File: plot_bayesian_calibration_flooding.py

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (347 lines) | stat: -rw-r--r-- 9,168 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
"""
Bayesian calibration of the flooding model
==========================================
"""

# %%
#
# Abstract
# --------
#
# The goal of this example is to present the Bayesian calibration of the
# :ref:`flooding model<use-case-flood-model>`.
# We use the :class:`~openturns.RandomWalkMetropolisHastings` and
# :class:`~openturns.Gibbs` classes
# and simulate a sample of the posterior distribution using
# :ref:`metropolis_hastings`.

# %%
# Parameters to calibrate
# -----------------------
#
# The vector of parameters to calibrate is:
#
# .. math::
#    \vect{\theta} = (K_s,Z_v,Z_m).
#
#
# The variables to calibrate are :math:`(K_s,Z_v,Z_m)` and are set to the following values:
#
# .. math::
#    K_s = 30, \qquad Z_v = 50, \qquad Z_m = 55.
#
#
# Observations
# ------------
#
# In this section, we describe the statistical model associated with the :math:`n` observations.
# The errors of the water heights are associated with a gaussian distribution with a zero mean and a standard variation equal to:
#
# .. math::
#    \sigma=0.1.
#
#
# Therefore, the observed water heights are:
#
# .. math::
#    H_i = G(Q_i,K_s,Z_v,Z_m) + \epsilon_i
#
#
# for :math:`i=1,...,n` where
#
# .. math::
#    \epsilon \sim \mathcal{N}(0,\sigma^2)
#
#
# and we make the hypothesis that the observation errors are independent.
# We consider a sample size equal to:
#
# .. math::
#    n=20.
#
#
# The observations are the couples :math:`\{(Q_i,H_i)\}_{i=1,...,n}`,
# i.e. each observation is a couple made of the flowrate and the corresponding river height.
#
# Variables
# ---------
#
# - :math:`Q` : Input. Observed.
# - :math:`K_s`, :math:`Z_v`, :math:`Z_m` : Input. Calibrated.
# - :math:`H`: Output. Observed.
#
# Analysis
# --------
#
# In the description of the :ref:`flooding model<use-case-flood-model>`, we see that only one parameter
# can be identified.
# Hence, calibrating this model requires some regularization.
# In this example, we use Bayesian methods as a way to regularize the model.

# %%
# Generate the observations
# -------------------------

# %%
import pylab as pl
from openturns.usecases import flood_model
import openturns.viewer as viewer
import numpy as np
import openturns as ot

ot.Log.Show(ot.Log.NONE)

# %%
# A basic implementation of the probabilistic model is available in the usecases module :
fm = flood_model.FloodModel()

# %%
# We define the model :math:`g` which has 4 inputs and one output H.
#
# The nonlinear least squares does not take into account for bounds in the parameters.
# Therefore, we ensure that the output is computed whatever the inputs.
# The model fails into two situations:
#
# * if :math:`K_s<0`,
# * if :math:`Z_v-Z_m<0`.
#
# In these cases, we return an infinite number.

# %%


def functionFlooding(X):
    L = 5.0e3
    B = 300.0
    Q, K_s, Z_v, Z_m = X
    alpha = (Z_m - Z_v) / L
    if alpha < 0.0 or K_s <= 0.0:
        H = np.inf
    else:
        H = (Q / (K_s * B * np.sqrt(alpha))) ** (3.0 / 5.0)
    return [H]


# %%
g = ot.PythonFunction(4, 1, functionFlooding)
g = ot.MemoizeFunction(g)
g.setOutputDescription(["H (m)"])

# %%
# We load the input distribution for :math:`Q`.
Q = fm.Q

# %%
# Set the parameters to be calibrated.

# %%
K_s = ot.Dirac(30.0)
Z_v = ot.Dirac(50.0)
Z_m = ot.Dirac(55.0)
K_s.setDescription(["Ks (m^(1/3)/s)"])
Z_v.setDescription(["Zv (m)"])
Z_m.setDescription(["Zm (m)"])

# %%
# We create the joint input distribution.

# %%
inputRandomVector = ot.JointDistribution([Q, K_s, Z_v, Z_m])

# %%
# Create a Monte-Carlo sample of the output :math:`H`.

# %%
nbobs = 20
inputSample = inputRandomVector.getSample(nbobs)
outputH = g(inputSample)

# %%
# Generate the observation noise and add it to the output of the model.

# %%
sigmaObservationNoiseH = 0.1  # (m)
noiseH = ot.Normal(0.0, sigmaObservationNoiseH)
ot.RandomGenerator.SetSeed(0)
sampleNoiseH = noiseH.getSample(nbobs)
Hobs = outputH + sampleNoiseH

# %%
# Plot the Y observations versus the X observations.

# %%
Qobs = inputSample[:, 0]

# %%
graph = ot.Graph("Observations", "Q (m3/s)", "H (m)", True)
cloud = ot.Cloud(Qobs, Hobs)
graph.add(cloud)
view = viewer.View(graph)


# %%
# Setting the calibration parameters
# ----------------------------------

# %%
# Define the parametric model :math:`\vect z = f_Q(\vect\theta)` that associates each observation
# :math:`Q` and value of the parameters :math:`\vect \theta = (K_s, Z_v, Z_m)`
# to the parameters of the distribution of the corresponding observation:
# here :math:`\vect z=(\mu, \sigma)` with :math:`\mu = G(Q, K_s, Z_v, Z_m)`
# and :math:`\sigma = 0.5`.


# %%
def fullModelPy(X):
    Q, K_s, Z_v, Z_m = X
    mu = g(X)[0]
    sigma = 0.5  # (m^2) The standard deviation of the observation error.
    return [mu, sigma]


fullModel = ot.PythonFunction(4, 2, fullModelPy)
linkFunction = ot.ParametricFunction(fullModel, [0], [np.nan])
print(linkFunction)

# %%
# Define the value of the reference values of the :math:`\vect\theta` parameter.
# In the Bayesian framework, this is called the mean of the *prior* Gaussian distribution. In the data assimilation framework, this is called the *background*.

# %%
KsInitial = 20.0
ZvInitial = 49.0
ZmInitial = 51.0
parameterPriorMean = [KsInitial, ZvInitial, ZmInitial]
paramDim = len(parameterPriorMean)

# %%
# Define the covariance matrix of the parameters :math:`\vect\theta` to calibrate.

# %%
sigmaKs = 5.0
sigmaZv = 1.0
sigmaZm = 1.0

# %%
parameterPriorCovariance = ot.CovarianceMatrix(paramDim)
parameterPriorCovariance[0, 0] = sigmaKs**2
parameterPriorCovariance[1, 1] = sigmaZv**2
parameterPriorCovariance[2, 2] = sigmaZm**2

# %%
# Define the prior distribution :math:`\pi(\vect\theta)` of the parameter :math:`\vect\theta`

# %%
prior = ot.Normal(parameterPriorMean, parameterPriorCovariance)
prior.setDescription(["Ks", "Zv", "Zm"])

# %%
# Define the distribution of observations :math:`\vect{y} | \vect{z}` conditional on model predictions.
#
# Note that its parameter dimension is the one of :math:`\vect{z}`, so the model must be adjusted accordingly.
# In other words, the input argument of the `setParameter` method of the conditional distribution must be equal to the dimension of the output of the `model`.
# Hence, we do not have to set the actual parameters: only the type of distribution is used.

# %%
conditional = ot.Normal()

# %%
# The proposed steps for :math:`K_s` :math:`Z_v` and :math:`Z_m`
# will all follow uniform distributions,
# but with different supports.

# %%
proposal = [ot.Uniform(-5.0, 5.0), ot.Uniform(-1.0, 1.0), ot.Uniform(-1.0, 1.0)]

# %%
# Build a Gibbs sampler
# ---------------------

initialState = parameterPriorMean
mh_coll = [
    ot.RandomWalkMetropolisHastings(prior, initialState, proposal[i], [i])
    for i in range(paramDim)
]
for mh in mh_coll:
    mh.setLikelihood(conditional, Hobs, linkFunction, Qobs)
sampler = ot.Gibbs(mh_coll)

# %%
# Generate a sample from the posterior distribution of :math:`\vect \theta`.

# %%
sampleSize = 1000
sample = sampler.getSample(sampleSize)

# %%
# Look at the acceptance rates of the random walk Metropolis-Hastings samplers.

[mh.getAcceptanceRate() for mh in sampler.getMetropolisHastingsCollection()]

# %%
# Build the distribution of the posterior by kernel smoothing.

kernel = ot.KernelSmoothing()
posterior = kernel.build(sample)

# %%
# Display prior vs posterior for each parameter.


def plot_bayesian_prior_vs_posterior_pdf(prior, posterior):
    """
    Plot the prior and posterior distribution of a Bayesian calibration

    Parameters
    ----------
    prior : ot.Distribution(dimension)
        The prior.
    posterior : ot.Distribution(dimension)
        The posterior.

    Return
    ------
    grid : ot.GridLayout(1, dimension)
        The prior and posterior PDF for each marginal.
    """
    paramDim = prior.getDimension()
    grid = ot.GridLayout(1, paramDim)
    parameterNames = prior.getDescription()
    for parameter_index in range(paramDim):
        graph = ot.Graph("", parameterNames[parameter_index], "PDF", True)
        # Prior
        curve = prior.getMarginal(parameter_index).drawPDF().getDrawable(0)
        curve.setLineStyle(
            ot.ResourceMap.GetAsString("CalibrationResult-PriorLineStyle")
        )
        curve.setLegend("Prior")
        graph.add(curve)
        # Posterior
        curve = posterior.getMarginal(parameter_index).drawPDF().getDrawable(0)
        curve.setLineStyle(
            ot.ResourceMap.GetAsString("CalibrationResult-PosteriorLineStyle")
        )
        curve.setLegend("Posterior")
        graph.add(curve)
        #
        if parameter_index < paramDim - 1:
            graph.setLegends([""])
        if parameter_index > 0:
            graph.setYTitle("")
        graph.setLegendPosition("upper right")
        grid.setGraph(0, parameter_index, graph)
    grid.setTitle("Bayesian calibration")
    return grid


# %%
# sphinx_gallery_thumbnail_number = 2
grid = plot_bayesian_prior_vs_posterior_pdf(prior, posterior)
viewer.View(
    grid,
    figure_kw={"figsize": (8.0, 3.0)},
    legend_kw={"bbox_to_anchor": (1.0, 1.0), "loc": "upper left"},
)
pl.subplots_adjust(right=0.8, bottom=0.2, wspace=0.3)

# %%