1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
|
Wrapper development
===================
Pure python wrappers
--------------------
Python wrappers aim to be an easy way for wrapping external code. The
external code can be a mathematical formula or a coupling
involving several computational codes dedicated to the resolution of a
very complex physical problem.
Python wrappers are not the best solution if your external code last
less than a microseconds and if you need to resolve billions of points.
In that case, for better performance, consider using a compiled wrapper.
In any other cases, a Python wrapper is the recommended choice.
PythonFunction
~~~~~~~~~~~~~~
The :class:`~openturns.PythonFunction` is a :class:`~openturns.Function` which
execution is done in a Python context.
Here is an example of how to use it::
import openturns as ot
def compute_point(X):
E, F = X
Y = E * F
return [Y]
model = ot.PythonFunction(2, 1, compute_point)
out_sample = model([[2, 3], [5, 8]])
model.gradient([2.0, 3.0])
Some explanations of the code :
- The ``compute_point`` function constructs the out point from the in
point. The in and out array size must correspond to the sizes set in
the PythonFunction constructor. In this example, X will be an array
of size 2 and Y must be an array of size 1. The output point can be a
Python list, an Point or a Numpy array.
The evaluation can be done on several points to benefit from vectorization.
It receives an input sample and must return an output sample. Here is an example::
import openturns as ot
import numpy as np
def exec_sample(Xs):
# speedup using numpy
XsT = np.array(Xs).T
return np.atleast_2d(np.multiply(XsT[0], XsT[1])).T
model = ot.PythonFunction(2, 1, func_sample=exec_sample)
The output sample can be a Sample, a Python list of list or a
Numpy array of array. This argument is optional. If ``func_sample`` is
not provided and must compute a sample, the ``func`` function is
called several time: once for each point of the sample. On contrary, if
only ``func_sample`` is given and a point must be computed, the point
is inserted in a sample of size 1, and extracted from the result sample.
The PythonFunction is quite simple to use. When used with
coupling\_tools module, it can wrap external program easily too.
External code coupling tools
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Simple example
^^^^^^^^^^^^^^
Here is a simple example of wrapper where compute is made in an external
program with the help of openturns.coupling\_tools module::
import openturns as ot
import openturns.coupling_tools as ct
external_program = 'python external_program.py'
def exec(X):
# create input file
in_file = 'input.py'
ct.replace('input_template.py', in_file, ['@E', '@F'], X)
# compute
ct.execute(external_program + ' ' + in_file)
# parse output file
Y = ct.get('output.py', tokens=['Z='])
return Y
model = ot.PythonFunction(2, 1, exec)
out_sample = model([[2, 3], [5, 8]])
print(out_sample)
Some explanations of the code :
- :py:meth:`~openturns.coupling_tools.replace` replace ``@E`` and ``@F`` occurrence found
in ``input_template.py`` file and write the result to ``infile``
file. ``X[0]`` value will replace ``'@E'`` token and ``X[1]`` will
replace ``'@F'`` token.
- The external program is launched with :py:meth:`~openturns.coupling_tools.execute`.
The input filename is passed by parameters to the program.
- :py:meth:`~openturns.coupling_tools.get` get the value following ``'Z='`` token in
``output.py`` file.
Template file example ``input_template.py``::
E=@E
F=@F
External program example ``external_program.py``::
#!/usr/bin/env python
# get input
import sys
inFile = sys.argv[1]
exec(compile(open(inFile).read(), inFile, 'exec'))
# compute
Z = F * E
# write output
h = open('output.py', 'w')
h.write('Z=' + str(Z))
h.close
Output file example ``output.py``::
Z=42.0
More examples
^^^^^^^^^^^^^
The replace :py:meth:`~openturns.coupling_tools.replace` function
can edit file in place. It can format values in anyway. Actually, values
can be of type “string”, if not, they are converted using str() Python
function:
::
replace(outfile='input_template.py', infile=None,
tokens=['@E', '@F'], values=['%.2f' % 5.2569, 'toto'])
::
replace(outfile='input_template.py', infile=None,
tokens=['@E', '@F'], values=['%.2f' % 5.2569, 'toto'])
The input\_template.py file will then be modify like this :
::
E=5.25
F=toto
Be careful with overlapping tokens:
::
# if input_template.py = 'E=@E EE=@EE')
replace(infile="input_template.py",
outfile="None",
tokens=["@E", "@EE"],
values=[1, 2])
# => raise exception!! -> @EE token not found!
# (this is due to the first pass with token "@E" that modify
# "input_template.py" like this : 'E=1 EE=1E')
Solution to overlapping tokens: put longest tokens first:
::
# template.in = 'E=@E EE=@EE')
replace(infile="template.in",
outfile="prgm_data.in",
tokens=["@EE", "@E"],
values=[2, 1])
# => prgm_data.in = 'E=1 EE=2')
The :py:meth:`~openturns.coupling_tools.execute` function
can launch an external code.
The :py:meth:`~openturns.coupling_tools.get_value` function
can deal with several type of output file.
- content of the results.out file used for the following examples
::
1 2 3 04 5 6
7 8 9 10
11 12 13 14
@Y1= 11.11celcius
@Y2= -0.89
@Y1= 22.22
@Y1= 33.33
line1: 100 101 102
line2: 200 201 202
line3: 300 301 302
- search token, the value right after the token is returned:
::
Y = get_value('results.out', token='@Y1=') # 11.11
- skip lines and columns (useful for array search)::
get_value('results.out', skip_line=1, skip_col=2) # 9
- skip lines and columns backward (be careful: if there is an empty
line at the end of the file, it is taken into account. i.e. this
last empty line will be reached using skip\_line=-1)::
get_value('results.out', skip_line=-2, skip_col=-2) # 201
- search the 3rd appearance of the token::
get_value('results.out', token='@Y1=', skip_token=2) # 33.33
- search the 2nd appearance of the token from the end of the file::
get_value('results.out', token='@Y1=', skip_token=-2) # 22.22
- search a token and then skip lines and columns from this token::
get_value('results.out', token='@Y1=', skip_line=5, skip_col=-2) # 101
- search the 2nd token and then skip lines and columns from this
token::
get_value('results.out', token='@Y1=', skip_token=1, skip_line=5, skip_col=1) # 300
The :py:meth:`~openturns.coupling_tools.get` function
works actually the same way the get\_value function do,
but on several parameters:
The :py:meth:`~openturns.coupling_tools.get_regex` function
parses output files. It is provided for backward compatibility::
Y = get_regex('results.out', patterns=['@Y2=(\R)']) # -0.89
Performance considerations
--------------------------
Two different cases can be encounter when wrapping code: the wrapping
code is a mathematical formula or it is an external code (an external process).
Symbolic formula
~~~~~~~~~~~~~~~~
A benchmark involving the different wrapping methods available from
has been done using a dummy symbolic formula.
Benchmark sources
^^^^^^^^^^^^^^^^^
Optimizations of any parts of this benchmark are welcome.
- Benchmark of PythonFunction using \_exec function:
::
big_sample = ot.Normal(2).getSample(1000*1000)
import openturns as ot
def _exec( X ):
return [math.cos(pow(X[0]+1, 2)) - math.sin(X[1])]
model = ot.PythonFunction(2, 1, _exec)
# start timer
out_sample = model( big_sample )
# stop timer
- Benchmark of PythonFunction using \_exec\_sample function:
::
def _exec_sample( Xs ):
import numpy as np
XsT = np.array(Xs).T
return np.atleast_2d(np.cos(np.power(xT[0]+1, 2)) - np.sin(xT[1])).T
model = ot.PythonFunction(2, 1, func_sample=_exec_sample)
- Benchmark of symbolic (muParser) function::
model = ot.SymbolicFunction(['x0','x1'], ['cos((x0+1)^2) - sin(x1)'])
The benchmark is done on a bi XEON E5520 (Nehalem 16\*2.27GHz, HT
activated) with 12Go RAM.
Benchmark results
^^^^^^^^^^^^^^^^^
The sample containing 1 million of points is allocated in 0.282s.
+---------------------------------+---------+-----------------------------------+
| wrapper type | time | comparison with fastest wrapper |
+---------------------------------+---------+-----------------------------------+
| PythonFunction \_exec | 7.1s | x157 |
+---------------------------------+---------+-----------------------------------+
| PythonFunction \_exec\_sample | 1.3s | x30 |
+---------------------------------+---------+-----------------------------------+
| Symbolic (muParser) | 0.43s | x10 |
+---------------------------------+---------+-----------------------------------+
The previous results are linear to the size of the sample.
- muParser is the 2nd fastest (10 times slower than the first).
The muParser library used is not multithreaded. Embedding a
parallel version of muParser could give better results.
- Using an optimized \_exec\_sample python function through numpy gives
better results (6x faster) than a simple \_exec python function, but
it is still much slower than the compiled library (30 times slower).
Note that neither Python nor NumPy are multithreaded.
Conclusion
^^^^^^^^^^
PythonFunction is the easiest and more adaptable wrapper but it’s the
slowest too. So, if you need to compute samples containing less than a
million of points, PythonFunction is the good choice as the speed
difference between wrappers will not be noticeable: every wrappers will
compute the sample in less than a second. Otherwise choose muParser.
External process
~~~~~~~~~~~~~~~~
Normal program
^^^^^^^^^^^^^^
For usual program (compute time of 1s and above), inner wrapper
complexity/overhead are not an issue cause the external program compute
time will be the main part of the whole compute time. Sample can be
computed faster by launching this external program in parallel.
- PythonFunction can not launch the \_exec function in parallel.
- the DistributedPythonFunction from otdistfunc module can launch
external program on each core of the local Machine or on each core of
several remote machine.
The DistributedPythonFunction is the best choice as it combine the ease
of use of Python with the ability to deploy compute on a cluster of
computers.
Tiny program
^^^^^^^^^^^^
If the external process compute time is really fast (< 0.1s), wrapper
point’s launch time (overhead) becomes important.
If performance are an issue, one should first consider that the external
process is perhaps fast because it does something simple: can it be
easily reimplemented in Python? If the code is not too complex, execute
Python code inside a PythonFunction is usually much faster than the time
to start the external process ( 1000x). Here is a naive example of
external process (scilab) vs PythonFunction.
- The following scilab script takes 0.07s per point:
``$ scilab -nb -nwni -f code.sce``
::
// code.sce
exec("input.data", -1)
y = x1 + x2;
f = mopen("result.data", "wt");
mfprintf(f, "y = %.20e", y);
file("close", f);
quit
- Conversion to Python of the scilab script. It takes now 0.00001s per
point:
::
def _exec( X ):
return X[0] + X[1]
model = ot.PythonFunction(2, 1, _exec)
If you still need to launch tiny external process, slow overhead and
parallel ability are the important factors of the wrapper. Comparison of
the different wrapper compute time with a sample of size 1000 and an
external code that last 0.07s per point on a 8 cores computer:
- PythonFunction overhead is really slow (0.000004s) but can not launch
the \_exec function in parallel.
:math:`(0.000004+0.07)*1000 => 70s`
- DistributedPythonFunction overhead is near 0.05s and can launch
external program in parallel.
:math:`(0.05+0.07)*1000 (/8core) => 15s`
- PythonFunction that reimplement the external program.
:math:`(0.00001)*1000 => 0.01s`
|