1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
|
Source: opentsne
Section: python
Priority: optional
Maintainer: Debian PaN Maintainers <debian-pan-maintainers@alioth-lists.debian.net>
Uploaders:
Debian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>,
Picca Frédéric-Emmanuel <picca@debian.org>,
Roland Mas <lolando@debian.org>,
Build-Depends:
cython3,
debhelper-compat (= 13),
dh-sequence-numpy3,
dh-sequence-python3,
libfftw3-dev,
pybuild-plugin-pyproject,
python3-all-dev,
python3-numpy,
python3-pytest,
python3-pytest-runner,
python3-scipy,
python3-setuptools,
python3-sklearn,
Standards-Version: 4.7.0
Testsuite: autopkgtest-pkg-pybuild
Rules-Requires-Root: no
Homepage: https://github.com/pavlin-policar/openTSNE
Vcs-Browser: https://salsa.debian.org/science-team/opentsne
Vcs-Git: https://salsa.debian.org/science-team/opentsne.git
Package: python3-opentsne
Architecture: any
Depends:
${misc:Depends},
${python3:Depends},
${shlibs:Depends},
Description: t-Distributed Stochastic Neighbor Embedding algorithm
Modular Python implementation of t-Distributed Stochasitc Neighbor
Embedding (t-SNE), a popular dimensionality-reduction algorithm for
visualizing high-dimensional data sets. openTSNE incorporates the
latest improvements to the t-SNE algorithm, including the ability to
add new data points to existing embeddings, massive speed
improvements, enabling t-SNE to scale to millions of data points and
various tricks to improve global alignment of the
resulting visualizations.
|