1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
|
import unittest
from functools import partial
import scipy.sparse as sp
from scipy.spatial.distance import pdist, squareform
import openTSNE
import openTSNE.affinity
import openTSNE.initialization
import numpy as np
from openTSNE.callbacks import VerifyExaggerationError
from sklearn import datasets
from sklearn.metrics import accuracy_score
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.manifold import SpectralEmbedding
import platform
machine = platform.machine()
TSNE = partial(openTSNE.TSNE, neighbors="exact", negative_gradient_method="bh")
class TestTSNECorrectness(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls.tsne = TSNE(early_exaggeration_iter=20, n_iter=100)
# Set up two modalities, if we want to viually inspect test results
random_state = np.random.RandomState(0)
cls.x = np.vstack(
(random_state.normal(+1, 1, (100, 4)), random_state.normal(-1, 1, (100, 4)))
)
cls.x_test = random_state.normal(0, 1, (25, 4))
cls.iris = datasets.load_iris()
def test_basic_flow(self):
"""Verify that the basic flow does not crash."""
embedding = self.tsne.fit(self.x)
self.assertFalse(np.any(np.isnan(embedding)))
partial_embedding = embedding.transform(self.x_test, n_iter=20)
self.assertFalse(np.any(np.isnan(partial_embedding)))
def test_advanced_flow(self):
"""Verify that the advanced flow does not crash."""
embedding = self.tsne.prepare_initial(self.x)
embedding = embedding.optimize(20, exaggeration=12)
embedding = embedding.optimize(20) # type: openTSNE.TSNEEmbedding
self.assertFalse(np.any(np.isnan(embedding)))
partial_embedding = embedding.prepare_partial(self.x_test)
partial_embedding = partial_embedding.optimize(20, exaggeration=2)
partial_embedding = partial_embedding.optimize(20)
self.assertFalse(np.any(np.isnan(partial_embedding)))
def test_error_exaggeration_correction(self):
embedding = self.tsne.prepare_initial(self.x)
# The callback raises if the KL divergence does not match the true one
embedding.optimize(
50,
exaggeration=5,
callbacks=[VerifyExaggerationError(embedding)],
callbacks_every_iters=1,
inplace=True,
)
def test_iris(self):
x, y = self.iris.data, self.iris.target
# Evaluate t-SNE optimization using a KNN classifier
knn = KNeighborsClassifier(n_neighbors=10)
tsne = TSNE(perplexity=30, initialization="random", random_state=0)
# Prepare a random initialization
embedding = tsne.prepare_initial(x)
# KNN should do poorly on a random initialization
knn.fit(embedding, y)
predictions = knn.predict(embedding)
self.assertLess(accuracy_score(predictions, y), 0.5)
# Optimize the embedding for a small number of steps so tests run fast
embedding.optimize(250, inplace=True)
# Similar points should be grouped together, therefore KNN should do well
knn.fit(embedding, y)
predictions = knn.predict(embedding)
self.assertGreater(accuracy_score(predictions, y), 0.95)
def test_iris_with_precomputed_distance_matrices(self):
x, y = self.iris.data, self.iris.target
distances = squareform(pdist(x))
# Evaluate t-SNE optimization using a KNN classifier
knn = KNeighborsClassifier(n_neighbors=10)
tsne = TSNE(
perplexity=30, initialization="random", random_state=0, metric="precomputed"
)
# Prepare a random initialization
embedding = tsne.prepare_initial(distances)
# KNN should do poorly on a random initialization
knn.fit(embedding, y)
predictions = knn.predict(embedding)
self.assertLess(accuracy_score(predictions, y), 0.5)
# Optimize the embedding for a small number of steps so tests run fast
embedding.optimize(250, inplace=True)
# Similar points should be grouped together, therefore KNN should do well
knn.fit(embedding, y)
predictions = knn.predict(embedding)
self.assertGreater(accuracy_score(predictions, y), 0.95)
def test_iris_bh_transform_equivalency_with_one_by_one(self):
"""Compare one by one embedding vs all at once using BH gradients."""
x_train, x_test = train_test_split(
self.iris.data, test_size=0.1, random_state=42
)
# Set up the initial embedding
embedding = openTSNE.TSNE(
early_exaggeration_iter=0,
n_iter=50,
neighbors="exact",
negative_gradient_method="bh",
).fit(x_train)
params = dict(n_iter=100, perplexity=5)
# Build up an embedding by adding points one by one
new_embedding_1 = np.vstack(
[embedding.transform(np.atleast_2d(point), **params) for point in x_test]
)
# Add new points altogether
new_embedding_2 = embedding.transform(x_test, **params)
# Verify that the embedding has actually been optimized
self.assertRaises(
AssertionError,
np.testing.assert_almost_equal,
embedding.prepare_partial(x_test, perplexity=params["perplexity"]),
new_embedding_1,
)
# Check that both methods produced the same embedding
np.testing.assert_almost_equal(new_embedding_1, new_embedding_2)
def test_iris_fft_transform_equivalency_with_one_by_one(self):
"""Compare one by one embedding vs all at once using FFT gradients.
Note that this won't return the exact same embedding both times because
the grid placed over the embedding will differ when placing points one
by one vs. when placing them at once. The min/max coords will differ,
thus changing the overall approximation. They should be quite similar
though.
"""
x_train, x_test = train_test_split(
self.iris.data, test_size=0.1, random_state=42
)
# Set up the initial embedding
embedding = openTSNE.TSNE(
early_exaggeration_iter=0,
n_iter=50,
neighbors="exact",
negative_gradient_method="fft",
).fit(x_train)
# Changing the gradients using clipping changes how the points move
# sufficiently so that the interpolation grid is shifted. This test is
# more reliable when we don't do gradient clipping and reduce the
# learning rate. We increase the number of iterations so that the points
# have time to move around
params = dict(perplexity=5)
# Build up an embedding by adding points one by one
new_embedding_1 = np.vstack(
[embedding.transform(np.atleast_2d(point), **params) for point in x_test]
)
# Add new points altogether
new_embedding_2 = embedding.transform(x_test, **params)
# Verify that the embedding has actually been optimized
self.assertRaises(
AssertionError,
np.testing.assert_almost_equal,
embedding.prepare_partial(x_test, perplexity=params["perplexity"]),
new_embedding_1,
)
# Check that both methods produced the same embedding
np.testing.assert_almost_equal(new_embedding_1, new_embedding_2, decimal=2)
def test_iris_bh_transform_correctness(self):
x_train, x_test, y_train, y_test = train_test_split(
self.iris.data, self.iris.target, test_size=0.33, random_state=42
)
# Set up the initial embedding
embedding = openTSNE.TSNE(
neighbors="exact",
negative_gradient_method="bh",
early_exaggeration_iter=0,
n_iter=50,
random_state=0,
).fit(x_train)
# Evaluate t-SNE optimization using a KNN classifier
knn = KNeighborsClassifier(n_neighbors=10)
knn.fit(embedding, y_train)
new_embedding = embedding.transform(x_test, n_iter=100)
predictions = knn.predict(new_embedding)
self.assertGreater(accuracy_score(predictions, y_test), 0.95)
def test_iris_fft_transform_correctness(self):
x_train, x_test, y_train, y_test = train_test_split(
self.iris.data, self.iris.target, test_size=0.33, random_state=42
)
# Set up the initial embedding
embedding = openTSNE.TSNE(
neighbors="exact",
negative_gradient_method="fft",
early_exaggeration_iter=0,
n_iter=50,
random_state=0,
).fit(x_train)
# Evaluate t-SNE optimization using a KNN classifier
knn = KNeighborsClassifier(n_neighbors=10)
knn.fit(embedding, y_train)
new_embedding = embedding.transform(x_test, n_iter=100)
predictions = knn.predict(new_embedding)
self.assertGreater(accuracy_score(predictions, y_test), 0.95)
def test_bh_transform_with_point_subsets_using_perplexity_nn(self):
x_train, x_test = train_test_split(
self.iris.data, test_size=0.33, random_state=42
)
# Set up the initial embedding
init = openTSNE.initialization.pca(x_train)
affinity = openTSNE.affinity.PerplexityBasedNN(x_train, method="exact")
embedding = openTSNE.TSNEEmbedding(
init, affinity, negative_gradient_method="bh", random_state=42
)
embedding.optimize(n_iter=50, inplace=True)
# The test set contains 50 samples, so let's verify on half of those
transform_params = dict(n_iter=0, early_exaggeration_iter=0)
new_embedding_1 = embedding.transform(x_test, **transform_params)[:25]
new_embedding_2 = embedding.transform(x_test[:25], **transform_params)
np.testing.assert_equal(new_embedding_1, new_embedding_2)
def test_fft_transform_with_point_subsets_using_perplexity_nn(self):
x_train, x_test = train_test_split(
self.iris.data, test_size=0.33, random_state=42
)
# Set up the initial embedding
init = openTSNE.initialization.pca(x_train)
affinity = openTSNE.affinity.PerplexityBasedNN(x_train, method="exact")
embedding = openTSNE.TSNEEmbedding(
init, affinity, negative_gradient_method="fft", random_state=42
)
embedding.optimize(n_iter=100, inplace=True)
# The test set contains 50 samples, so let's verify on half of those
transform_params = dict(n_iter=0, early_exaggeration_iter=0)
new_embedding_1 = embedding.transform(x_test, **transform_params)[:25]
new_embedding_2 = embedding.transform(x_test[:25], **transform_params)
np.testing.assert_equal(new_embedding_1, new_embedding_2)
class TestTSNECorrectnessUsingNonStandardDof(TestTSNECorrectness):
@classmethod
def setUpClass(cls):
cls.tsne = TSNE(early_exaggeration_iter=20, n_iter=100, dof=0.8)
# Set up two modalities, if we want to viually inspect test results
random_state = np.random.RandomState(0)
cls.x = np.vstack(
(random_state.normal(+1, 1, (100, 4)), random_state.normal(-1, 1, (100, 4)))
)
cls.x_test = random_state.normal(0, 1, (25, 4))
cls.iris = datasets.load_iris()
class TestTSNECorrectnessUsingPrecomputedDistanceMatrix(unittest.TestCase):
# remove this once #1004706 fixed by upstream
@unittest.skipIf(('i686' in machine) or machine == 'i386'
or machine == 'ppc64le',
reason=f"Skipping test on {machine} architecture")
def test_iris(self):
x = datasets.load_iris().data
print(platform.machine())
x += np.random.normal(0, 1e-3, x.shape) # iris contains duplicate rows
# We run this for only a few iterations since this will check for
# correctness. If we let it run for longer, this test fails. The reason
# it fails is that slight differences (e.g. 16th decimal) in the
# distance matrices produce slightly different P matrices (detectable at
# precision 18 decimals), which compounds during optimization, resulting
# in slightly different embeddings (visually indistinguishable). If the
# computation was, however, wrong, we would see a difference after only
# a few iterations. Early exaggeration appears to have a much stronger
# effect on this compounting, so we disable it here.
# See also: https://github.com/pavlin-policar/openTSNE/issues/247
distances = squareform(pdist(x))
params = dict(
early_exaggeration_iter=0,
n_iter=500,
initialization="random",
random_state=0,
)
embedding1 = TSNE(metric="precomputed", **params).fit(distances)
embedding2 = TSNE(metric="euclidean", **params).fit(x)
self.assertTrue(
sp.linalg.norm(embedding1.affinities.P - embedding2.affinities.P) < 1e-16
)
np.testing.assert_almost_equal(embedding1, embedding2)
class TestSpectralInitializationCorrectness(unittest.TestCase):
def test_spectral_agreement_with_sklearn(self):
# Generate some random data and stretch it, to give it some structure
np.random.seed(42)
x = np.random.randn(100, 20)
x[:,0] *= 5
# Perform spectral embedding via sklearn and via openTSNE
P = openTSNE.affinity.PerplexityBasedNN(x).P
embedding1 = openTSNE.initialization.spectral(P, tol=0, add_jitter=False)
embedding2 = SpectralEmbedding(affinity='precomputed').fit_transform(P)
np.testing.assert_almost_equal(
np.abs(np.corrcoef(embedding1[:,0], embedding2[:,0])[0,1]), 1
)
np.testing.assert_almost_equal(
np.abs(np.corrcoef(embedding1[:,1], embedding2[:,1])[0,1]), 1
)
class TestEarlyExaggerationCollapse(unittest.TestCase):
"""In some cases, the BH implementation was producing a collapsed embedding
for all data points. For more information, see #233, #234."""
def test_early_exaggeration_does_not_collapse(self):
n_samples = [100, 150, 200]
n_dims = [5, 10, 20]
np.random.seed(42)
for n in n_samples:
for d in n_dims:
x = np.random.randn(n, d)
embedding = openTSNE.TSNE(random_state=42).fit(x)
self.assertGreater(np.max(np.abs(embedding)), 1e-8)
class TestDataMatricesWithDuplicatedRows(unittest.TestCase):
@classmethod
def setUpClass(cls) -> None:
from sklearn.preprocessing import KBinsDiscretizer
# Load up contrived example where we have a large number of duplicated
# rows. This is similar to the Titanic data set, which is problematic.
np.random.seed(0)
iris = datasets.load_iris()
x, y = iris.data, iris.target
discretizer = KBinsDiscretizer(n_bins=2, strategy="uniform")
x = discretizer.fit_transform(x).toarray()
idx = np.random.choice(x.shape[0], size=1000, replace=True)
cls.x, cls.y = x[idx], y[idx]
def test_works_without_error(self):
openTSNE.TSNE(
early_exaggeration=100, negative_gradient_method="bh", random_state=0
).fit(self.x)
|