1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
|
#region --- License ---
/* Licensed under the MIT/X11 license.
* Copyright (c) 2006-2008 the OpenTK Team.
* This notice may not be removed from any source distribution.
* See license.txt for licensing detailed licensing details.
*
* Contributions by Georg W�chter.
*/
#endregion
using System;
using System.Collections.Generic;
using System.Text;
namespace OpenTK.Math
{
/// <summary>
/// Represents a bezier curve with as many points as you want.
/// </summary>
[Obsolete("OpenTK.Math functions have been moved to the root OpenTK namespace (reason: XNA compatibility")]
[Serializable]
public struct BezierCurve
{
#region Fields
private List<Vector2> points;
/// <summary>
/// The parallel value.
/// </summary>
/// <remarks>This value defines whether the curve should be calculated as a
/// parallel curve to the original bezier curve. A value of 0.0f represents
/// the original curve, 5.0f i.e. stands for a curve that has always a distance
/// of 5.0f to the orignal curve at any point.</remarks>
public float Parallel;
#endregion
#region Properties
/// <summary>
/// Gets the points of this curve.
/// </summary>
/// <remarks>The first point and the last points represent the anchor points.</remarks>
public IList<Vector2> Points
{
get
{
return points;
}
}
#endregion
#region Constructors
/// <summary>
/// Constructs a new <see cref="BezierCurve"/>.
/// </summary>
/// <param name="points">The points.</param>
public BezierCurve(IEnumerable<Vector2> points)
{
if (points == null)
throw new ArgumentNullException("points", "Must point to a valid list of Vector2 structures.");
this.points = new List<Vector2>(points);
this.Parallel = 0.0f;
}
/// <summary>
/// Constructs a new <see cref="BezierCurve"/>.
/// </summary>
/// <param name="points">The points.</param>
public BezierCurve(params Vector2[] points)
{
if (points == null)
throw new ArgumentNullException("points", "Must point to a valid list of Vector2 structures.");
this.points = new List<Vector2>(points);
this.Parallel = 0.0f;
}
/// <summary>
/// Constructs a new <see cref="BezierCurve"/>.
/// </summary>
/// <param name="parallel">The parallel value.</param>
/// <param name="points">The points.</param>
public BezierCurve(float parallel, params Vector2[] points)
{
if (points == null)
throw new ArgumentNullException("points", "Must point to a valid list of Vector2 structures.");
this.Parallel = parallel;
this.points = new List<Vector2>(points);
}
/// <summary>
/// Constructs a new <see cref="BezierCurve"/>.
/// </summary>
/// <param name="parallel">The parallel value.</param>
/// <param name="points">The points.</param>
public BezierCurve(float parallel, IEnumerable<Vector2> points)
{
if (points == null)
throw new ArgumentNullException("points", "Must point to a valid list of Vector2 structures.");
this.Parallel = parallel;
this.points = new List<Vector2>(points);
}
#endregion
#region Functions
/// <summary>
/// Calculates the point with the specified t.
/// </summary>
/// <param name="t">The t value, between 0.0f and 1.0f.</param>
/// <returns>Resulting point.</returns>
public Vector2 CalculatePoint(float t)
{
return BezierCurve.CalculatePoint(points, t, Parallel);
}
/// <summary>
/// Calculates the length of this bezier curve.
/// </summary>
/// <param name="precision">The precision.</param>
/// <returns>Length of curve.</returns>
/// <remarks>The precision gets better as the <paramref name="precision"/>
/// value gets smaller.</remarks>
public float CalculateLength(float precision)
{
return BezierCurve.CalculateLength(points, precision, Parallel);
}
#region Static methods
/// <summary>
/// Calculates the length of the specified bezier curve.
/// </summary>
/// <param name="points">The points.</param>
/// <param name="precision">The precision value.</param>
/// <returns>The precision gets better as the <paramref name="precision"/>
/// value gets smaller.</returns>
public static float CalculateLength(IList<Vector2> points, float precision)
{
return BezierCurve.CalculateLength(points, precision, 0.0f);
}
/// <summary>
/// Calculates the length of the specified bezier curve.
/// </summary>
/// <param name="points">The points.</param>
/// <param name="precision">The precision value.</param>
/// <param name="parallel">The parallel value.</param>
/// <returns>Length of curve.</returns>
/// <remarks><para>The precision gets better as the <paramref name="precision"/>
/// value gets smaller.</para>
/// <para>The <paramref name="parallel"/> parameter defines whether the curve should be calculated as a
/// parallel curve to the original bezier curve. A value of 0.0f represents
/// the original curve, 5.0f represents a curve that has always a distance
/// of 5.0f to the orignal curve.</para></remarks>
public static float CalculateLength(IList<Vector2> points, float precision, float parallel)
{
float length = 0.0f;
Vector2 old = BezierCurve.CalculatePoint(points, 0.0f, parallel);
for (float i = precision; i < (1.0f + precision); i += precision)
{
Vector2 n = CalculatePoint(points, i, parallel);
length += (n - old).Length;
old = n;
}
return length;
}
/// <summary>
/// Calculates the point on the given bezier curve with the specified t parameter.
/// </summary>
/// <param name="points">The points.</param>
/// <param name="t">The t parameter, a value between 0.0f and 1.0f.</param>
/// <returns>Resulting point.</returns>
public static Vector2 CalculatePoint(IList<Vector2> points, float t)
{
return BezierCurve.CalculatePoint(points, t, 0.0f);
}
/// <summary>
/// Calculates the point on the given bezier curve with the specified t parameter.
/// </summary>
/// <param name="points">The points.</param>
/// <param name="t">The t parameter, a value between 0.0f and 1.0f.</param>
/// <param name="parallel">The parallel value.</param>
/// <returns>Resulting point.</returns>
/// <remarks>The <paramref name="parallel"/> parameter defines whether the curve should be calculated as a
/// parallel curve to the original bezier curve. A value of 0.0f represents
/// the original curve, 5.0f represents a curve that has always a distance
/// of 5.0f to the orignal curve.</remarks>
public static Vector2 CalculatePoint(IList<Vector2> points, float t, float parallel)
{
Vector2 r = new Vector2();
double c = 1.0d - (double)t;
float temp;
int i = 0;
foreach (Vector2 pt in points)
{
temp = (float)Functions.BinomialCoefficient(points.Count - 1, i) * (float)(System.Math.Pow(t, i) *
System.Math.Pow(c, (points.Count - 1) - i));
r.X += temp * pt.X;
r.Y += temp * pt.Y;
i++;
}
if (parallel == 0.0f)
return r;
Vector2 perpendicular = new Vector2();
if (t != 0.0f)
perpendicular = r - BezierCurve.CalculatePointOfDerivative(points, t);
else
perpendicular = points[1] - points[0];
return r + Vector2.Normalize(perpendicular).PerpendicularRight * parallel;
}
/// <summary>
/// Calculates the point with the specified t of the derivative of the given bezier function.
/// </summary>
/// <param name="points">The points.</param>
/// <param name="t">The t parameter, value between 0.0f and 1.0f.</param>
/// <returns>Resulting point.</returns>
private static Vector2 CalculatePointOfDerivative(IList<Vector2> points, float t)
{
Vector2 r = new Vector2();
double c = 1.0d - (double)t;
float temp;
int i = 0;
foreach (Vector2 pt in points)
{
temp = (float)Functions.BinomialCoefficient(points.Count - 2, i) * (float)(System.Math.Pow(t, i) *
System.Math.Pow(c, (points.Count - 2) - i));
r.X += temp * pt.X;
r.Y += temp * pt.Y;
i++;
}
return r;
}
#endregion
#endregion
}
}
|