1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
|
// Copyright The OpenTelemetry Authors
// SPDX-License-Identifier: Apache-2.0
#include <gtest/gtest.h>
#include <stddef.h>
#include <algorithm>
#include <atomic>
#include <cassert>
#include <cstdint>
#include <functional>
#include <initializer_list>
#include <memory>
#include <random>
#include <string>
#include <thread>
#include <vector>
#include "opentelemetry/sdk/common/atomic_unique_ptr.h"
#include "opentelemetry/sdk/common/circular_buffer.h"
#include "opentelemetry/sdk/common/circular_buffer_range.h"
using opentelemetry::sdk::common::AtomicUniquePtr;
using opentelemetry::sdk::common::CircularBuffer;
using opentelemetry::sdk::common::CircularBufferRange;
static thread_local std::mt19937 RandomNumberGenerator{std::random_device{}()};
static void GenerateRandomNumbers(CircularBuffer<uint32_t> &buffer,
std::vector<uint32_t> &numbers,
int n)
{
for (int i = 0; i < n; ++i)
{
auto value = static_cast<uint32_t>(RandomNumberGenerator());
std::unique_ptr<uint32_t> x{new uint32_t{value}};
if (buffer.Add(x))
{
numbers.push_back(value);
}
}
}
static void RunNumberProducers(CircularBuffer<uint32_t> &buffer,
std::vector<uint32_t> &numbers,
int num_threads,
int n)
{
std::vector<std::vector<uint32_t>> thread_numbers(num_threads);
std::vector<std::thread> threads(num_threads);
for (int thread_index = 0; thread_index < num_threads; ++thread_index)
{
threads[thread_index] = std::thread{GenerateRandomNumbers, std::ref(buffer),
std::ref(thread_numbers[thread_index]), n};
}
for (auto &thread : threads)
{
thread.join();
}
for (int thread_index = 0; thread_index < num_threads; ++thread_index)
{
numbers.insert(numbers.end(), thread_numbers[thread_index].begin(),
thread_numbers[thread_index].end());
}
}
void RunNumberConsumer(CircularBuffer<uint32_t> &buffer,
std::atomic<bool> &exit,
std::vector<uint32_t> &numbers)
{
while (true)
{
if (exit && buffer.Peek().empty())
{
return;
}
auto n = std::uniform_int_distribution<size_t>{0, buffer.Peek().size()}(RandomNumberGenerator);
buffer.Consume(n, [&](CircularBufferRange<AtomicUniquePtr<uint32_t>> range) noexcept {
assert(range.size() == n);
range.ForEach([&](AtomicUniquePtr<uint32_t> &ptr) noexcept {
assert(!ptr.IsNull());
numbers.push_back(*ptr);
ptr.Reset();
return true;
});
});
}
}
TEST(CircularBufferTest, Add)
{
CircularBuffer<int> buffer{10};
std::unique_ptr<int> x{new int{11}};
EXPECT_TRUE(buffer.Add(x));
EXPECT_EQ(x, nullptr);
auto range = buffer.Peek();
EXPECT_EQ(range.size(), 1);
range.ForEach([](const AtomicUniquePtr<int> &y) {
EXPECT_EQ(*y, 11);
return true;
});
}
TEST(CircularBufferTest, Clear)
{
CircularBuffer<int> buffer{10};
std::unique_ptr<int> x{new int{11}};
EXPECT_TRUE(buffer.Add(x));
EXPECT_EQ(x, nullptr);
buffer.Clear();
EXPECT_TRUE(buffer.empty());
}
TEST(CircularBufferTest, AddOnFull)
{
CircularBuffer<int> buffer{10};
for (int i = 0; i < static_cast<int>(buffer.max_size()); ++i)
{
std::unique_ptr<int> x{new int{i}};
EXPECT_TRUE(buffer.Add(x));
}
std::unique_ptr<int> x{new int{33}};
EXPECT_FALSE(buffer.Add(x));
EXPECT_NE(x, nullptr);
EXPECT_EQ(*x, 33);
}
TEST(CircularBufferTest, Consume)
{
CircularBuffer<int> buffer{10};
for (int i = 0; i < static_cast<int>(buffer.max_size()); ++i)
{
std::unique_ptr<int> x{new int{i}};
EXPECT_TRUE(buffer.Add(x));
}
int count = 0;
buffer.Consume(5, [&](CircularBufferRange<AtomicUniquePtr<int>> range) noexcept {
range.ForEach([&](AtomicUniquePtr<int> &ptr) {
EXPECT_EQ(*ptr, count++);
ptr.Reset();
return true;
});
});
EXPECT_EQ(count, 5);
}
TEST(CircularBufferTest, Simulation)
{
const int num_producer_threads = 4;
const int n = 25000;
for (size_t max_size : {1, 2, 10, 50, 100, 1000})
{
CircularBuffer<uint32_t> buffer{max_size};
std::vector<uint32_t> producer_numbers;
std::vector<uint32_t> consumer_numbers;
auto producers = std::thread{RunNumberProducers, std::ref(buffer), std::ref(producer_numbers),
num_producer_threads, n};
std::atomic<bool> exit{false};
auto consumer = std::thread{RunNumberConsumer, std::ref(buffer), std::ref(exit),
std::ref(consumer_numbers)};
producers.join();
exit = true;
consumer.join();
std::sort(producer_numbers.begin(), producer_numbers.end());
std::sort(consumer_numbers.begin(), consumer_numbers.end());
EXPECT_EQ(producer_numbers.size(), consumer_numbers.size());
EXPECT_EQ(producer_numbers, consumer_numbers);
}
}
|