1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
|
#region --- License ---
/*
Copyright (c) 2006 - 2008 The Open Toolkit library.
Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
#endregion
using System;
using System.Runtime.InteropServices;
using System.ComponentModel;
using System.Xml.Serialization;
namespace OpenTK.Math
{
/// <summary>
/// Represents a Quaternion.
/// </summary>
[Obsolete("OpenTK.Math functions have been moved to the root OpenTK namespace (reason: XNA compatibility")]
[Serializable]
[StructLayout(LayoutKind.Sequential)]
public struct Quaternion : IEquatable<Quaternion>
{
#region Fields
Vector3 xyz;
float w;
#endregion
#region Constructors
/// <summary>
/// Construct a new Quaternion from vector and w components
/// </summary>
/// <param name="v">The vector part</param>
/// <param name="w">The w part</param>
public Quaternion(Vector3 v, float w)
{
this.xyz = v;
this.w = w;
}
/// <summary>
/// Construct a new Quaternion
/// </summary>
/// <param name="x">The x component</param>
/// <param name="y">The y component</param>
/// <param name="z">The z component</param>
/// <param name="w">The w component</param>
public Quaternion(float x, float y, float z, float w)
: this(new Vector3(x, y, z), w)
{ }
#endregion
#region Public Members
#region Properties
/// <summary>
/// Gets or sets an OpenTK.Vector3 with the X, Y and Z components of this instance.
/// </summary>
[Obsolete("Use Xyz property instead.")]
[CLSCompliant(false)]
[EditorBrowsable(EditorBrowsableState.Never)]
[XmlIgnore]
public Vector3 XYZ { get { return Xyz; } set { Xyz = value; } }
/// <summary>
/// Gets or sets an OpenTK.Vector3 with the X, Y and Z components of this instance.
/// </summary>
public Vector3 Xyz { get { return xyz; } set { xyz = value; } }
/// <summary>
/// Gets or sets the X component of this instance.
/// </summary>
[XmlIgnore]
public float X { get { return xyz.X; } set { xyz.X = value; } }
/// <summary>
/// Gets or sets the Y component of this instance.
/// </summary>
[XmlIgnore]
public float Y { get { return xyz.Y; } set { xyz.Y = value; } }
/// <summary>
/// Gets or sets the Z component of this instance.
/// </summary>
[XmlIgnore]
public float Z { get { return xyz.Z; } set { xyz.Z = value; } }
/// <summary>
/// Gets or sets the W component of this instance.
/// </summary>
public float W { get { return w; } set { w = value; } }
#endregion
#region Instance
#region ToAxisAngle
/// <summary>
/// Convert the current quaternion to axis angle representation
/// </summary>
/// <param name="axis">The resultant axis</param>
/// <param name="angle">The resultant angle</param>
public void ToAxisAngle(out Vector3 axis, out float angle)
{
Vector4 result = ToAxisAngle();
axis = result.Xyz;
angle = result.W;
}
/// <summary>
/// Convert this instance to an axis-angle representation.
/// </summary>
/// <returns>A Vector4 that is the axis-angle representation of this quaternion.</returns>
public Vector4 ToAxisAngle()
{
Quaternion q = this;
if (q.W > 1.0f)
q.Normalize();
Vector4 result = new Vector4();
result.W = 2.0f * (float)System.Math.Acos(q.W); // angle
float den = (float)System.Math.Sqrt(1.0 - q.W * q.W);
if (den > 0.0001f)
{
result.Xyz = q.Xyz / den;
}
else
{
// This occurs when the angle is zero.
// Not a problem: just set an arbitrary normalized axis.
result.Xyz = Vector3.UnitX;
}
return result;
}
#endregion
#region public float Length
/// <summary>
/// Gets the length (magnitude) of the quaternion.
/// </summary>
/// <seealso cref="LengthSquared"/>
public float Length
{
get
{
return (float)System.Math.Sqrt(W * W + Xyz.LengthSquared);
}
}
#endregion
#region public float LengthSquared
/// <summary>
/// Gets the square of the quaternion length (magnitude).
/// </summary>
public float LengthSquared
{
get
{
return W * W + Xyz.LengthSquared;
}
}
#endregion
#region public void Normalize()
/// <summary>
/// Scales the Quaternion to unit length.
/// </summary>
public void Normalize()
{
float scale = 1.0f / this.Length;
Xyz *= scale;
W *= scale;
}
#endregion
#region public void Conjugate()
/// <summary>
/// Convert this quaternion to its conjugate
/// </summary>
public void Conjugate()
{
Xyz = -Xyz;
}
#endregion
#endregion
#region Static
#region Fields
/// <summary>
/// Defines the identity quaternion.
/// </summary>
public static Quaternion Identity = new Quaternion(0, 0, 0, 1);
#endregion
#region Add
/// <summary>
/// Add two quaternions
/// </summary>
/// <param name="left">The first operand</param>
/// <param name="right">The second operand</param>
/// <returns>The result of the addition</returns>
public static Quaternion Add(Quaternion left, Quaternion right)
{
return new Quaternion(
left.Xyz + right.Xyz,
left.W + right.W);
}
/// <summary>
/// Add two quaternions
/// </summary>
/// <param name="left">The first operand</param>
/// <param name="right">The second operand</param>
/// <param name="result">The result of the addition</param>
public static void Add(ref Quaternion left, ref Quaternion right, out Quaternion result)
{
result = new Quaternion(
left.Xyz + right.Xyz,
left.W + right.W);
}
#endregion
#region Sub
/// <summary>
/// Subtracts two instances.
/// </summary>
/// <param name="left">The left instance.</param>
/// <param name="right">The right instance.</param>
/// <returns>The result of the operation.</returns>
public static Quaternion Sub(Quaternion left, Quaternion right)
{
return new Quaternion(
left.Xyz - right.Xyz,
left.W - right.W);
}
/// <summary>
/// Subtracts two instances.
/// </summary>
/// <param name="left">The left instance.</param>
/// <param name="right">The right instance.</param>
/// <param name="result">The result of the operation.</param>
public static void Sub(ref Quaternion left, ref Quaternion right, out Quaternion result)
{
result = new Quaternion(
left.Xyz - right.Xyz,
left.W - right.W);
}
#endregion
#region Mult
public static Quaternion Mult(Quaternion left, Quaternion right)
{
return new Quaternion(
right.W * left.Xyz + left.W * right.Xyz + Vector3.Cross(left.Xyz, right.Xyz),
left.W * right.W - Vector3.Dot(left.Xyz, right.Xyz));
}
public static void Mult(ref Quaternion left, ref Quaternion right, out Quaternion result)
{
result = new Quaternion(
right.W * left.Xyz + left.W * right.Xyz + Vector3.Cross(left.Xyz, right.Xyz),
left.W * right.W - Vector3.Dot(left.Xyz, right.Xyz));
}
#endregion
#region Conjugate
/// <summary>
/// Get the conjugate of the given quaternion
/// </summary>
/// <param name="q">The quaternion</param>
/// <returns>The conjugate of the given quaternion</returns>
public static Quaternion Conjugate(Quaternion q)
{
return new Quaternion(-q.Xyz, q.W);
}
/// <summary>
/// Get the conjugate of the given quaternion
/// </summary>
/// <param name="q">The quaternion</param>
/// <param name="result">The conjugate of the given quaternion</param>
public static void Conjugate(ref Quaternion q, out Quaternion result)
{
result = new Quaternion(-q.Xyz, q.W);
}
#endregion
#region Invert
/// <summary>
/// Get the inverse of the given quaternion
/// </summary>
/// <param name="q">The quaternion to invert</param>
/// <returns>The inverse of the given quaternion</returns>
public static Quaternion Invert(Quaternion q)
{
Quaternion result;
Invert(ref q, out result);
return result;
}
/// <summary>
/// Get the inverse of the given quaternion
/// </summary>
/// <param name="q">The quaternion to invert</param>
/// <param name="result">The inverse of the given quaternion</param>
public static void Invert(ref Quaternion q, out Quaternion result)
{
float lengthSq = q.LengthSquared;
if (lengthSq != 0.0)
{
float i = 1.0f / lengthSq;
result = new Quaternion(q.Xyz * -i, q.W * i);
}
else
{
result = q;
}
}
#endregion
#region Normalize
/// <summary>
/// Scale the given quaternion to unit length
/// </summary>
/// <param name="q">The quaternion to normalize</param>
/// <returns>The normalized quaternion</returns>
public static Quaternion Normalize(Quaternion q)
{
Quaternion result;
Normalize(ref q, out result);
return result;
}
/// <summary>
/// Scale the given quaternion to unit length
/// </summary>
/// <param name="q">The quaternion to normalize</param>
/// <param name="result">The normalized quaternion</param>
public static void Normalize(ref Quaternion q, out Quaternion result)
{
float scale = 1.0f / q.Length;
result = new Quaternion(q.Xyz * scale, q.W * scale);
}
#endregion
#region FromAxisAngle
/// <summary>
/// Build a quaternion from the given axis and angle
/// </summary>
/// <param name="axis">The axis to rotate about</param>
/// <param name="angle">The rotation angle in radians</param>
/// <returns></returns>
public static Quaternion FromAxisAngle(Vector3 axis, float angle)
{
if (axis.LengthSquared == 0.0f)
return Identity;
Quaternion result = Identity;
angle *= 0.5f;
axis.Normalize();
result.Xyz = axis * (float)System.Math.Sin(angle);
result.W = (float)System.Math.Cos(angle);
return Normalize(result);
}
#endregion
#region Slerp
/// <summary>
/// Do Spherical linear interpolation between two quaternions
/// </summary>
/// <param name="q1">The first quaternion</param>
/// <param name="q2">The second quaternion</param>
/// <param name="blend">The blend factor</param>
/// <returns>A smooth blend between the given quaternions</returns>
public static Quaternion Slerp(Quaternion q1, Quaternion q2, float blend)
{
// if either input is zero, return the other.
if (q1.LengthSquared == 0.0f)
{
if (q2.LengthSquared == 0.0f)
{
return Identity;
}
return q2;
}
else if (q2.LengthSquared == 0.0f)
{
return q1;
}
float cosHalfAngle = q1.W * q2.W + Vector3.Dot(q1.Xyz, q2.Xyz);
if (cosHalfAngle >= 1.0f || cosHalfAngle <= -1.0f)
{
// angle = 0.0f, so just return one input.
return q1;
}
else if (cosHalfAngle < 0.0f)
{
q2.Xyz = -q2.Xyz;
q2.W = -q2.W;
cosHalfAngle = -cosHalfAngle;
}
float blendA;
float blendB;
if (cosHalfAngle < 0.99f)
{
// do proper slerp for big angles
float halfAngle = (float)System.Math.Acos(cosHalfAngle);
float sinHalfAngle = (float)System.Math.Sin(halfAngle);
float oneOverSinHalfAngle = 1.0f / sinHalfAngle;
blendA = (float)System.Math.Sin(halfAngle * (1.0f - blend)) * oneOverSinHalfAngle;
blendB = (float)System.Math.Sin(halfAngle * blend) * oneOverSinHalfAngle;
}
else
{
// do lerp if angle is really small.
blendA = 1.0f - blend;
blendB = blend;
}
Quaternion result = new Quaternion(blendA * q1.Xyz + blendB * q2.Xyz, blendA * q1.W + blendB * q2.W);
if (result.LengthSquared > 0.0f)
return Normalize(result);
else
return Identity;
}
#endregion
#endregion
#region Operators
public static Quaternion operator +(Quaternion left, Quaternion right)
{
left.Xyz += right.Xyz;
left.W += right.W;
return left;
}
public static Quaternion operator -(Quaternion left, Quaternion right)
{
left.Xyz -= right.Xyz;
left.W -= right.W;
return left;
}
public static Quaternion operator *(Quaternion left, Quaternion right)
{
float w = left.W * right.W - Vector3.Dot(left.Xyz, right.Xyz);
left.Xyz = right.W * left.Xyz + left.W * right.Xyz + Vector3.Cross(left.Xyz, right.Xyz);
left.W = w;
return left;
}
public static bool operator ==(Quaternion left, Quaternion right)
{
return left.Equals(right);
}
public static bool operator !=(Quaternion left, Quaternion right)
{
return !left.Equals(right);
}
#endregion
#region Overrides
#region public override string ToString()
/// <summary>
/// Returns a System.String that represents the current Quaternion.
/// </summary>
/// <returns></returns>
public override string ToString()
{
return String.Format("V: {0}, W: {1}", Xyz, W);
}
#endregion
#region public override bool Equals (object o)
/// <summary>
/// Compares this object instance to another object for equality.
/// </summary>
/// <param name="other">The other object to be used in the comparison.</param>
/// <returns>True if both objects are Quaternions of equal value. Otherwise it returns false.</returns>
public override bool Equals(object other)
{
if (other is Quaternion == false) return false;
return this == (Quaternion)other;
}
#endregion
#region public override int GetHashCode ()
/// <summary>
/// Provides the hash code for this object.
/// </summary>
/// <returns>A hash code formed from the bitwise XOR of this objects members.</returns>
public override int GetHashCode()
{
return Xyz.GetHashCode() ^ W.GetHashCode();
}
#endregion
#endregion
#endregion
#region IEquatable<Quaternion> Members
/// <summary>
/// Compares this Quaternion instance to another Quaternion for equality.
/// </summary>
/// <param name="other">The other Quaternion to be used in the comparison.</param>
/// <returns>True if both instances are equal; false otherwise.</returns>
public bool Equals(Quaternion other)
{
return Xyz == other.Xyz && W == other.W;
}
#endregion
}
}
|