faceParam, &evalCoords[2*i]);
}
}
//
// Evaluate and capture results of comparisons between results:
//
bfrEval.Evaluate(faceIndex, evalCoords, bfrResults);
farEval.Evaluate(faceIndex, evalCoords, farResults);
if (comparePos) {
pDelta.Compare(bfrResults.p, farResults.p);
}
if (compareD1) {
duDelta.Compare(bfrResults.du, farResults.du);
dvDelta.Compare(bfrResults.dv, farResults.dv);
}
if (compareD2) {
duuDelta.Compare(bfrResults.duu, farResults.duu);
duvDelta.Compare(bfrResults.duv, farResults.duv);
dvvDelta.Compare(bfrResults.dvv, farResults.dvv);
}
if (compareUV) {
uvDelta.Compare(bfrResults.uv, farResults.uv);
}
//
// Note collective differences for this face and report:
//
faceDelta.Clear();
faceDelta.AddPDelta(pDelta);
faceDelta.AddDuDelta(duDelta);
faceDelta.AddDvDelta(dvDelta);
faceDelta.AddDuuDelta(duuDelta);
faceDelta.AddDuvDelta(duvDelta);
faceDelta.AddDvvDelta(dvvDelta);
faceDelta.AddUVDelta(uvDelta);
if (args.printFaceDiffs && faceDelta.hasDeltas) {
if (!meshHasBeenLabeled) {
meshHasBeenLabeled = true;
printf("'%s':\n", meshName.c_str());
}
printf("\t Face %d:\n", faceIndex);
if (comparePos && faceDelta.numPDeltas) {
printf("\t\t POS:%6d diffs, max delta P = %g\n",
faceDelta.numPDeltas, (float) faceDelta.maxPDelta);
}
if (compareD1 && faceDelta.numD1Deltas) {
printf("\t\t D1:%6d diffs, max delta D1 = %g\n",
faceDelta.numD1Deltas, (float) faceDelta.maxD1Delta);
}
if (compareD2 && faceDelta.numD2Deltas) {
printf("\t\t D2:%6d diffs, max delta D2 = %g\n",
faceDelta.numD2Deltas, (float) faceDelta.maxD2Delta);
}
if (compareUV && faceDelta.hasUVDeltas) {
printf("\t\t UV:%6d diffs, max delta UV = %g\n",
uvDelta.numDeltas, (float) uvDelta.maxDelta);
}
}
// Add the results for this face to the collective mesh delta:
meshDelta.AddFace(faceDelta);
}
//
// Report the differences for this mesh:
//
if (meshDelta.numFacesWithDeltas) {
if (args.printFaceDiffs) {
printf("\t Total:\n");
} else {
printf("'%s':\n", meshName.c_str());
}
}
if (comparePos && meshDelta.numFacesWithPDeltas) {
printf("\t\tPOS diffs:%6d faces, max delta P = %g\n",
meshDelta.numFacesWithPDeltas, (float) meshDelta.maxPDelta);
}
if (compareD1 && meshDelta.numFacesWithD1Deltas) {
printf("\t\t D1 diffs:%6d faces, max delta D1 = %g\n",
meshDelta.numFacesWithD1Deltas, (float) meshDelta.maxD1Delta);
}
if (compareD2 && meshDelta.numFacesWithD2Deltas) {
printf("\t\t D2 diffs:%6d faces, max delta D2 = %g\n",
meshDelta.numFacesWithD2Deltas, (float) meshDelta.maxD2Delta);
}
if (compareUV && meshDelta.numFacesWithUVDeltas) {
printf("\t\t UV diffs:%6d faces, max delta UV = %g\n",
meshDelta.numFacesWithUVDeltas, (float) meshDelta.maxUVDelta);
}
return meshDelta.numFacesWithDeltas;
}
//
// Run the comparison for a given Shape in single or double precision:
//
template <typename REAL>
int
testShape(ShapeDesc const & shapeDesc, Args const & args) {
//
// Get the TopologyRefiner, positions and UVs for the Shape, report
// failure to generate the shape, and run the test:
//
std::string const & meshName = shapeDesc.name;
std::vector< Vec3<REAL> > basePos;
std::vector< Vec3<REAL> > baseUV;
Far::TopologyRefiner * refiner =
createTopologyRefiner<REAL>(shapeDesc, basePos, baseUV, args);
if (refiner == 0) {
if (args.printWarnings) {
fprintf(stderr,
"Warning: Shape '%s' ignored (unable to construct refiner)\n",
meshName.c_str());
}
return -1;
}
int nFailures = testMesh<REAL>(*refiner, meshName, basePos, baseUV, args);
delete refiner;
return nFailures;
}
//
// Run comparison tests on a list of shapes using command line options:
//
int
main(int argc, char **argv) {
Args args(argc, argv);
// Capture relevant command line options used here:
if (args.printArgs) {
args.Print();
}
//
// Initialize the list of shapes and test each (or only the first):
//
// - currently the internal list can be overridden on the command
// line (so use of wildcards is possible)
//
// - still exploring additional command line options, e.g. hoping
// to specify a list of shape names from the internal list...
//
// So a bit more to be done here...
//
std::vector<ShapeDesc>& shapeList = g_shapes;
if (!args.shapes.empty()) {
shapeList.swap(args.shapes);
}
if (shapeList.empty()) {
if (args.shapesAll) {
initShapesAll(shapeList);
} else {
initShapes(shapeList);
}
}
int shapesToTest = (int) shapeList.size();
int shapesIgnored = 0;
if ((args.shapeCount > 0) && (args.shapeCount < shapesToTest)) {
shapesIgnored = shapesToTest - args.shapeCount;
shapesToTest = args.shapeCount;
}
if (args.printProgress) {
printf("Testing %d shapes", shapesToTest);
if (shapesIgnored) {
printf(" (%d ignored)", shapesIgnored);
}
printf(":\n");
}
//
// Run the comparison test for each shape (ShapeDesc) in the
// specified precision and report results:
//
int shapesFailed = 0;
for (int shapeIndex = 0; shapeIndex < shapesToTest; ++shapeIndex) {
ShapeDesc & shapeDesc = shapeList[shapeIndex];
if (args.printProgress) {
printf("%4d of %d: '%s'\n", 1 + shapeIndex, shapesToTest,
shapeDesc.name.c_str());
}
int nFailures = args.doublePrecision ?
testShape<double>(shapeDesc, args) :
testShape<float>(shapeDesc, args);
if (nFailures < 0) {
// Possible error/warning...?
++ shapesFailed;
}
if (nFailures > 0) {
++ shapesFailed;
}
}
if (args.printSummary) {
printf("\n");
if (shapesFailed == 0) {
printf("All tests passed for %d shapes\n", shapesToTest);
} else {
printf("Total failures: %d of %d shapes\n", shapesFailed,
shapesToTest);
}
}
return (shapesFailed == args.passCount) ? EXIT_SUCCESS : EXIT_FAILURE;
}
|