1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
|
// Copyright The OpenTelemetry Authors
// SPDX-License-Identifier: Apache-2.0
#include "opentelemetry/sdk/metrics/aggregation/aggregation.h"
#include <gtest/gtest.h>
#include <stdint.h>
#include <limits>
#include <string>
#include <vector>
#include "opentelemetry/nostd/variant.h"
#include "opentelemetry/sdk/metrics/aggregation/aggregation_config.h"
#include "opentelemetry/sdk/metrics/aggregation/base2_exponential_histogram_aggregation.h"
#include "opentelemetry/sdk/metrics/aggregation/default_aggregation.h"
#include "opentelemetry/sdk/metrics/aggregation/histogram_aggregation.h"
#include "opentelemetry/sdk/metrics/aggregation/lastvalue_aggregation.h"
#include "opentelemetry/sdk/metrics/aggregation/sum_aggregation.h"
#include "opentelemetry/sdk/metrics/data/circular_buffer.h"
#include "opentelemetry/sdk/metrics/data/point_data.h"
#include "opentelemetry/sdk/metrics/instruments.h"
using namespace opentelemetry::sdk::metrics;
namespace nostd = opentelemetry::nostd;
TEST(Aggregation, LongSumAggregation)
{
LongSumAggregation aggr(true);
auto data = aggr.ToPoint();
ASSERT_TRUE(nostd::holds_alternative<SumPointData>(data));
auto sum_data = nostd::get<SumPointData>(data);
ASSERT_TRUE(nostd::holds_alternative<int64_t>(sum_data.value_));
EXPECT_EQ(nostd::get<int64_t>(sum_data.value_), 0);
aggr.Aggregate(static_cast<int64_t>(12), {});
aggr.Aggregate(static_cast<int64_t>(0), {});
sum_data = nostd::get<SumPointData>(aggr.ToPoint());
EXPECT_EQ(nostd::get<int64_t>(sum_data.value_), 12);
}
TEST(Aggregation, DoubleSumAggregation)
{
DoubleSumAggregation aggr(true);
auto data = aggr.ToPoint();
ASSERT_TRUE(nostd::holds_alternative<SumPointData>(data));
auto sum_data = nostd::get<SumPointData>(data);
ASSERT_TRUE(nostd::holds_alternative<double>(sum_data.value_));
EXPECT_EQ(nostd::get<double>(sum_data.value_), 0);
aggr.Aggregate(12.0, {});
aggr.Aggregate(1.0, {});
sum_data = nostd::get<SumPointData>(aggr.ToPoint());
EXPECT_EQ(nostd::get<double>(sum_data.value_), 13.0);
}
TEST(Aggregation, LongLastValueAggregation)
{
LongLastValueAggregation aggr;
auto data = aggr.ToPoint();
ASSERT_TRUE(nostd::holds_alternative<LastValuePointData>(data));
auto lastvalue_data = nostd::get<LastValuePointData>(data);
ASSERT_TRUE(nostd::holds_alternative<int64_t>(lastvalue_data.value_));
EXPECT_EQ(lastvalue_data.is_lastvalue_valid_, false);
aggr.Aggregate(static_cast<int64_t>(12), {});
aggr.Aggregate(static_cast<int64_t>(1), {});
lastvalue_data = nostd::get<LastValuePointData>(aggr.ToPoint());
EXPECT_EQ(nostd::get<int64_t>(lastvalue_data.value_), 1.0);
}
TEST(Aggregation, DoubleLastValueAggregation)
{
DoubleLastValueAggregation aggr;
auto data = aggr.ToPoint();
ASSERT_TRUE(nostd::holds_alternative<LastValuePointData>(data));
auto lastvalue_data = nostd::get<LastValuePointData>(data);
ASSERT_TRUE(nostd::holds_alternative<double>(lastvalue_data.value_));
EXPECT_EQ(lastvalue_data.is_lastvalue_valid_, false);
aggr.Aggregate(12.0, {});
aggr.Aggregate(1.0, {});
lastvalue_data = nostd::get<LastValuePointData>(aggr.ToPoint());
EXPECT_EQ(nostd::get<double>(lastvalue_data.value_), 1.0);
}
TEST(Aggregation, LongHistogramAggregation)
{
LongHistogramAggregation aggr;
auto data = aggr.ToPoint();
ASSERT_TRUE(nostd::holds_alternative<HistogramPointData>(data));
auto histogram_data = nostd::get<HistogramPointData>(data);
ASSERT_TRUE(nostd::holds_alternative<int64_t>(histogram_data.sum_));
EXPECT_EQ(nostd::get<int64_t>(histogram_data.sum_), 0);
EXPECT_EQ(histogram_data.count_, 0);
aggr.Aggregate(static_cast<int64_t>(12), {}); // lies in third bucket
aggr.Aggregate(static_cast<int64_t>(100), {}); // lies in sixth bucket
histogram_data = nostd::get<HistogramPointData>(aggr.ToPoint());
EXPECT_EQ(nostd::get<int64_t>(histogram_data.min_), 12);
EXPECT_EQ(nostd::get<int64_t>(histogram_data.max_), 100);
EXPECT_EQ(nostd::get<int64_t>(histogram_data.sum_), 112);
EXPECT_EQ(histogram_data.count_, 2);
EXPECT_EQ(histogram_data.counts_[3], 1);
EXPECT_EQ(histogram_data.counts_[6], 1);
aggr.Aggregate(static_cast<int64_t>(13), {}); // lies in third bucket
aggr.Aggregate(static_cast<int64_t>(252), {}); // lies in eight bucket
histogram_data = nostd::get<HistogramPointData>(aggr.ToPoint());
EXPECT_EQ(histogram_data.count_, 4);
EXPECT_EQ(histogram_data.counts_[3], 2);
EXPECT_EQ(histogram_data.counts_[8], 1);
EXPECT_EQ(nostd::get<int64_t>(histogram_data.min_), 12);
EXPECT_EQ(nostd::get<int64_t>(histogram_data.max_), 252);
// Merge
LongHistogramAggregation aggr1;
aggr1.Aggregate(static_cast<int64_t>(1), {});
aggr1.Aggregate(static_cast<int64_t>(11), {});
aggr1.Aggregate(static_cast<int64_t>(26), {});
LongHistogramAggregation aggr2;
aggr2.Aggregate(static_cast<int64_t>(2), {});
aggr2.Aggregate(static_cast<int64_t>(3), {});
aggr2.Aggregate(static_cast<int64_t>(13), {});
aggr2.Aggregate(static_cast<int64_t>(28), {});
aggr2.Aggregate(static_cast<int64_t>(105), {});
auto aggr3 = aggr1.Merge(aggr2);
histogram_data = nostd::get<HistogramPointData>(aggr3->ToPoint());
EXPECT_EQ(histogram_data.count_, 8); // 3 each from aggr1 and aggr2
EXPECT_EQ(histogram_data.counts_[1], 3); // 1, 2, 3
EXPECT_EQ(histogram_data.counts_[3], 2); // 11, 13
EXPECT_EQ(histogram_data.counts_[4], 2); // 25, 28
EXPECT_EQ(histogram_data.counts_[7], 1); // 105
EXPECT_EQ(nostd::get<int64_t>(histogram_data.min_), 1);
EXPECT_EQ(nostd::get<int64_t>(histogram_data.max_), 105);
// Diff
auto aggr4 = aggr1.Diff(aggr2);
histogram_data = nostd::get<HistogramPointData>(aggr4->ToPoint());
EXPECT_EQ(histogram_data.count_, 2); // aggr2:5 - aggr1:3
EXPECT_EQ(histogram_data.counts_[1], 1); // aggr2(2, 3) - aggr1(1)
EXPECT_EQ(histogram_data.counts_[3], 0); // aggr2(13) - aggr1(11)
EXPECT_EQ(histogram_data.counts_[4], 0); // aggr2(28) - aggr1(25)
EXPECT_EQ(histogram_data.counts_[7], 1); // aggr2(105) - aggr1(0)
}
TEST(Aggregation, LongHistogramAggregationBoundaries)
{
std::shared_ptr<opentelemetry::sdk::metrics::HistogramAggregationConfig> aggregation_config{
new opentelemetry::sdk::metrics::HistogramAggregationConfig};
std::vector<double> user_boundaries = {0.0, 50.0, 100.0, 250.0, 500.0,
750.0, 1000.0, 2500.0, 5000.0, 10000.0};
aggregation_config->boundaries_ = user_boundaries;
LongHistogramAggregation aggr{aggregation_config.get()};
auto data = aggr.ToPoint();
ASSERT_TRUE(nostd::holds_alternative<HistogramPointData>(data));
auto histogram_data = nostd::get<HistogramPointData>(data);
EXPECT_EQ(histogram_data.boundaries_, user_boundaries);
}
TEST(Aggregation, DoubleHistogramAggregationBoundaries)
{
std::shared_ptr<opentelemetry::sdk::metrics::HistogramAggregationConfig> aggregation_config{
new opentelemetry::sdk::metrics::HistogramAggregationConfig};
std::vector<double> user_boundaries = {0.0, 50.0, 100.0, 250.0, 500.0,
750.0, 1000.0, 2500.0, 5000.0, 10000.0};
aggregation_config->boundaries_ = user_boundaries;
DoubleHistogramAggregation aggr{aggregation_config.get()};
auto data = aggr.ToPoint();
ASSERT_TRUE(nostd::holds_alternative<HistogramPointData>(data));
auto histogram_data = nostd::get<HistogramPointData>(data);
EXPECT_EQ(histogram_data.boundaries_, user_boundaries);
}
TEST(Aggregation, DoubleHistogramAggregation)
{
DoubleHistogramAggregation aggr;
auto data = aggr.ToPoint();
ASSERT_TRUE(nostd::holds_alternative<HistogramPointData>(data));
auto histogram_data = nostd::get<HistogramPointData>(data);
ASSERT_TRUE(nostd::holds_alternative<double>(histogram_data.sum_));
EXPECT_EQ(nostd::get<double>(histogram_data.sum_), 0);
EXPECT_EQ(histogram_data.count_, 0);
aggr.Aggregate(12.0, {}); // lies in third bucket
aggr.Aggregate(100.0, {}); // lies in sixth bucket
histogram_data = nostd::get<HistogramPointData>(aggr.ToPoint());
EXPECT_EQ(nostd::get<double>(histogram_data.sum_), 112);
EXPECT_EQ(histogram_data.count_, 2);
EXPECT_EQ(histogram_data.counts_[3], 1);
EXPECT_EQ(histogram_data.counts_[6], 1);
EXPECT_EQ(nostd::get<double>(histogram_data.min_), 12);
EXPECT_EQ(nostd::get<double>(histogram_data.max_), 100);
aggr.Aggregate(13.0, {}); // lies in third bucket
aggr.Aggregate(252.0, {}); // lies in eight bucket
histogram_data = nostd::get<HistogramPointData>(aggr.ToPoint());
EXPECT_EQ(histogram_data.count_, 4);
EXPECT_EQ(histogram_data.counts_[3], 2);
EXPECT_EQ(histogram_data.counts_[8], 1);
EXPECT_EQ(nostd::get<double>(histogram_data.sum_), 377);
EXPECT_EQ(nostd::get<double>(histogram_data.min_), 12);
EXPECT_EQ(nostd::get<double>(histogram_data.max_), 252);
// Merge
DoubleHistogramAggregation aggr1;
aggr1.Aggregate(1.0, {});
aggr1.Aggregate(11.0, {});
aggr1.Aggregate(25.1, {});
DoubleHistogramAggregation aggr2;
aggr2.Aggregate(2.0, {});
aggr2.Aggregate(3.0, {});
aggr2.Aggregate(13.0, {});
aggr2.Aggregate(28.1, {});
aggr2.Aggregate(105.0, {});
auto aggr3 = aggr1.Merge(aggr2);
histogram_data = nostd::get<HistogramPointData>(aggr3->ToPoint());
EXPECT_EQ(histogram_data.count_, 8); // 3 each from aggr1 and aggr2
EXPECT_EQ(histogram_data.counts_[1], 3); // 1.0, 2.0, 3.0
EXPECT_EQ(histogram_data.counts_[3], 2); // 11.0, 13.0
EXPECT_EQ(histogram_data.counts_[4], 2); // 25.1, 28.1
EXPECT_EQ(histogram_data.counts_[7], 1); // 105.0
EXPECT_EQ(nostd::get<double>(histogram_data.min_), 1);
EXPECT_EQ(nostd::get<double>(histogram_data.max_), 105);
// Diff
auto aggr4 = aggr1.Diff(aggr2);
histogram_data = nostd::get<HistogramPointData>(aggr4->ToPoint());
EXPECT_EQ(histogram_data.count_, 2); // aggr2:5 - aggr1:3
EXPECT_EQ(histogram_data.counts_[1], 1); // aggr2(2.0, 3.0) - aggr1(1.0)
EXPECT_EQ(histogram_data.counts_[3], 0); // aggr2(13.0) - aggr1(11.0)
EXPECT_EQ(histogram_data.counts_[4], 0); // aggr2(28.1) - aggr1(25.1)
EXPECT_EQ(histogram_data.counts_[7], 1); // aggr2(105.0) - aggr1(0)
}
TEST(Aggregation, Base2ExponentialHistogramAggregation)
{
// Low res histo
auto SCALE0 = 0;
auto MAX_BUCKETS0 = 7;
Base2ExponentialHistogramAggregationConfig scale0_config;
scale0_config.max_scale_ = SCALE0;
scale0_config.max_buckets_ = MAX_BUCKETS0;
scale0_config.record_min_max_ = true;
Base2ExponentialHistogramAggregation scale0_aggr(&scale0_config);
auto point = scale0_aggr.ToPoint();
ASSERT_TRUE(nostd::holds_alternative<Base2ExponentialHistogramPointData>(point));
auto histo_point = nostd::get<Base2ExponentialHistogramPointData>(point);
EXPECT_EQ(histo_point.count_, 0);
EXPECT_EQ(histo_point.sum_, 0.0);
EXPECT_EQ(histo_point.zero_count_, 0);
EXPECT_EQ(histo_point.min_, (std::numeric_limits<double>::max)());
EXPECT_EQ(histo_point.max_, (std::numeric_limits<double>::min)());
EXPECT_EQ(histo_point.scale_, SCALE0);
EXPECT_EQ(histo_point.max_buckets_, MAX_BUCKETS0);
ASSERT_TRUE(histo_point.positive_buckets_ != nullptr);
ASSERT_TRUE(histo_point.negative_buckets_ != nullptr);
ASSERT_TRUE(histo_point.positive_buckets_->Empty());
ASSERT_TRUE(histo_point.negative_buckets_->Empty());
// Create a new aggreagte based in point data
{
const auto &point_data = histo_point;
Base2ExponentialHistogramAggregation scale0_aggr2(point_data);
scale0_aggr2.Aggregate(0.0, {});
auto histo_point2 = nostd::get<Base2ExponentialHistogramPointData>(point);
EXPECT_EQ(histo_point2.count_, 0);
EXPECT_EQ(histo_point2.sum_, 0.0);
EXPECT_EQ(histo_point2.zero_count_, 0);
EXPECT_EQ(histo_point2.min_, (std::numeric_limits<double>::max)());
EXPECT_EQ(histo_point2.max_, (std::numeric_limits<double>::min)());
EXPECT_EQ(histo_point2.scale_, SCALE0);
EXPECT_EQ(histo_point2.max_buckets_, MAX_BUCKETS0);
ASSERT_TRUE(histo_point2.positive_buckets_->Empty());
ASSERT_TRUE(histo_point2.negative_buckets_->Empty());
}
// zero point
scale0_aggr.Aggregate(static_cast<int64_t>(0.0), {});
histo_point = nostd::get<Base2ExponentialHistogramPointData>(scale0_aggr.ToPoint());
EXPECT_EQ(histo_point.count_, 1);
EXPECT_EQ(histo_point.zero_count_, 1);
// Two recordings in the same bucket (bucket 1 at scale 0)
scale0_aggr.Aggregate(3.0, {});
scale0_aggr.Aggregate(3.5, {});
histo_point = nostd::get<Base2ExponentialHistogramPointData>(scale0_aggr.ToPoint());
EXPECT_EQ(histo_point.count_, 3);
EXPECT_EQ(histo_point.sum_, 6.5);
EXPECT_EQ(histo_point.min_, 0.0);
EXPECT_EQ(histo_point.max_, 3.5);
ASSERT_TRUE(histo_point.positive_buckets_ != nullptr);
ASSERT_TRUE(histo_point.negative_buckets_ != nullptr);
ASSERT_FALSE(histo_point.positive_buckets_->Empty());
auto start_index = histo_point.positive_buckets_->StartIndex();
auto end_index = histo_point.positive_buckets_->EndIndex();
EXPECT_EQ(start_index, 1);
EXPECT_EQ(end_index, 1);
EXPECT_EQ(histo_point.positive_buckets_->Get(start_index), 2);
// Recording in a different bucket (bucket -2 at scale 0)
scale0_aggr.Aggregate(-0.3, {});
histo_point = nostd::get<Base2ExponentialHistogramPointData>(scale0_aggr.ToPoint());
EXPECT_EQ(histo_point.count_, 4);
EXPECT_EQ(histo_point.sum_, 6.2);
EXPECT_EQ(histo_point.min_, -0.3);
EXPECT_EQ(histo_point.max_, 3.5);
ASSERT_TRUE(histo_point.positive_buckets_ != nullptr);
ASSERT_TRUE(histo_point.negative_buckets_ != nullptr);
EXPECT_EQ(histo_point.negative_buckets_->Get(-2), 1);
EXPECT_EQ(histo_point.positive_buckets_->Get(1), 2);
Base2ExponentialHistogramAggregationConfig scale1_config;
scale1_config.max_scale_ = 1;
scale1_config.max_buckets_ = 14;
scale1_config.record_min_max_ = true;
Base2ExponentialHistogramAggregation scale1_aggr(&scale1_config);
scale1_aggr.Aggregate(0.0, {});
scale1_aggr.Aggregate(3.0, {});
scale1_aggr.Aggregate(3.5, {});
scale1_aggr.Aggregate(0.3, {});
auto scale1_point = nostd::get<Base2ExponentialHistogramPointData>(scale1_aggr.ToPoint());
EXPECT_EQ(scale1_point.count_, 4);
EXPECT_EQ(scale1_point.sum_, 6.8);
EXPECT_EQ(scale1_point.zero_count_, 1);
EXPECT_EQ(scale1_point.min_, 0.0);
EXPECT_EQ(scale1_point.max_, 3.5);
// Merge test
auto merged = scale0_aggr.Merge(scale1_aggr);
auto merged_point = nostd::get<Base2ExponentialHistogramPointData>(merged->ToPoint());
EXPECT_EQ(merged_point.count_, 8);
EXPECT_EQ(merged_point.sum_, 13.0);
EXPECT_EQ(merged_point.zero_count_, 2);
EXPECT_EQ(merged_point.min_, -0.3);
EXPECT_EQ(merged_point.max_, 3.5);
EXPECT_EQ(merged_point.scale_, 0);
ASSERT_TRUE(merged_point.positive_buckets_ != nullptr);
ASSERT_TRUE(merged_point.negative_buckets_ != nullptr);
EXPECT_EQ(merged_point.positive_buckets_->Get(1), 4);
EXPECT_EQ(merged_point.negative_buckets_->Get(-2), 1);
EXPECT_EQ(merged_point.positive_buckets_->Get(2), 0);
// Diff test
Base2ExponentialHistogramAggregation scale2_aggr(&scale1_config);
Base2ExponentialHistogramAggregation scale3_aggr(&scale1_config);
scale2_aggr.Aggregate(2.0, {});
scale2_aggr.Aggregate(4.0, {});
scale2_aggr.Aggregate(2.5, {});
scale3_aggr.Aggregate(2.0, {});
scale3_aggr.Aggregate(2.3, {});
scale3_aggr.Aggregate(2.5, {});
scale3_aggr.Aggregate(4.0, {});
auto diffd = scale2_aggr.Diff(scale3_aggr);
auto diffd_point = nostd::get<Base2ExponentialHistogramPointData>(diffd->ToPoint());
EXPECT_EQ(diffd_point.count_, 1);
EXPECT_NEAR(diffd_point.sum_, 2.3, 1e-9);
EXPECT_EQ(diffd_point.zero_count_, 0);
EXPECT_EQ(diffd_point.scale_, 1);
ASSERT_TRUE(diffd_point.positive_buckets_ != nullptr);
ASSERT_TRUE(diffd_point.negative_buckets_ != nullptr);
EXPECT_EQ(diffd_point.positive_buckets_->Get(2), 1);
}
TEST(Aggregation, Base2ExponentialHistogramAggregationMerge)
{
Base2ExponentialHistogramAggregationConfig config;
config.max_scale_ = 10;
config.max_buckets_ = 100;
config.record_min_max_ = true;
Base2ExponentialHistogramAggregation aggr(&config);
int expected_count = 0;
double expected_sum = 0.0;
// Aggregate some small values
for (int i = 1; i < 10; ++i)
{
expected_count++;
const double value = i * 1e-12;
expected_sum += value;
aggr.Aggregate(value);
}
const auto aggr_point = nostd::get<Base2ExponentialHistogramPointData>(aggr.ToPoint());
ASSERT_EQ(aggr_point.count_, expected_count);
ASSERT_DOUBLE_EQ(aggr_point.sum_, expected_sum);
ASSERT_EQ(aggr_point.zero_count_, 0);
ASSERT_GT(aggr_point.scale_, -10);
ASSERT_EQ(aggr_point.max_buckets_, config.max_buckets_);
auto test_merge = [](const std::unique_ptr<Aggregation> &merged_aggr, int expected_count,
double expected_sum, int expected_zero_count, int expected_scale,
int expected_max_buckets) {
auto merged_point = nostd::get<Base2ExponentialHistogramPointData>(merged_aggr->ToPoint());
EXPECT_EQ(merged_point.count_, expected_count);
EXPECT_DOUBLE_EQ(merged_point.sum_, expected_sum);
EXPECT_EQ(merged_point.zero_count_, expected_zero_count);
EXPECT_EQ(merged_point.scale_, expected_scale);
EXPECT_EQ(merged_point.max_buckets_, expected_max_buckets);
};
// default aggregation merge
{
InstrumentDescriptor descriptor;
descriptor.type_ = InstrumentType::kHistogram;
descriptor.unit_ = "unit";
descriptor.name_ = "histogram";
descriptor.description_ = "a histogram";
descriptor.value_type_ = InstrumentValueType::kDouble;
auto default_aggr = DefaultAggregation::CreateAggregation(
AggregationType::kBase2ExponentialHistogram, descriptor);
auto default_point = nostd::get<Base2ExponentialHistogramPointData>(default_aggr->ToPoint());
const int expected_scale =
aggr_point.scale_ < default_point.scale_ ? aggr_point.scale_ : default_point.scale_;
const int expected_max_buckets = aggr_point.max_buckets_ < default_point.max_buckets_
? aggr_point.max_buckets_
: default_point.max_buckets_;
const int expected_zero_count = 0;
auto merged_from_default = aggr.Merge(*default_aggr);
test_merge(merged_from_default, expected_count, expected_sum, expected_zero_count,
expected_scale, expected_max_buckets);
auto merged_to_default = default_aggr->Merge(aggr);
test_merge(merged_to_default, expected_count, expected_sum, expected_zero_count, expected_scale,
expected_max_buckets);
}
// zero count aggregation merge (Zero is a special case and does not increment the buckets)
{
Base2ExponentialHistogramAggregation zero_aggr(&config);
zero_aggr.Aggregate(0.0);
const auto zero_point = nostd::get<Base2ExponentialHistogramPointData>(zero_aggr.ToPoint());
const int expected_scale =
aggr_point.scale_ < zero_point.scale_ ? aggr_point.scale_ : zero_point.scale_;
const int expected_max_buckets = aggr_point.max_buckets_ < zero_point.max_buckets_
? aggr_point.max_buckets_
: zero_point.max_buckets_;
const int expected_zero_count = 1;
auto merged_from_zero = aggr.Merge(zero_aggr);
test_merge(merged_from_zero, expected_count + 1, expected_sum, expected_zero_count,
expected_scale, expected_max_buckets);
auto merged_to_zero = zero_aggr.Merge(aggr);
test_merge(merged_to_zero, expected_count + 1, expected_sum, expected_zero_count,
expected_scale, expected_max_buckets);
}
}
|