1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
|
"""
Linear Regression with interval-censored observations
=====================================================
"""
# %%
# 1. Model formulation
# --------------------
#
# We consider the following linear model:
#
# .. math::
#
# \vect{Y} = \mat{X} \vect{\theta} + \vect{\varepsilon},
#
# where the observation vector :math:`\vect{Y} \in \mathbb R^{n}` is modeled as
# the sum of:
#
# - a linear part, with an :math:`n \times p` design matrix :math:`\mat{X}`
# and unknown regression coefficients :math:`\vect{\theta} \in\mathbb R^p`,
# - a Gaussian error term
# :math:`\vect{\varepsilon} \sim \mathcal N_n(\vect{0}, \tau^{-1} \mat{I}_n+\mat{Q}^{-1})`,
#
# where :math:`\mat{Q}` represents a known *precision* (inverse variance) matrix
# for measurement errors,
# and :math:`\tau` an unknown precision parameter
# quantifying the variability of the observed phenomenon.
#
# 1.1. Likelihood of the linear regression model
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#
# The above linear regression model can thus be written:
#
# .. math::
#
# \vect{Y} | \vect{\theta}, \tau
# {\sim} \mathcal N_{n}(\mat{X} \vect{\theta} ; \tau^{-1} \mat{I}_n +\mat{Q}^{-1}),
#
# We then have the following likelihood:
#
# .. math::
#
# \mathcal L(\vect{Y}|\vect{\theta}, \tau) =
# (2\pi)^{-\frac{n}{2}}
# {\rm det}(\tau^{-1} \mat{I}_n+\mat{Q}^{-1})^{-\frac{1}{2}}
# e^{-\frac{1}{2}
# ||\vect{Y} - \mat{X} \vect{\theta} ||_{\tau^{-1} \mat{I}_n +\mat{Q}^{-1}}^2
# }
#
# where :math:`||\vect{X}-\vect{Y}||_{\mat{V}}^2` is the Mahalanobis distance between
# :math:`\vect{X}` and :math:`\vect{Y}` with covariance matrice :math:`\mat{V}`:
#
# .. math::
#
# ||\vect{X}-\vect{Y}||_{\mat{V}}^2 = (\vect{X}-\vect{Y})^\top\ \mat{V}^{-1}\ (\vect{X}-\vect{Y}).
#
# 1.2. Interval Censorship
# ~~~~~~~~~~~~~~~~~~~~~~~~
#
# We now assume that, instead of observing directly the
# :math:`Y_i, i=1,\ldots,n` as described above, we only have access to
# discretized values :math:`Y_i^{obs} \in \delta \times \mathbb N`, where
# :math:`\delta > 0` is a grid length and :math:`Y_i^{obs} = \delta \times k` means that
# :math:`Y_i \in \delta \times \left[ k - \frac{1}{2}; k + \frac{1}{2} \right[`.
#
# 1.3. Remarks
# ~~~~~~~~~~~~
#
# - The presence of a composite matrix :math:`\tau^{-1} \mat{I}_n+\mat{Q}^{-1}` makes
# estimation more complex than with a spherical one
# :math:`\tau^{-1}\mat{I}_n,` since we would then have explicit (closed-form)
# maximum likelihood estimators, and also conjugate priors leading to
# explicit full joint posterior distributions.
# - Another difficulty is the presence of censored data, since the
# likelihood is no more available in closed-form. As we will see, this
# can be overcome thanks to Bayesian inference.
# - Heteroscedastic linear modeling under interval censorship as
# formulated above was originally motivated by an industrial case-study
# in seismology, wherein the :math:`Y_i` correspond to the observed
# intensity of an earthquake in a distant site, and explanatory
# variables :math:`\vect{X}_{i}` are derived from the epicentral distance to the
# earthquake's source as well as its characteristics (magnitude,
# depth). But it can also arise in many different contexts, as soon as
# observations are available with known statistical precisions (hence
# the heteroscedasticity) and limited numerical accuracy (hence the
# censorship).
# %%
# 1.4 Simulate the dataset
# ~~~~~~~~~~~~~~~~~~~~~~~~
import openturns as ot
from openturns.viewer import View
import numpy as np
ot.Log.Show(ot.Log.NONE)
ot.RandomGenerator.SetSeed(1)
n = 10
delta = 0.5
# %%
# Build the design matrix :math:`\mat{X}`
X = ot.Sample([[1.0]] * n)
X.stack(ot.Normal(0.0, 10.0).getSample(n))
# %%
# Make the precision matrix :math:`\mat{Q}` a diagonal matrix and sample
# its diagonal coefficients from an :class:`~openturns.Exponential` distribution.
Q = np.ones((n, 1)) + ot.Exponential().getSample(n)
# %%
# Choose values for the parameters :math:`\vect{\theta}` and :math:`\tau`.
theta_true = np.array([[0.0], [1.0]])
p = len(theta_true)
tau_true = 0.1
# %%
# First sample uncensored, and then censored observation data.
mean_true = np.dot(X, theta_true).ravel()
std_true = np.sqrt(1.0 / tau_true + 1.0 / Q).ravel()
Y_sim = mean_true + [x[0] for x in ot.Normal().getSample(n)] * std_true
Yobs_sim = np.round(Y_sim / delta) * delta
# %%
# Plot the simulated dataset.
graph = ot.Graph("Simulated data", "$X_1$", "$Y$", True, "upper left")
cloud_obs = ot.Cloud(X[:, 1].asPoint(), Yobs_sim)
cloud_obs.setPointStyle("bullet")
cloud_sim = ot.Cloud(X[:, 1].asPoint(), Y_sim)
cloud_sim.setPointStyle("bullet")
curve = ot.Curve(X[:, 1].asPoint(), mean_true)
curve.setLineWidth(1.5)
graph.add(curve)
graph.add(cloud_sim)
graph.add(cloud_obs)
graph.setLegends(["Trend", "$Y^{sim}$", "$Y^{obs}$"])
_ = View(graph)
# %%
# 2. Bayesian Inference
# ---------------------
#
# 2.1. Choice of a prior law
# ~~~~~~~~~~~~~~~~~~~~~~~~~~
#
# We use the standard Normal-Gamma prior for :math:`\vect{\theta}` and
# :math:`\tau`:
#
# .. math::
#
# \vect{\theta} | \tau \sim \mathcal N_{p}(\vect{\mu}_0; \tau^{-1}\mat{\Sigma}_0) \\
# \tau \sim \mathcal G(a_0, b_0),
#
# where all parameters are assumed *a priori* independent if not stated
# otherwise.
#
# Furthermore, a default choice for the hyperparameters consists in having
# all prior variances go to infinity, equivalent to the degenerate case:
#
# .. math::
#
# \vect{\mu}_0, \mat{\Sigma}_0^{-1}, a_0, b_0 \equiv 0
#
# But the resulting prior is improper. Hence, posterior propriety needs to
# be proven first.
#
# A simpler solution is to ensure prior (hence posterior) propriety by
# imposing bounds :math:`\vect{\theta}_{\min}, \vect{\theta}_{\max}, \tau_{\min}, \tau_{\max}`
# on all parameters following:
#
# .. math::
#
# \vect{\theta} | \tau \sim \mathcal N_{p}(\vect{\mu}_0; \tau^{-1}\mat{\Sigma}_0) {\bf 1}_{\{\vect{\theta}_{\min} \leq \vect{\theta} \leq \vect{\theta}_{\max}\}} ;\\
# \tau \sim \mathcal G(a_0, b_0){\bf 1}_{\{\tau_{\min} \leq \tau \leq \tau_{\max}\}},
#
# where inequalites are taken componentwise. When all hyperparameters go to
# :math:`0` as described above, the prior converges to a product of
# uniform distributions.
#
# We will use this product of univariate uniforms as a prior in the
# following. As discussed above, there is no simple way to obtain the
# posterior distribution, justifying the use of Monte-Carlo Markov chain
# techniques, as described hereafter.
lower = (Yobs_sim.ravel() - delta).tolist()
upper = (Yobs_sim.ravel() + delta).tolist()
# Global support of the joint distribution: theta, tau, outputs
support = ot.Interval([-2.0] * p + [1e-4] + lower, [2.0] * p + [1e1] + upper)
prior = ot.JointDistribution(
[ot.Uniform(-2.0, 2.0), ot.Uniform(-2.0, 2.0), ot.Uniform(1e-4, 1e1)]
)
# Initialize to true value
initial_state = theta_true[:, 0].tolist() + [tau_true] + Y_sim.ravel().tolist()
initial_state = ot.Point(initial_state)
# %%
# 2.2. Posterior sampling
# ~~~~~~~~~~~~~~~~~~~~~~~
#
# The solution we advocate consists in sampling from the joint posterior
# distribution of all uncertain parameters, including the vector of
# continuous intensities :math:`\vect{Y},` seen here as a latent variable.
# Indeed, adding :math:`\vect{Y}` to the vector of sampled variables yields a
# posterior density which is available in closed form, up to an unknown
# multiplicative factor
#
# .. math::
#
# \begin{array}{ll}
# \pi(\vect{Y},\vect{\theta},\tau|\vect{Y}^{obs})
# & \propto \pi(\vect{\theta},\tau)\times\mathcal L(\vect{Y}|\vect{\theta},\tau)\mathcal L(\vect{Y}^{obs}|\vect{Y})\\
# & \propto
# {\bf 1}_{\{\vect{\theta}_{\min} \leq \vect{\theta} \leq \vect{\theta}_{\max}\}}\times
# {\bf 1}_{\{\tau_{\min} \leq \tau \leq \tau_{\max}\}}\times
# \mathcal N_n (\vect{Y}|\mat{X} \vect{\theta};\tau^{-1} \mat{I}_n + \mat{Q}^{-1}) \times
# {\bf 1}_{\left[\vect{Y}^{obs}-\frac{\delta}{2}; \vect{Y}^{obs}+\frac{\delta}{2}\right[}(\vect{Y}).
# \end{array}
#
# This allows one to perform the following Metropolis within Gibbs sampling
# scheme, wherein the pre-defined blocks of variables
# :math:`(\vect{Y},\vect{\theta},\tau)` are updated in turn, according to their
# conditional posterior density, or to a Markov kernel targeting it, as
# described in the following.
#
# 2.2.1. Updating :math:`\vect{Y}`
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
#
# .. math::
# \pi(\vect{Y}|\vect{\theta},\tau,\vect{Y}^{obs})\propto\prod_{i=1}^{n}\mathcal N(Y_{i}|\vect{X}_{i} \vect{\theta}, \tau^{-1}+q_{i}^{-1}) {\bf 1}_{\left[Y_{i}^{obs}-\frac{\delta}{2};
# Y_{i}^{obs}+\frac{\delta}{2}\right[}(Y_{i})
#
# hence the latent variables :math:`Y_i` are updated by simply simulating
# independent univariate truncated normals.
#
# %%
# Step 1 : Create associated :class:`~openturns.RandomVector`
marginals_trunc = [
ot.TruncatedNormal(Yobs_sim[i], 1.0, lower[i], upper[i]) for i in range(len(X))
]
trunc_cond_Y = ot.JointDistribution(marginals_trunc)
RV_Y = ot.RandomVector(trunc_cond_Y)
# %%
# Step 2 : Link function, giving the parameters of the univariate truncated normals in function of the chain's current state
gen_params = np.array(trunc_cond_Y.getParameter())
def py_link_function_y(x):
"""
link function for Y conditional density
Input
x: vector with length (p + 1 + n), containing the current state of (theta, tau, Y)
Output
params: vector with length 4*n, corresponding to mean, std, a and b, for each component of Y
Notes
a and b represent the upper and lower bounds for the truncated normals
"""
theta = [x[i] for i in range(p)]
tau = x[p]
# compute conditional mean and standard deviates
mean = np.dot(X, theta)
std = np.sqrt(1.0 / tau + 1.0 / Q)
# inject values in blueprint
params = gen_params.copy()
params[::4] = mean
params[1::4] = std.ravel()
return params
# %%
# 2.2.2. Updating :math:`\vect{\theta}`
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
#
# :math:`\pi(\vect{\theta}|\vect{Y}, \tau, \vect{Y}^{obs})=\pi(\vect{\theta}|\vect{Y},\tau).` Due to the
# partial conjugacy of the conditional prior :math:`\pi(\vect{\theta}|\tau),`
# this is explicit, and given by the following box-constrained
# multivariate normal:
#
# .. math::
#
# \vect{\theta}|\vect{Y},\tau \sim \mathcal N_4( \vect{\mu}_n ; \mat{\Sigma}_n ){\bf 1}_{\{\vect{\theta}_{\min} \leq \vect{\theta} \leq \vect{\theta}_{\max}\}},
#
# with
#
# .. math::
#
# \vect{\mu}_n = \vect{\mu}_0 + \mat{\Sigma}_0X^\top(\mat{X} \mat{\Sigma}_0 \mat{X}^\top + \mat{I}_n + \tau \mat{Q}^{-1})^{-1}(\vect{Y} - \mat{X} \vect{\mu}_0) \\
# \mat{\Sigma}_n = \tau^{-1}\mat{\Sigma}_0 - \tau^{-1}\mat{\Sigma}_0 \mat{X}^\top (\mat{X} \mat{\Sigma}_0 \mat{X}^\top + \mat{I}_n + \tau \mat{Q}^{-1})^{-1} \mat{X} \mat{\Sigma}_0,
#
# or equivalently, thanks to the matrix Woodsbury identity:
#
# .. math::
#
# \vect{\mu}_n = (\mat{\Sigma}_0^{-1} + \mat{X}^\top (\mat{I}_n + \tau \mat{Q}^{-1})^{-1} \mat{X})^{-1}(\mat{\Sigma}_0^{-1} \vect{\mu}_0
# + \mat{X}^\top (\mat{I}_n + \tau \mat{Q}^{-1})^{-1} \vect{Y})\\
# \mat{\Sigma}_n = \tau^{-1}(\mat{\Sigma}_0^{-1} + \mat{X}^\top (\mat{I}_n + \tau \mat{Q}^{-1})^{-1} \mat{X})^{-1}.
#
# By having all hyperparameters go to :math:`0,` we obtain the following
# simplified form:
#
# .. math::
#
# \vect{\mu}_n = (\mat{X}^\top (\mat{I}_n + \tau \mat{Q}^{-1})^{-1} \mat{X})^{-1}(\mat{X}^\top (\mat{I}_n + \tau \mat{Q}^{-1})^{-1} \vect{Y})\\
# \mat{\Sigma}_n = \tau^{-1}(\mat{X}^\top (\mat{I}_n + \tau \mat{Q}^{-1})^{-1} \mat{X})^{-1}.
#
# Explicit simulation from a box-constrained multivariate normal can be
# done with a simple rejection sampling scheme:
# %%
# Step 1 : Create associated :class:`~openturns.RandomVector`
class BoxConstrainedNormal(ot.PythonRandomVector):
"""
Multivariate normal distribution
under box constraints
"""
def __init__(
self, d=2, mu=np.zeros(2), Sigma=np.eye(2), r=np.zeros(2), s=np.ones(2)
):
for x in mu, Sigma, r, s:
if len(x) != d:
print("expectation or bound does not have size %s" % d)
raise ValueError
if Sigma.shape != (d, d):
print("covariance matrix not have dimensions (%s,%s)" % (d, d))
raise ValueError
super(BoxConstrainedNormal, self).__init__(d)
self.mu = mu
self.Sigma = Sigma
self.r = r
self.s = s
self.interval = ot.Interval(r, s)
def setParameter(self, parameter):
d = self.getDimension()
self.mu = np.array(parameter[:d])
self.Sigma = np.array(parameter[d : d + d * d]).reshape(d, d)
self.r = np.array(parameter[-2 * d : -d])
self.s = np.array(parameter[-d:])
self.interval = ot.Interval(self.r, self.s)
def getParameter(self):
return np.concatenate(
[self.mu.ravel(), self.Sigma.ravel(), self.r.ravel(), self.s.ravel()]
)
def getRealization(self):
accept = False
proposaldist = ot.Normal(self.mu, ot.CovarianceMatrix(self.Sigma))
while not accept:
proposal = proposaldist.getRealization()
accept = self.interval.contains(proposal)
return proposal
RV_theta = ot.RandomVector(BoxConstrainedNormal())
# %%
# Step 2 : Link function, giving the parameters of the box-constrained normal in function of :math:`\tau` and :math:`\vect{Y}` values
def py_link_function_theta(x):
tau = x[p]
Y = [x[i] for i in range(p + 1, len(x))]
# conditional mean and variance
# for diagonal Q
Itilde_inv = 1.0 / (1.0 + tau / Q)
Xtilde = Itilde_inv * X
Sigma_n = np.linalg.inv(np.dot(Xtilde.T, X)) / tau
mu_n = np.dot(Xtilde.T, Y)
mu_n = tau * np.dot(Sigma_n, mu_n)
# extract parameters in correct order (coherent with getParameter() method of RV_theta)
return np.concatenate(
[
mu_n.ravel(),
Sigma_n.ravel(),
support.getLowerBound()[:p],
support.getUpperBound()[:p],
]
)
# %%
# 2.2.3. Updating :math:`\tau`
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
#
# :math:`\pi(\tau|\vect{Y},\vect{\theta})` is proportional to:
#
# .. math::
#
#
# \pi(\tau|\vect{Y},\vect{\theta})
# \propto
# {\bf 1}_{\{\tau_{\min} \leq \tau \leq \tau_{\max}\}}\times
# \mathcal N_n(\vect{Y}|\mat{X} \vect{\theta};\tau^{-1} \mat{I}_n + \mat{Q}^{-1}).
#
# Hence, :math:`\tau` can be updated using the Random-walk
# Metropolis-Hastings algorithm.
# %%
# Step 1 : compute tau's conditional posterior density, up to a multiplicative factor
def marginals_Y(theta, tau):
mu = np.dot(X, theta).ravel()
sigma = np.sqrt(1.0 / tau + 1.0 / Q).ravel()
return [ot.Normal(mu[i], sigma[i]) for i in range(len(X))]
def py_log_density(x):
theta = [x[i] for i in range(p)]
tau = x[p]
Y = [x[p + 1 + i] for i in range(len(X))]
ld = ot.JointDistribution(marginals_Y(theta, tau)).computeLogPDF(Y)
return [ld]
# %%
# Step 2 : define the proposal distribution
proposal_tau = ot.Normal(0.0, 1e-1)
# %%
# 2.3. Initialization
# ~~~~~~~~~~~~~~~~~~~
#
# To avoid all numerical problems, it is better to provide the algorithm
# with a starting point not too far from the posterior mode. To this end,
# we propose to set :math:`\vect{Y}=\vect{Y}^{obs}` for simplicity, then solve the
# following optimization problem
#
# .. math::
#
# \widehat\theta,\widehat\tau = \arg\max_{\vect{\theta},\tau} \pi(\vect{\theta},\tau|\vect{Y}^{obs},\vect{Y}=\vect{Y}^{obs})
# = \arg\max_{\theta\in[\vect{\theta}_{\min};\vect{\theta}_{\max}]
# \tau\in[\tau_{\min};\tau_{\max}]} \mathcal N(\vect{Y}^{obs}|\vect{\theta} \mat{X}; \tau^{-1} \mat{I}_n + \mat{Q}^{-1}).
#
# Note that the unconstrained optimization over :math:`\vect{\theta}` for fixed
# :math:`\tau` is explicit, since:
#
# .. math::
#
# \arg\max_{\vect{\theta}} \pi(\vect{\theta},\tau|\vect{Y}^{obs},\vect{Y}=\vect{Y}^{obs})
# =\arg\max_{\vect{\theta}} \pi(\vect{\theta}|\vect{Y}^{obs},\vect{Y}=\vect{Y}^{obs},\tau).
#
# But we have shown that the conditional posterior density of
# :math:`\vect{\theta}` is Gaussian. Hence the unconstrained conditional
# posterior mode (and mean) is given by:
#
# .. math::
#
# \arg\max_{\vect{\theta}} \pi(\vect{\theta}|\vect{Y}^{obs},\vect{Y}=\vect{Y}^{obs},\tau)
# = (\mat{X}^\top (\mat{I}_n + \tau \mat{Q}^{-1})^{-1} \mat{X})^{-1}(\mat{X}^\top (\mat{I}_n + \tau \mat{Q}^{-1})^{-1} \vect{Y}):= \vect{\mu}_n(\tau).
#
# If this point does not respect the constraints, then we simply project
# each component unto the constrained space.
#
# Hence the following 1D problem remains to be solved:
#
# .. math::
#
# \widehat\tau = \arg\max_{\tau\in[\tau_{\min};\tau_{\max}]} \mathcal N(\vect{Y}^{obs}|\vect{\mu}_n(\tau) \mat{X}; \tau^{-1} \mat{I}_n + \mat{Q}^{-1}).
#
# The optimal value of :math:`\vect{\theta}` is then given by:
# :math:`\widehat{\vect{\theta}} = \vect{\mu}_n(\widehat\tau).`
def mu_n(tau):
x = ot.Point(initial_state)
x[p] = tau
# trick: posterior conditional mean is computed by the link function
return py_link_function_theta(x)[:p]
# optimization criterion
def log_cond_tau_post(tau):
x = ot.Point(initial_state)
x[p] = tau
# replace theta by its conditional posterior mean
x[:p] = py_link_function_theta(x)[:p]
# compute log conditional posterior of tau
ll = py_log_density(x)[0]
return ll
# %%
# 1D optimization
def func(X):
return [-log_cond_tau_post(X[0])]
problem = ot.OptimizationProblem(ot.PythonFunction(1, 1, func))
problem.setBounds(ot.Interval([1e-4], [1e4]))
solver = ot.TNC(problem)
solver.setStartingPoint([1.0])
solver.run()
tauhat = solver.getResult().getOptimalPoint()[0]
print("tauhat =", tauhat)
# inject result in initialState vector
x = ot.Point(initial_state)
x[:p] = mu_n(tauhat)
x[p] = tauhat
# %%
# Final step : create a :class:`~openturns.MetropolisHastings` object for each block
initialState = x
mi_Y = [i for i in range(p + 1, p + 1 + n)]
link_function_y = ot.PythonFunction(len(x), 4 * n, py_link_function_y)
rvmh_Y = ot.RandomVectorMetropolisHastings(RV_Y, initialState, mi_Y, link_function_y)
mi_theta = [i for i in range(p)]
link_function_theta = ot.PythonFunction(len(x), p + (p + 2) * p, py_link_function_theta)
rvmh_theta = ot.RandomVectorMetropolisHastings(
RV_theta, initialState, mi_theta, link_function_theta
)
log_pdf_tau = ot.PythonFunction(len(x), 1, py_log_density)
rwmh_tau = ot.RandomWalkMetropolisHastings(
log_pdf_tau, support, initialState, proposal_tau, [p]
)
# Now, assemble the blocks to create a Gibbs algorithm:
gibbs = ot.Gibbs([rvmh_Y, rvmh_theta, rwmh_tau])
# %%
# Launch Algorithm
sampleSize = 1000
# Joint posterior density sample
sample = gibbs.getSample(sampleSize)
# compute acceptance rate
tau_post = np.array(sample[:, p]).ravel()
acc_rate = (tau_post[1:] != tau_post[:-1]).mean()
print("Acceptance rate: %s" % acc_rate)
# %%
# Plot posterior distribution marginals
# extract interest parameters
post_sample = sample.getMarginal([i for i in range(p + 1)])
post_sample.setDescription(["$\\theta_0$", "$\\theta_1$", "$\\tau$"])
ks_post = ot.KernelSmoothing().build(post_sample)
posterior = ot.TruncatedDistribution(ks_post, prior.getRange())
grid = ot.GridLayout(1, 3)
grid.setTitle("Bayesian inference")
xlabs = [r"$\theta_0$", r"$\theta_1$", r"$\tau$"]
p_true = [theta_true[0][0], theta_true[1][0], tau_true]
for parameter_index in range(3):
# use the cheaper truncated posterior marginal instead of the true posterior marginal
posterior_marg = ot.TruncatedDistribution(ks_post.getMarginal(parameter_index), prior.getRange().getMarginal(parameter_index))
graph = posterior_marg.drawPDF()
bbox = graph.getBoundingBox()
bound = bbox.getUpperBound()[1]
prior_pdf = prior.getMarginal(parameter_index).drawPDF()
graph.add(prior_pdf)
curve_true = ot.Curve([p_true[parameter_index]] * 2, [0.0, bound])
graph.add(curve_true)
graph.setLegends(["Posterior", "Prior", "True value"])
graph.setXTitle(xlabs[parameter_index])
grid.setGraph(0, parameter_index, graph)
_ = View(grid)
# %%
# Draw pairplots of the posterior sample.
# sphinx_gallery_thumbnail_number = 3
grid = ot.VisualTest.DrawPairs(post_sample)
graph = grid.getGraph(0, 0)
pt = ot.Cloud(theta_true.T, "#2ca02c", "circle", "True value")
graph.add(pt)
grid.setGraph(0, 0, graph)
graph = grid.getGraph(1, 0)
pt = ot.Cloud([[theta_true[0, 0], tau_true]], "#2ca02c", "circle", "True value")
graph.add(pt)
grid.setGraph(1, 0, graph)
graph = grid.getGraph(1, 1)
pt = ot.Cloud([[theta_true[1, 0], tau_true]], "#2ca02c", "circle", "True value")
graph.add(pt)
grid.setGraph(1, 1, graph)
_ = View(grid)
# %%
View.ShowAll()
|