File: coding_rules.rst

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (1283 lines) | stat: -rw-r--r-- 31,277 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
Coding rules
============

Packages
--------

In order to structure the code of the project, the various elements
(classes, functions, libraries, data) are logically organized in
packages. This chapter describes the rules to be followed for the
definition, management and use of these packages.

| The code is mainly located in a single library. This library is
  organized as a set of modules. However, there may be several
  interacting libraries in the future.
| The library is interfaced with Python through a Python module
  exposing almost all the classes and operators.

For the moment, the entire set of classes is located in **libOT.so** for
the dynamic part and in **libOT.a** for the static part.

Example showing the import of modules via the **openturns** Python
package:

::

    import openturns
    import openturns.base
    import openturns.uncertainty

Example showing the direct import of module operators or classes via
the **openturns** Python package:

::

    from openturns import Point
    from openturns.base import Sample
    from openturns.uncertainty import RandomVector

File names
----------

The definition of filenames obeys a few rules described below, according
to the programming languages used. A general rule is preliminarily
defined in order to facilitate the automatic generation of the
**Makefile** files. The file names consist of sequences of characters
separated by a dot. The first part of the name is called the *base* and
the second is called the *suffix* (or *extension*).

+---------------------+-----------------------------------------------------------------------------------------------------------+
| **Extension**       | **Description**                                                                                           |
+=====================+===========================================================================================================+
| **.hxx .hh .hpp**   | Header file containing the declaration of functions and classes and the definition of templates for C++   |
+---------------------+-----------------------------------------------------------------------------------------------------------+
| **.cxx .cc .cpp**   | Source code file containing the definition (implementation) of C++ functions and classes                  |
+---------------------+-----------------------------------------------------------------------------------------------------------+
| **.c**              | Source code file containing the definition of C functions                                                 |
+---------------------+-----------------------------------------------------------------------------------------------------------+
| **.h**              | Header file containing the declaration of functions in C                                                  |
+---------------------+-----------------------------------------------------------------------------------------------------------+
| **.py**             | Python file                                                                                               |
+---------------------+-----------------------------------------------------------------------------------------------------------+
| **.R**              | R file                                                                                                    |
+---------------------+-----------------------------------------------------------------------------------------------------------+
| **.cmake**          | CMake script                                                                                              |
+---------------------+-----------------------------------------------------------------------------------------------------------+
| **.sh**             | Shell script                                                                                              |
+---------------------+-----------------------------------------------------------------------------------------------------------+
| **.bat**            | DOS script                                                                                                |
+---------------------+-----------------------------------------------------------------------------------------------------------+
| **.conf**           | configuration file                                                                                        |
+---------------------+-----------------------------------------------------------------------------------------------------------+
| **.csv**            | Comma Separated Value file (for samples)                                                                  |
+---------------------+-----------------------------------------------------------------------------------------------------------+
| **.i**              | SWIG interface file                                                                                       |
+---------------------+-----------------------------------------------------------------------------------------------------------+
| **.in**             | Template file                                                                                             |
+---------------------+-----------------------------------------------------------------------------------------------------------+
| **.log**            | Output log file                                                                                           |
+---------------------+-----------------------------------------------------------------------------------------------------------+
| **.mws**            | Maple script file                                                                                         |
+---------------------+-----------------------------------------------------------------------------------------------------------+
| **.nsi**            | Windows installer file                                                                                    |
+---------------------+-----------------------------------------------------------------------------------------------------------+
| **.sce**            | Scilab script file                                                                                        |
+---------------------+-----------------------------------------------------------------------------------------------------------+
| **.a**              | Archive file containing statically linked objects                                                         |
+---------------------+-----------------------------------------------------------------------------------------------------------+
| **.so**             | Shared object file containing dynamically linked objects                                                  |
+---------------------+-----------------------------------------------------------------------------------------------------------+
| **.txt**            | Text file                                                                                                 |
+---------------------+-----------------------------------------------------------------------------------------------------------+
| **.xml**            | XML file (mainly for wrapper description file)                                                            |
+---------------------+-----------------------------------------------------------------------------------------------------------+
| **.ll**             | Lex scanner file                                                                                          |
+---------------------+-----------------------------------------------------------------------------------------------------------+
| **.yy**             | Yacc parser file                                                                                          |
+---------------------+-----------------------------------------------------------------------------------------------------------+

For example, it is not recommended to give the following names to two
files in the same directory:

::

    matrix.cxx
    Matrix.cxx

C++ Files
~~~~~~~~~

Example: one file per class:

::

    Sample.hxx declares class Sample
    Matrix.hxx declares class Matrix
    ...

Incorrect example: one file for all classes of a model:

::

    Model.hxx # contains all the declaration of all the classes of the internal model

The preceding rule has one exception: in order to facilitate the use of
several related classes, the header files belonging to the same module
are grouped in a single header file, which bears the same name as the
module and is prefixed by **OT**.

Example: using all the classes of the Base module:

::

    #include "openturns/OTBase.hxx"

Header files
~~~~~~~~~~~~

The header files are used to declare functions and classes (they are
sometimes called *interface definition* or *interface specification*).

Example for a file named **Sample.hxx**:

::

    #ifndef OPENTURNS_SAMPLE_HXX
    #define OPENTURNS_SAMPLE_HXX
    ...
    #endif /* OPENTURNS_SAMPLE_HXX */

Example of header file inclusion:

::

    #include "openturns/OSS.hxx"
    #include "openturns/Point.hxx"

Example for the inclusion of system function or external library header
files:

::

    #include <cstring>
    #include <boost/python.hpp>

Example for the inclusion of non standard system function header files:

::

    extern "C" (
    #include <nonstandard.h>
   )

Test files
~~~~~~~~~~

Example of names for test files:

::

    t_Matrix_construction.cxx
    t_Matrix_assignment.cxx
    t_Matrix_bug7654.cxx
    t_Matrix_vectorMultiplication.cxx

C++
---

This section deals with coding rules for the C++ language.

Compilation flags
~~~~~~~~~~~~~~~~~

It is helpful to enable some compilation warnings to avoid questionable constructions.
You may also want to enable debug symbols for further use with a debugger.

GCC compilation:

::

    mkdir -p build && cd build
    cmake -DCMAKE_BUILD_TYPE=RelWithDebInfo -DCMAKE_CXX_FLAGS="-Wall -Wextra -D_GLIBCXX_ASSERTIONS" ..
    make

Namespaces
~~~~~~~~~~

Example of **OpenTURNS** namespace definition for simple types:

::

    / **
    * @file       OTtypes.hxx
    * ...
    * /
    namespace OT
    {
    /* < Declarations of simple types > * /

    /* < Declarations of objects and functions > * /
    };

    // Alias for the direct use of XXX
    namespace OpenTURNS = OT;

Example of use by making all the definitions contained in the namespace
available:

::

    #include "openturns/OT.hxx"
    using namespace OT;

    void f(Scalar n);

Names
~~~~~
Names of classes, variables and methods consist of concatenated ful words.
Each word begins with an uppercase, except for the first one.
The first word begins with a lowercase except for class names and static methods or variables.
No abbreviations are allowed, except if it is found in the literature, for example FORM.


Example:

::

    class Sample {
    ...
    }; /* end class Sample */

Example:

::

    int main() {
    Bool myCondition = false;
    ...
    }

Example:

::

    class Environment : public Object {
    ...
    private:
    Scalar density_; //<! material density in environment (g/cm3)
    ...
    }; /* end class Environment */

NB: It is common for the underscore to be used as a prefix for private
attribute names. However, this method may trigger conflicts with
internal variables or definitions used by the compilers. For this
reason, the underscore is used as a suffix.

Example:

::

    class Object {
    ...
    private:
    static String ClassName_;
    ...
    }; /* end class Object */

Example:

::

    class Object
    {
    public:
      //* returns a class identifier based on its name
      static  String GetClassName(); ...
    }; /* end class Object */

Example:

::

    int
    initializeConversion()
    {
      static Bool IsInitialized = false;
      if (! IsInitialized) {
        ...
        IsInitialized = true;
      }
    };

Example:

::

    const UnsignedInteger MaximumOfRetries = 5;

Example:

::

    int main()
    {
      Scalar reactionRate = 0.0;
      ...
    }

Example:

::

    class Sample
    {
      UnsignedInteger getDimension () const;
      ...
    }; /* end class Sample */

Example:

::

    class Sample {
    }; /* end class Sample */

    void removeElement(const UnsignedInteger index);

    Point meanValue;

Example of tolerated notations:

::

    UnsignedInteger i;                // loop indices i, j and k are common
    UnsignedInteger j;
    UnsignedInteger k;

    UnsignedInteger nbMaxElements;    // usual abbreviations: nb, Max

    void
    addPoint(Point pt) { // no confusion in the context
      add(pt);
    }

Incorrect examples:

::

    Scalar a, k, l, m1, m2, m3;
    Scalar zzz, zz2;
    const char *foo, *hello, tempo, bogus;

    void adElt(Point pt);

    UnsignedInteger numSmplPt;

Class declaration
~~~~~~~~~~~~~~~~~

Example:

::

    class Buffer {
    public :
      static AThing GetThing();
    protected:
    private :
      static AThing TheThing_;

    public :
      Scalar getValue() const;
    protected :
      Scalar theValue_;
    private :
      /* ... */
    }; /* end class Buffer */

Example:

::

    class AnyClass {
    public :
      /** Default constructor  */
      AnyClass();
      /** Copy constructor */
      AnyClass(const AnyClass & other);
      /** Destructor */
      virtual ~AnyClass();
      /** Copy operator  */
      AnyClass& operator = (const AnyClass & other);
      /** Comparison operator */
      Bool operator == (const AnyClass & other) const;
      /** Stream converter */
      String repr() const;
      String str() const;

      /* other public methods ... */

    private :
      UnsignedInteger size_;
      DataType * data_;

      /* other private methods ... */
    }; /* end class AnyClass */

Example:

::

    class AnyClass {
    public :
      /* ... */
    private :
      UnsignedInteger size_;
      DataType * data_;
    }; /* end class AnyClass */

Example:

::

    class Vector {
    public :
      Vector (Bool someProperty, UnsignedInteger size, Scalar elt = 0.);
    private :
      Bool property_;
      Collection<Scalar> data_;
    };

Example of a correct definition:

::

    Vector::Vector (Bool someProperty, UnsignedInteger size, Scalar elt)
    : property_(someProperty)
    , data_(size, elt)
    { }

Examples of incorrect definitions:

::

    Vector::Vector (Bool someProperty, UnsignedInteger size, Scalar elt)
    : data_(size, elt)
    , property_(someProperty)     // order of initialization
    { }

    Vector::Vector (Bool someProperty, UnsignedInteger size, Scalar elt)
    {
      property_ = someProperty;
      data_ = Collection<Scalar>(size, elt);
      // requires an assignment after the construction
      // processing is longer for complex objects!
    }

Example: declaration of a pure virtual class A and of class B, derived
from A:

::

    class A {
    public :
      A();                  // constructor
      virtual ~A();          // destructor
      virtual const char * getClassName() = 0;       // pure virtual method
    };

    class B : public A {
    public :
      const char * getClassName() { return "B"; }
    };

Incorrect definitions leading to an execution error:

::

    A::A() {
    cout << getClassName() << " created" << endl; // B does not exist yet!
    }

    A::~A() {
    cout << getClassName() << " destroyed" << endl; // B no longer exists!
    }

    B::B() : A()
    { }

Write method for the **name** attribute:

::

    void            setName (SimpleType);
    void setName    (const ComposedType &);

Read method for the **name** attribute:

::

    SimpleType              getName() const;
    const ComposedType &    getName() const;

Example:

::

    class Sample {
    public :
      //* return the dimension of the sample
      UnsignedInteger getDimension() const;

      //* return the i-th element
      Point         operator[] (UnsignedInteger i);
      const Point & operator[] (UnsignedInteger i) const;
    };

Example:

::

    class Sample {
    public :
      //* return the number of the rod
      inline UnsignedInteger getDimension() const { return dimension_; }

      //* compute the mean point of the sample
      inline Point computeMeanValue() const;
    };

    //* inline methods
    Point computeMeanValue() const;
    {
    /* ... some non trivial processing */
    return meanValue;
    }

Explicit keyword
~~~~~~~~~~~~~~~~

Marking a single argument class constructors with the *explicit* keyword
allows one to avoid unwanted conversions.

It is relevant for constructors that have a single-argument, and also for
constructors that have a single mandatory argument plus optional arguments.

Single argument:

::

    class A {
    public :
      explicit A(const Point value);
    };

Optional argument:

::

    class A {
    public :
      explicit A(UnsignedInteger max = 6);
    };

Mandatory argument and optional argument:

::

    class A {
    public :
      explicit A(const Point value, UnsignedInteger max = 6);
    };

Inheritance
~~~~~~~~~~~

Example: the Point class derives from the Vector class:

::

    class Point : public std::vector<double> {
    public:
      Point(Scalar x,
            Scalar y,
            Scalar z);
    };

    Point::Point(Scalar x, Scalar y,
    Scalar z)
    : std::vector<double>(3)
    {
      (*this)[0] = x;
      (*this)[1] = y;
      (*this)[2] = z;
    }

Example:

::

    class Object {
    public :
      Object();
      virtual ~Object();
    };

Function and method declaration
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

::

    /** @brief <short description>
    *
    * <Long description>
    * @param argument_1 <description>
    * @param argument_2 <description>
    * @return           <description>
    * @throw            <description>
    */
    ReturnType
    functionName (
    TypeArgument_1       argument_1,
    TypeArgument_2   argument_2
   );

Correct example:Correct

::

    void send(const String & message);

Incorrect example:

::

    void send(String message);

Correct example:

::

    Buffer & append(UnsignedInteger);
    Buffer & append(const String &);
    Buffer & append(Scalar);

Incorrect example:

::

    Buffer & append(const char *fmt, ...);
    Buffer & append(const char *str = 0, double d = 0., int i = 0);

Variable declaration
~~~~~~~~~~~~~~~~~~~~
An atomic variable type (integer, bool, pointer, ...) must be always
initialized to a value to avoid undefined behavior.
This includes initialization of class attributes.


Correct example:

::

    String         filename (""); // library file name
    UnsignedInteger nbElements = 0; // number of elements into the data file
    UnsignedInteger i = 0;
    Scalar f = 0.0;

Accepted example:

::

    UnsignedInteger i = 0, j = 0, k = 0;     // indices

Incorrect example:

::

    / * Multiple declarations and different types * /
    UnsignedInteger   i, j, tab[20], **l, *numberOfElements;
    String        filename, *yourname, myname;

Constant declaration
~~~~~~~~~~~~~~~~~~~~
The const keyword must be used as much as possible.
Float constants must include the decimal separator and a at least a digit to
explicitly distinguish them from integers.

Example:

::

    const Scalar f = 6.0;
    const UnsignedInteger maximumIterations = 32;
    const char printFormat[] = "%s:line %d, %s";

Incorrect example:

::

    #define MAXIMUM_ITERATIONS 32;
    #define PRINT_FORMAT       "%s:line %d, %s"

Comments and internal documentation
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

::

    /**
    * @brief short description
    *
    * <LGPL copyright>
    *
    * Copyright 2005-20YY Airbus-EDF-IMACS-ONERA-Phimeca
    */

These comments should avoid:

-  mentioning the names of variables;

-  being a simple transcription of the code into English.

Memory allocation and deallocation
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

This section discusses general rules for allocating and freeing memory.
It will later be supplemented by rules regarding the use of basic
classes in order to manage the lifecycle of objects in memory.

Example to favor:

::

    {
      Scalar sections1[MAX]; // a fixed size array
      vector<Scalar> sections2; // an extensible vector
      list<Volume> volumes; // a list of volumes

      /* ... */
    }

Example to avoid:

::

    {
      Scalar *sections = new Scalar[MAX];
      list<Volume>    *volumes  = new list<Volume>;

      /* ... */

      delete [ ] sections;
      delete volumes;
    }

Correct example:

::

    {
      Volume *volume = new Volume;   // memory allocation +
      // constructor call
      /* ... */
      delete volume;                 // destructor call +
      volume = 0;                    // memory deallocation
    }

Incorrect example:

::

    {
      Volume *volume = (Volume*)malloc(sizeof(Volume));
      // memory allocation but
      // no constructor call
      /* ... */
      free(volume);                // no destructor call before
      volume = 0;                    // memory deallocation
    }

Example:

::

    A *     a = new A[40]; // calls the constructor 40 times
    ...

::

    delete a;              // incorrect: the table is freed,
    // the ~A destructor isn't called

::

    delete [] a;           // correct: the table is freed,
    // the ~A destructor is called 40 times

List of declaration files for the smart pointer:

::

    #include "openturns/Pointer.hxx"

Assignment and initialization
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Complex types (class types) must use copy constructors if available instead of
using the default constructor and then the copy operator for performance.
Atomic types (integer, bool, ...) can use the copy operator for readability.

Example:

::

    Point p2(p1);
    Bool a = b;

Example to avoid:

::

    String message;
    message = "Computation complete"; // assignment after construction

    String message(); // declaration of a function prorotype

Instructions
~~~~~~~~~~~~

Example:

::

    i = 0;
    while (i < MAX) {
      ++i;
      f(i);
    }

Examples to avoid if possible:

::

    a = b = c = 0;
    // multiple assignments

    f(++i);
    // readability

    v = *i++;
    // performance and understandability

    for(i = 1, j = 2, k = 3; i < N; j++, i++);
    // understandability and readability

Incorrect examples:

::

    buffer += "test", cout << buffer; i = 1;
    // heterogeneous processing &
    // different objects

    while(f(++i), i < MAX);
    // processing carried out before the test

Prohibited example:

::

    void foo() {
      for(...) {
        phase1 :
        /* ... */
        phase2 :
        if(errno != 0)
          goto erreur;
        if (/* a test */)
          goto phase2;
      }
      erreur :
      /* error handling */
    }

Note: error handling can be easily replaced with exception handling,
and the use of **goto** for the needs of algorithms can always be
replaced with a conditional structure or a loop.

Example: error handling

::

    Scalar
    compute(UnsignedInteger n) {
      Scalar result;
      if(n < MIN || n > MAX) {
        char msg[BUFSIZ];
        // automatic allocation for the processing
        snprintf (msg, BUFSIZ,
        "n = %d is out of range, valid range is [%d, %d]",
        n, MIN, MAX);
        throw Exception(msg);
      }
      /* ... */
      return result;
    }

Examples to avoid:

::

    Scalar
    compute(UnsignedInteger n) {
      Scalar result;
      Char    msg[BUFSIF];   // allocation unnecessary if no
      // error
      if(n < MIN || n > MAX)
      ...
    }

Correct example:

::

    switch (errno) {
    case ENOENT :
    msg = " ... ";

::

    break;
    case EACCESS :
    msg = " ... ";
    break;
    default :
    msg = "unknown error";
    break;
    }

Accepted example - processing multiple targets with the same block:

::

    switch (errno) {
    case ENOENT :
    case EACCESS :
    msg = " impossible to access file ";
    break;
    default :
    /* ... */
    break;
    }

Incorrect example:

::

    switch (errno) {
    case 1 :                // it is a value
    msg = " ... "; //
    // "break" is missing,
    // processing continues in ENOENT
    case ENOENT :
    msg = " ... ";
    break;
    default :               // "break" is missing at the
    // end of the "default" case
    msg = "unknown error";
    }

Incorrect example - use of the switch as a goto:

::

    switch (phase) {
    case PHASE1 :
    doPhaseOne();
    case PHASE2 :
    doPhaseTwo();
    break;
    default :
    /* ... */
    }

Example:

::

    int
    main (int argc, char *argv[])
    {
    /* ... */
    return EXIT_SUCCESS;
    }

Exceptions
~~~~~~~~~~

The ability to raise and handle exceptions is one of the strongest
features of C++. However, writing functions and methods that guarantee a
safe behavior when faced with exceptions remains a difficult aspect of
programming.

This chapter describes how to define and use exceptions in the source
code.

Example of **Exception** use:

::

    class Exception {
    public :
      Exception (const char *description, const char * comment = 0);
      virtual ~Exception() throw();
      /* ... */
      friend ostream & operator<< (ostream &, const Exception & e);
    };

Example of specialization of **Exception** in order to report an
off-range error:

::

    class OutOfBoundException : public Exception {
    public:
      OutOfBoundException(/* ... */)
      : Exception(/* ... */) { }
    };

Example of specialization of **Exception** in order to report an
off-range error with a macro-instruction:

::

    NEW_EXCEPTION(OutOfBoundException);

Incorrect example:

::

    try {
    // phase 1
    // phase 2
    if (result != OK)
    throw GotoPhase4();
    // phase 3

::

    /* ... */
    catch (GotoPhase4 e) {
    /* ... */
    }
    // phase 4

Exception handling
~~~~~~~~~~~~~~~~~~

An exception should be thrown when the library encounters conditions
under which it cannot operate.

When coding a new functionality, define a **sufficient** condition
under which the functionality will work correctly,
and have it throw an Exception if this condition is not met.

Correct example:

.. code:: cpp

    // Throw if a probability does not belong to [0,1]
    if (!( (proba >= 0.0) && (proba <= 1.0) ))
        throw InvalidArgumentException(HERE) << "Error: a probability should belong to [0,1]"
                                             << " but is " << proba;

Typically, it is easier to think about conditions that are sufficient
to make the functionality **not** work correctly,
but this way of thinking has two drawbacks:

- It can lead the programmer to forget situations in which the functionality does not work.
- If the test is performed on a floating point number (Scalar), a possible NaN value will not be caught.

NaN (*Not a Number*) is a value that can be taken by floating point numbers to represent
a missing value or the result of an illicit arithmetical operation (:code:`0/0` for example).
It has the following properties:

- When standard functions like :code:`sqrt` and :code:`max` are passed NaN as one of their arguments, they return NaN.
- All comparison operators except :code:`!=` return :code:`False` if either operand is NaN.
  The boolean :code:`a!=b` is :code:`True` if either :code:`a` or :code:`b` (or even both) is NaN.

Because of this second property, the following example fails to catch a possible NaN value.

Incorrect example:

.. code:: cpp

    // Throw if a probability is lower than 0 or larger than 1
    if ( (proba < 0.0) || (proba > 1.0) )
        throw InvalidArgumentException(HERE) << "Error: a probability should belong to [0,1]"
                                             << " but is " << proba;

Because only floating point numbers can be NaN, this rule is only imperative
for Exception checks involving floating point numbers.
You are free to disregard the rule for Exception checks that only involve integers.

When the sufficient condition under which the functionality works is an equality,
use :code:`a!=b` as a shorthand for :code:`!(a==b)`.

Example:

.. code:: cpp

    // The covariance must be null
    if (covariance(i, j) != 0.0)
        throw InvalidArgumentException(HERE) << "Error: covariance(" << i << ", " << j << ") should be null.";

When the sufficient condition under which the functionality works is that
some number must be *different* from some value, find a way to express this
that does not involve the :code:`!=` operator, because :code:`!(a!=b)`
is equivalent to :code:`a==b`. Both are :code:`False` if either :code:`a`
or :code:`b` is NaN.

For example, if you want to write that some nonnegative scalar should not be zero,
then write that is must be positive instead.

Incorrect example:

.. code:: cpp

    // Generalized number of degrees of freedom must not be zero.
    if (nu == 0.0) throw InvalidArgumentException(HERE) << "Nu MUST be positive";

Correct example:

.. code:: cpp

    // Generalized number of degrees of freedom must be positive.
    if (!(nu > 0.0)) throw InvalidArgumentException(HERE) << "Nu MUST be positive";

Error messages
~~~~~~~~~~~~~~

Example:

::

    String message;
    Log::Debug(message);
    Log::Info(message);
    Log::User(message);
    Log::Warning(message);
    Log::Error(message);

These rules refer to the classes and methods in the Python layer using
the services of the internal model and the solvers.

C++ 11
~~~~~~

The library requires the C++ 11 standard.
Some useful features include:

- std::atomic
- std::vector::data()
- std::shared_ptr
- constructor delegation
- default member initializers
- list initialization
- override keyword

Example: constructor delegation:

::

    class Foo
    {
      Foo (int a, int b), a_(a), b_(b)
      Foo () : Foo(4, 6)

      int a_, b_;
    };

Example: default member initializers:

::

    class Foo
    {
      Foo();

      int a_ = 0;
    };

Example: list initialization:

::

    const Indices indices = {1, 2, 3};
    const Description desc = {"mu", "sigma"};


Python
------

Modules and packages
~~~~~~~~~~~~~~~~~~~~

Example of tolerated notations:

::

    import matplotlib
    from matplotlib import pylab
    import numpy as np

Incorrect examples:

::

    from scipy import *

Names
~~~~~

Examples: RandomVector, Sample.

Examples:

::

    rv = RandomVector()
    dim = rv.getDimension()

Comments and internal documentation
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Example of documentation string for the class
**AnotherSample**:

::

    #
    # <detailed description for documentation tools such as HappyDoc>
    #
    class AnotherSample :
    """
    this class is designed to ...
    """
    #
    # <detailed description for developers and documentation tools>
    def __init__(self, name, type, range = None, doc = "") :
    """constructor -- """
    ...
    #
    # <detailed description for developers and documentation tools>
    def computeSomething(self, value):
    """run the well-known Schmoll Algorithm...
    """

Indentation
~~~~~~~~~~~

The python code should use 4 spaces per indentation level.
For more information about python formatting,
refer to `PEP8 <http://www.python.org/dev/peps/pep-0008/>`_.