1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
|
"""
Bayesian calibration of a computer code
=======================================
"""
# %%
# In this example we compute the parameters of a computer model thanks
# to Bayesian estimation.
# We use the :class:`~openturns.RandomWalkMetropolisHastings` and
# :class:`~openturns.Gibbs` classes
# and simulate a sample of the posterior distribution using
# :ref:`metropolis_hastings`.
#
# Let us denote :math:`(y_1, \dots, y_n)` the observation sample,
# :math:`(\vect z_1, \ldots, \vect z_n) = (f(x_1|\vect\theta), \ldots, f(x_n|\vect\theta))` the model prediction,
# :math:`p(y |\vect z)` the density function of observation :math:`y`
# conditional on model prediction :math:`\vect z`,
# and :math:`\vect\theta \in \mathbb{R}^p` the calibration parameters we wish to estimate.
#
#
# The posterior distribution is given by Bayes theorem:
#
# .. math::
#
# \pi(\vect\theta | \vect y) \quad \propto \quad L\left(\vect y | \vect\theta\right) \times \pi(\vect\theta)
#
# where :math:`\propto` means "proportional to", regarded as a function of :math:`\vect\theta`.
#
# The posterior distribution is approximated here by the empirical distribution
# of the sample :math:`\vect\theta^1, \ldots, \vect\theta^N` generated by the Metropolis-Hastings algorithm.
# This means that any quantity characteristic of the posterior distribution
# (mean, variance, quantile, ...) is approximated by its empirical counterpart.
#
# Our model (i.e. the compute code to calibrate) is a standard normal linear regression, where
#
# .. math::
# y_i = \theta_1 + x_i \theta_2 + x_i^2 \theta_3 + \varepsilon_i
#
# where :math:`\varepsilon_i \stackrel{i.i.d.}{\sim} \mathcal N(0, 1)`.
#
# The "true" value of :math:`\theta` is:
#
# .. math::
# \vect \theta_{true} = (-4.5,4.8,2.2)^T.
#
#
# We use a normal prior on :math:`\vect\theta`:
#
# .. math::
# \pi(\vect\theta) = \mathcal N(\vect{\mu}_\vect{\theta}, \mat{\Sigma}_\vect{\theta})
#
# where
#
# .. math::
# \vect{\mu}_\vect{\theta} =
# \begin{pmatrix}
# -3 \\
# 4 \\
# 1
# \end{pmatrix}
#
# is the mean of the prior and
#
# .. math::
# \mat{\Sigma}_\vect{\theta} =
# \begin{pmatrix}
# \sigma_{\theta_1}^2 & 0 & 0 \\
# 0 & \sigma_{\theta_2}^2 & 0 \\
# 0 & 0 & \sigma_{\theta_3}^2
# \end{pmatrix}
#
# is the prior covariance matrix with
#
# .. math::
# \sigma_{\theta_1} = 2, \qquad \sigma_{\theta_2} = 1, \qquad \sigma_{\theta_3} = 1.5.
#
# The following objects need to be defined in order to perform Bayesian calibration:
#
# - The conditional density :math:`p(y|\vect z)` must be defined as a probability distribution.
# - The computer model must be implemented thanks to the :class:`~openturns.ParametricFunction` class.
# This takes a value of :math:`\vect\theta` as input, and outputs the vector of model predictions :math:`\vect z`,
# as defined above (the vector of covariates :math:`\vect x = (x_1, \ldots, x_n)` is treated as a known constant).
# When doing that, we have to keep in mind that :math:`\vect z` will be used as the vector of parameters corresponding
# to the distribution specified for :math:`p(y |\vect z)`. For instance, if :math:`p(y|\vect z)` is normal,
# this means that :math:`\vect z` must be a vector containing the mean and standard deviation of :math:`y`.
# - The prior density :math:`\pi(\vect\theta)` encoding the set of possible values for the calibration parameters,
# each value being weighted by its a priori probability, reflecting the beliefs about the possible values
# of :math:`\vect\theta` before consideration of the experimental data.
# Again, this is implemented as a probability distribution.
# - Metropolis-Hastings algorithm(s), possibly used in tandem with a Gibbs algorithm
# in order to sample from the posterior distribution of the calibration parameters.
#
# This example uses the :class:`~openturns.ParametricFunction` class.
# Please read its documentation and
# :doc:`/auto_functional_modeling/vectorial_functions/plot_parametric_function`
# for a detailed example.
# %%
import openturns as ot
import openturns.viewer as viewer
from matplotlib import pylab as plt
ot.Log.Show(ot.Log.NONE)
# %%
# Dimension of the vector of parameters to calibrate
paramDim = 3
# The number of obesrvations
obsSize = 10
# %%
# Define the observed inputs :math:`x_i`.
# %%
xmin = -2.0
xmax = 3.0
step = (xmax - xmin) / (obsSize - 1)
rg = ot.RegularGrid(xmin, step, obsSize)
x_obs = rg.getVertices()
# %%
# Define the parametric model :math:`\vect z = f(x,\vect\theta)` that associates each
# observation :math:`x` and value of :math:`\vect \theta` to the parameters
# of the distribution of the corresponding observation :math:`y`:
# here :math:`\vect z=(\mu, \sigma)` where :math:`\mu`,
# the first output of the model, is the mean and :math:`\sigma`,
# the second output of the model, is the standard deviation.
# %%
fullModel = ot.SymbolicFunction(
["x", "theta1", "theta2", "theta3"], ["theta1+theta2*x+theta3*x^2", "1.0"]
)
# %%
# To differentiate between the two classes of inputs (:math:`x` and :math:`\vect\theta`),
# we define a :class:`~openturns.ParametricFunction` from `fullModel`
# and make the first input (the observations :math:`x`) its *parameter*:
# :math:`f_x(\vect \theta) := f(x, \vect \theta)`.
# We set :math:`x = 1` as a placeholder,
# but :math:`x` will actually take the values :math:`x_i` of the observations
# when we sample :math:`\vect\theta`.
linkFunction = ot.ParametricFunction(fullModel, [0], [1.0])
print(linkFunction)
# %%
# Define the observation noise :math:`\varepsilon {\sim} \mathcal N(0, 1)` and create a sample from it.
# %%
ot.RandomGenerator.SetSeed(0)
noiseStandardDeviation = 1.0
noise = ot.Normal(0, noiseStandardDeviation)
noiseSample = noise.getSample(obsSize)
# %%
# Define the vector of observations :math:`y_i`,
# here sampled using the "true" value of :math:`\vect \theta`: :math:`\vect \theta_{true}`.
# %%
thetaTrue = [-4.5, 4.8, 2.2]
# %%
y_obs = ot.Sample(obsSize, 1)
for i in range(obsSize):
linkFunction.setParameter(x_obs[i])
y_obs[i, 0] = linkFunction(thetaTrue)[0] + noiseSample[i, 0]
# %%
# Draw the model predictions vs the observations.
# %%
functionnalModel = ot.ParametricFunction(fullModel, [1, 2, 3], thetaTrue)
graphModel = functionnalModel.getMarginal(0).draw(xmin, xmax)
observations = ot.Cloud(x_obs, y_obs)
graphModel.add(observations)
graphModel.setLegends(["Model", "Observations"])
graphModel.setLegendPosition("upper left")
view = viewer.View(graphModel)
# %%
# Define the distribution of observations :math:`y | \vect{z}` conditional on model predictions.
#
# Note that its parameter dimension is the one of :math:`\vect{z}`, so the model must be adjusted accordingly.
# %%
conditional = ot.Normal()
# %%
# Define the mean :math:`\mu_\theta`, the covariance matrix :math:`\Sigma_\theta`, then the prior distribution :math:`\pi(\vect\theta)` of the parameter :math:`\vect\theta`.
# %%
thetaPriorMean = [-3.0, 4.0, 1.0]
# %%
sigma0 = [2.0, 1.0, 1.5] # standard deviations
thetaPriorCovarianceMatrix = ot.CovarianceMatrix(paramDim)
for i in range(paramDim):
thetaPriorCovarianceMatrix[i, i] = sigma0[i] ** 2
prior = ot.Normal(thetaPriorMean, thetaPriorCovarianceMatrix)
prior.setDescription(["theta1", "theta2", "theta3"])
# %%
# The proposed steps for
# :math:`\theta_1`, :math:`\theta_2` and :math:`\theta_3`
# will all follow a uniform distribution.
proposal = ot.Uniform(-1.0, 1.0)
# %%
# Test the Metropolis-Hastings sampler
# ------------------------------------
# %%
# Creation of a single component random walk Metropolis-Hastings (RWMH) sampler.
# This involves a combination of the RWMH and the Gibbs algorithms.
# %%
initialState = thetaPriorMean
# %%
# We create a :class:`~openturns.RandomWalkMetropolisHastings` sampler for each component.
# Each sampler must be aware of the joint prior distribution.
# We also use the same proposal distribution, but this is not mandatory.
mh_coll = [
ot.RandomWalkMetropolisHastings(prior, initialState, proposal, [i])
for i in range(paramDim)
]
# %%
# Each sampler must be made aware of the likelihood.
# Otherwise we would sample from the prior!
for mh in mh_coll:
mh.setLikelihood(conditional, y_obs, linkFunction, x_obs)
# %%
# Finally, the :class:`~openturns.Gibbs` algorithm is constructed from all Metropolis-Hastings samplers.
sampler = ot.Gibbs(mh_coll)
# %%
# Generate a sample from the posterior distribution of the parameters :math:`\vect \theta`.
# %%
sampleSize = 10000
sample = sampler.getSample(sampleSize)
# %%
# Look at the acceptance rate (basic check of the sampling efficiency:
# values close to :math:`0.2` are usually recommended
# for Normal posterior distributions).
# %%
[mh.getAcceptanceRate() for mh in sampler.getMetropolisHastingsCollection()]
# %%
# Build the distribution of the posterior by kernel smoothing.
# %%
kernel = ot.KernelSmoothing()
posterior = kernel.build(sample)
# %%
# Display prior vs posterior for each parameter.
def plot_bayesian_prior_vs_posterior_pdf(prior, posterior):
"""
Plot the prior and posterior distribution of a Bayesian calibration
Parameters
----------
prior : ot.Distribution(dimension)
The prior.
posterior : ot.Distribution(dimension)
The posterior.
Return
------
grid : ot.GridLayout(1, dimension)
The prior and posterior PDF for each marginal.
"""
paramDim = prior.getDimension()
grid = ot.GridLayout(1, paramDim)
parameterNames = prior.getDescription()
for parameter_index in range(paramDim):
graph = ot.Graph("", parameterNames[parameter_index], "PDF", True)
# Prior
curve = prior.getMarginal(parameter_index).drawPDF().getDrawable(0)
curve.setLineStyle(
ot.ResourceMap.GetAsString("CalibrationResult-PriorLineStyle")
)
curve.setLegend("Prior")
graph.add(curve)
# Posterior
curve = posterior.getMarginal(parameter_index).drawPDF().getDrawable(0)
curve.setLineStyle(
ot.ResourceMap.GetAsString("CalibrationResult-PosteriorLineStyle")
)
curve.setLegend("Posterior")
graph.add(curve)
#
if parameter_index < paramDim - 1:
graph.setLegends([""])
if parameter_index > 0:
graph.setYTitle("")
graph.setLegendPosition("upper right")
grid.setGraph(0, parameter_index, graph)
grid.setTitle("Bayesian calibration")
return grid
# %%
# sphinx_gallery_thumbnail_number = 2
grid = plot_bayesian_prior_vs_posterior_pdf(prior, posterior)
viewer.View(
grid,
figure_kw={"figsize": (8.0, 3.0)},
legend_kw={"bbox_to_anchor": (1.0, 1.0), "loc": "upper left"},
)
plt.subplots_adjust(right=0.8, bottom=0.2, wspace=0.3)
plt.show()
# %%
|